INTERSIL HFA3766IN96

HFA3766
January 1999
PRELIMINARY
400MHz AGC Quadrature IF
Modulator/Demodulator
File Number 4328.1
Features
•
•
•
•
The HFA3766 is a highly integrated
baseband converter for quadrature
modulation applications. It features all
the necessary blocks for baseband
modulation and demodulation of I and
Q signals. It has a two stage integrated AGC IF amplifier with
82dB of voltage gain and 76dB of gain control range.
Baseband antialiasing is integrated into the design. Four
filter bandwidths are programmable via a two bit digital
control interface. In addition, these filters are continuously
tunable over a ±20% frequency range via one external
resistor. For baseband modulation digital I and Q data are
delivered to the transmit section. To achieve broadband
operation, the Local Oscillator frequency input is required
to be twice the desired frequency of modulation and
demodulation. A selectable buffered divide by 2 LO output
and a stable reference voltage are provided for convenience
of the user. The device is housed in a thin 80 lead TQFP
package well suited for PCMCIA board applications.
™
•
•
•
•
•
•
•
•
•
•
•
•
•
Integrates all IF Transmit and AGC Receive Functions
Broad Frequency Range . . . . . . . . . . 10MHz to 400MHz
I/Q Amplitude and Phase Balance . . . . 0.2dB, 2 Degrees
5th Order Programmable
Low Pass Filter . . . . . . . . . . . . . . . . . . 2.2MHz to 17.6MHz
400MHz AGC Gain Strip . . . . . . . . . . . . . . . . . . . . . 82dB
AGC Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75dB
Low LO Drive Level . . . . . . . . . . . . . . . . . . . . . . . -15dBm
Fast AGC Switching . . . . . . . . . . . . . . . . . . . . . . . . . . 1µs
Fast Transmit-Receive Switching . . . . . . . . . . . . . . . . . . . 1µs
Power Management/Standby Mode
Single Supply 3.0V Operation
Wireless Local Loop
Wireless Local Area Networks
PCMCIA Wireless Transceivers
ISM Systems
CDMA Radios
PCS/Wireless PBX
Ordering Information
TEMP.
RANGE (oC)
PART NUMBER
PACKAGE
HFA3766IN
-40 to 85
80 Ld TQFP
HFA3766IN96
-40 to 85
Tape and Reel
PKG. NO.
Q80.14x14
LPF_SEL1
LPF_SEL0
LPF_TUNE_1
LPF_TUNE_0
LPF_RXQ
LPF_RXI
DEMOD_RXI
DEMOD_RXQ
DEMOD_IFIN
AGC2_OUT
AGC2_IN
AGC1_OUT
Simplified
AGC_SEl
AGC1_IN
LPF_RXI_OUT
AGC1_VAGC
AGC2_VAGC
LPF_RXQ _OUT
I
LO_IN
÷2 0o/90o
M
U
X
M
U
X
LPF_TXI_IN
LO_OUT
LO_GND
Q
LPF_TXQ_IN
∑
MOD_TX_IF_OUT
1
TX D OR A
LPF_TXI
LPF_TXQ
MOD_TXQ
MOD_TXI
2V REF
2V REF
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
PRISM and PRISM logo are trademarks of Intersil Corporation.
www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
HFA3766
Pinout
AGC1_VAGC
GND
AGC1_VCC
AGC1_PE
AGC1_OUT+
AGC1_OUTAGC1_VCC
GND
GND
GND
GND
GND
GND
GND
GND
AGC2_BYPAGC2_INGND
AGC2_IN+
AGC2_BYP+
80 LEAD TQFP
TOP VIEW
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
AGC1_BYP+
AGC1_IN+
GND
AGC1_SEL
AGC1_INAGC1_BYPGND
GND
LPF_VCC
2V REF
LPF_BYP
LPF_TXI_IN
LPF_TXQ_IN
LPF_RXI_OUT
LPF_RXQ_OUT
LPF_SEL1
LPF_SEL0
LPF_TUNE1
LPF_TUNE0
TX D OR A
AGC2_VAGC
GND
AGC2_VCC
AGC2_PE
AGC2_OUT+
AGC2_OUTAGC2_VCC
GND
GND
GND
LO_GND
DEMOD_IFINDEMOD_IFIN+
MOD_VCC
LO_OUT
MOD_VCC
LO_IN
DEMOD_RX_PE
MOD_TX_IF_OUT
MOD_TX_PE
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
MOD_TXIMOD_TXQ+
MOD_TXQ-
LPF_RX_PE
LPF_TX_PE
LPF_TXQLPF_TXQ+
LPF_TXILPF_TXI+
LPF_RXQLPF_RXQ+
LPF_RXILPF_RXI+
GND
GND
DEMOD_RXI+
DEMOD_RXIDEMOD_RXQ+
DEMOD_RXQMOD_TXI+
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Typical Application Diagram
HFA3766
(FILE# 4328)
TUNE/SELECT
RXI
HFA3424 (NOTE)
(FILE# 4131)
I
HFA3624
RF/IF
CONVERTER
(FILE# 4066)
÷2
0o/90o
M
U
X
M
U
X
M
U
X
RXQ
VAGC
RFPA
VCO
HFA3925
(FILE# 4132)
VCO
Q
QUAD IF MODEM
TX D OR A
DUAL SYNTHESIZER
HFA3524 (FILE# 4062)
For additional information on the PRISM™ Full Duplex Radio
Chip Set, call (407) 724-7800 to access Intersil’s AnswerFAX
system. When prompted, key in the four-digit document
number (File #) of the data sheets you wish to receive.
2
PRISM™ CHIP SET FILE #4063
The four-digit file numbers are shown in Typical Application
Diagram, and correspond to the appropriate circuit.
HFA3766
TX D OR A
LPF_TXQ_IN
LPF_TXI_IN
LPF_RXI_OUT
LPF_RXQ_OUT
Block Diagram
MUX_LPF
LPF_SEL1
LPF_SEL0
LPF_TUNE0
MUX
LPF_TUNE1
LPF_RX_PE
LPF_RXI LPF_RXI +
LPF_RXQ +
LPF_RXQ -
LPF_TXQ LPF_TXQ +
LPF_TXI LPF_TXI +
Q
I
-
MUX
90o
MOD_TX_PE
0o
DEMOD_RX_PE
MOD _TXI +
MOD _TXI MOD _TXQ +
MOD _TXQ -
/
DOWN CONV
DEMOD_RXQ DEMOD_RXQ +
DEMOD_RXI DEMOD_RXI +
LPF_TX_PE
∑
÷2
DEDEMOD_IFIN+
DEMOD_IFIN AGC2_OUT AGC2_OUT +
IF
AGC
NOTE: VCC , GND and Bypass capacitors not shown.
3
50Ω
VCC
LO_OUT
LO_GND
(2XLO)
AGC2_VAGC
LO_IN
VAGC
IF
IN
SAW AGC1_IN+
AGC1_INAGC1_VAGC
AGC1_PE
2V
REF
56 56
LPF_BYP
1.25V
NO FIT
MOD_TX
IF_OUT
10nH
UP CONVERTER
33p
IF
AGC2_IN+
AGC2_INAGC1_OUT AGC1_OUT +
1000p
AGC2_PE
1000p
2V REF
HFA3766
Pin Descriptions
PIN
SYMBOL
DESCRIPTION
1
AGC1_BYP+
DC feedback pin for AGC amplifier 1. Requires good decoupling and minimum wire length to a solid signal
ground.
2
AGC1_IN+
3
GND
4
AGC_SEL
This pin selects either differential or single ended input configuration for the first stage AGC. Ground this pin for
differential input configuration. Leave it floating for single ended input configuration.
5
AGC1_IN-
Inverting analog input of AGC amplifier 1.
6
AGC1_BYP-
7, 8
GND
9
LPF_VCC
10
2V REF
11
LPF_BYP
12
LPF_TXI_IN
Low pass filter in phase (I) channel transmit input. Conventional or attenuated direct coupling is required for
digital inputs.
13
LPF_TXQ_IN
Low pass filter quadrature (Q) channel transmit input. Conventional or attenuated direct coupling is required for
digital inputs
14
LPF_RX_I
Low pass filter in phase (I) channel receive output. Requires AC coupling.
15
LPF_RX_Q
Low pass filter quadrature (Q) channel receive output. Requires AC coupling.
16
LPF_SEL1
Digital control input pins. Selects four programmed cut off frequencies for the receive channel. Tuning speed from
one cutoff to another is less than 1µs.
17
LPF_SEL0
18
LPF_TUNE1
19
LPF_TUNE0
These two pins are used to fine tune the Low pass filter cutoff frequency. A resistor connected between the two
pins (RTUNE) will fine tune both transmit and receive filters. Refer to the tuning equation in the LPF AC
specifications.
20
TXD or TXA
Selects between digital or analog signals. Tie to GND for digital. Tie to VCC for analog.
21
LPF_RX_PE
Digital input control pin to enable the LPF receive mode of operation. Enable logic level is High.
22
LPF_TX_PE
Digital input control pin to enable the LPF transmit mode of operation. Enable logic level is High.
23
LPF_TXQ-
Negative output of the transmit Low pass filter, quadrature channel. AC coupling is required. Normally connects
to the inverting input of the quadrature Modulator (Mod_TXQ-), pin 40.
24
LPF_TXQ+
Positive output of the transmit Low pass filter, quadrature channel. AC coupling is required. Normally connects
to the non inverting input of the quadrature Modulator (Mod_TXQ+), pin 39.
25
LPF_TXI-
Negative output of the transmit Low pass filter, in phase channel. AC coupling is required. Normally connects to
the inverting input of the in phase Modulator (Mod_TXI-), pin 38.
26
LPF_TXI+
Positive output of the transmit Low pass filter, in phase channel. AC coupling is required. Normally connects to
the non inverting input of the in phase Modulator (Mod_TXI+), pin 37.
27
LPF_RXQ-
Low pass filter inverting input of the receive quadrature channel. AC coupling is required. This input is normally
coupled to the negative output of the quadrature demodulator (Mod_RXQ-), pin 36.
Non-inverting analog input of AGC amplifier 1.
Ground. Connect to a solid ground plane.
DC feedback pin for AGC amplifier 1. Requires good decoupling and minimum wire length to a solid signal
ground.
Ground. Connect to a solid ground plane.
Supply pin for the Low pass filter. Use high quality decoupling capacitors right at the pin.
Stable 2V reference voltage output for external applications. Loading must be higher than 10kΩ. A bypass
capacitor of at least 0.1µF is required.
Internal reference bypass pin. This is the common voltage (VCM) used for the LPF digital thresholds. Requires
0.1µF decoupling capacitor.
SEL1
LO
LO
4
SEL0
LO
HI
CUTOFF FREQUENCY
2.2MHz
4.4MHz
SEl1
HI
HI
SEl0
LO
HI
CUTOFF FREQUENCY
8.8MHz
17.6MHz
HFA3766
Pin Descriptions
(Continued)
PIN
SYMBOL
DESCRIPTION
28
LPF_RXQ+
29
LPF_RXI-
Low pass filter inverting input of the receive in phase channel. AC coupling is required. This input is normally
coupled to the negative output of the in phase demodulator (Mod_RXI-), pin 34.
30
LPF_RXI+
Low pass filter non inverting input of the receive in phase channel. AC coupling is required. This input is normally
coupled to the positive output of the in phase demodulator (DEMOD_RXI-), pin 33.
31, 32
GND
33
DEMOD_RXI+
In phase demodulator positive output. AC coupling is required. Normally connects to the non inverting input of
the Low pass filter (LPF_RXI+), pin 30.
34
DEMOD_RXI-
In phase demodulator negative output. AC coupling is required. Normally connects to the inverting input of the
Low pass filter (LPF_RXI-), pin 29.
35
DEMOD_RXQ+
Quadrature demodulator positive output. AC coupling is required. Normally connects to the non inverting input
of the Low pass filter (LPF_RXQ+), pin 28.
36
DEMOD_RXQ-
Quadrature demodulator negative output. AC coupling is required. Normally connects to the inverting input of
the Low pass filter (LPF_RXQ+), pin 27.
37
MOD_TXI+
In phase modulator non inverting input. AC coupling is required. This input is normally coupled to the Low pass
filter positive output (LPF_TXI+), pin 26.
38
MOD_TXI-
In phase modulator inverting input. AC coupling is required. This input is normally coupled to the Low pass filter
negative output (LPF_TXI-), pin 25.
39
MOD_TXQ+
Quadrature modulator non inverting input. AC coupling is required. This input is normally coupled to the Low
pass filter positive output (LPF_TXQ+), pin 24.
40
MOD_TXQ-
Quadrature modulator inverting input. AC coupling is required. This input is normally coupled to the Low pass
filter negative output (LPF_TXQ-), pin 23.
41
MOD_TX_PE
Digital input control to enable the Modulator section. Enable logic level is High for transmit.
42
MOD_TX_IF
_OUT
Modulator open collector output, single ended. Termination resistor to VCC with a typical value of 316Ω.
43
DEMOD_RX
_PE
Digital input control to enable the demodulator section. Enable logic level is High.
44
LO_In
(2XLO)
45
MOD_VCC
46
LO_Out
47
MOD_VCC
48
DEMOD_IFIN+
Demodulator, non-inverting input. Requires AC coupling.
49
DEMOD_IFIN-
Demodulator, inverting input. Requires AC coupling.
50
LO_GND
51, 52, 53
GND
54
AGC2_VCC
Low pass filter non inverting input of the receive quadrature channel. AC coupling is required. This input is
normally coupled to the positive output of the quadrature demodulator (Mod_RXQ+), pin 35.
Ground. Connect to a solid ground plane.
Single ended local oscillator current input. Frequency of input signal must be twice the required demodulator LO
frequency. Input current is optimum at 200µARMS. Input matching networks and filters can be designed for a
wide range of power and impedances at this port. Typical input impedance is 130Ω. This pin requires AC
coupling.
NOTE: High second harmonic content input waveforms may degrade I/Q phase accuracy.
Supply pin for the Demodulator. Use high quality decoupling capacitors right at the pin.
Divide by 2 buffered output reference from “DEMOD_LO_in” input. Used for external applications where the demodulating carrier reference frequency is required. 50Ω single end driving capability. This output can be disabled
by use of pin 50. AC coupling is required.
Supply pin for the Demodulator. Use high quality decoupling capacitors right at the pin.
When grounded, this pin enables the LO buffer (DEMOD_LO_Out). When open (NC) it disables the LO buffer.
Ground. Connect to a solid ground plane.
Supply pin for the AGC amplifier 2. Use high quality decoupling capacitors right at the pin.
5
HFA3766
Pin Descriptions
(Continued)
PIN
SYMBOL
DESCRIPTION
55
AGC2_OUT-
Positive output of AGC amplifier 2. Requires AC coupling.
56
AGC2_OUT+
Negative output of AGC amplifier 2. Requires AC coupling.
57
AGC2_PE
58
AGC2_VCC
59
GND
60
AGC2_VAGC
AGC amplifier 2, AGC control input.
61
AGC2_BYP+
DC feedback pin for AGC amplifier 2. Requires good decoupling and minimum wire length to a solid signal
ground.
62
AGC2_IN+
63
GND
64
AGC2_IN-
65
AGC2_BYP-
66 - 73
GND
74
AGC1_VCC
AGC amplifier 1 supply pin. Use high quality decoupling capacitors right at the pin.
75
AGC1_OUT-
Negative output of AGC amplifier 1. Requires AC coupling.
76
AGC1_OUT+
Positive output of AGC amplifier 1. Requires AC coupling.
77
AGC1_PE
78
AGC1_VCC
79
GND
80
AGC1_VAGC
Digital input control to enable the AGC amplifier 2. Enable logic level is High.
Supply pin for the AGC amplifier 2. Use high quality decoupling capacitors right at the pin.
Ground. Connect to a solid ground plane.
Non-inverting analog input of AGC amplifier 2.
Ground. Connect to a solid ground plane.
Inverting input of AGC amplifier 2.
DC feedback pin for AGC amplifier 2. Requires good decoupling and minimum wire length to a solid signal
ground.
Ground. Connect to a solid ground plane.
Digital input control to enable the AGC amplifier 1. Enable logic level is High.
AGC amplifier 1 supply pin. Use high quality decoupling capacitors right at the pin.
Ground. Connect to a solid ground plane.
AGC amplifier 1, AGC control input.
6
HFA3766
Absolute Maximum Ratings
Thermal Information
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V
Voltage on Any Other Pin. . . . . . . . . . . . . . . . . . -0.3V to VCC +0.3V
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
TQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
Package Power Dissipation at 70oC
TQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1W
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . -65oC ≤ TA ≤ 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(TQFP - Lead Tips Only)
Operating Conditions
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . -40oC ≤ TA ≤ 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Cascaded DC Electrical Specifications
VCC = 4.5V to 5.5V, Unless Otherwise Specified
(NOTE 2)
TEST LEVEL
TEMP (oC)
MIN
TYP
MAX
UNITS
Total Supply Current, at 5.5V
A
Full
-
80
112
mA
Shutdown (Standby) Current at 5.5V
A
Full
-
0.8
1.5
mA
All Digital Inputs VIH (TTL Threshold for All VCC)
A
Full
2.0
-
VCC
V
All Digital Inputs VIL (TTL Threshold for All VCC)
A
Full
-0.2
-
0.8
V
High Level Input Current at 5.5V VCC for pins 16 and 21 with VIN = 2.4V
A
Full
-200
-65
0
µA
High Level Input Current at 5.5V VCC for pins 16 and 21 with VIN = 4.0V
A
Full
-150
-30
0
µA
Low Level Input Current at 5.5V VCC for pins 16 and 21 with VIN = 0.8V
A
Full
-300
-95
0
µA
High Level Input Current at 5.5V VCC for pin 17, with VIN = 2.4V
A
Full
0
50
200
µA
High Level Input Current at 5.5V VCC for pin 17, with VIN = 4.0V
A
Full
0
80
300
µA
Low Level Input Current at 5.5V VCC for pin 17, with VIN = 0.8V
A
Full
0
15
150
µA
High Level Input Current at 5.5V VCC for pin 43 with VIN = 2.4V
A
Full
-20
1
20
µA
High Level Input Current at 5.5V VCC for pin 43 with VIN = 4.0V
A
Full
0
110
300
µA
Low Level Input Current at 5.5V VCC for pin 43 with VIN = 0.8V
A
Full
-20
0.1
20
µA
VAGC Input for Max Gain (Note 5)
A
25
0.8
1.1
-
V
VAGC Input for Min Gain (Note 5)
A
25
-
2.1
2.2
V
VAGC Control Input Impedance (Per Stage) (Note 3)
C
25
-
410
-
Ω
VAGC Control Input Current (Per Stage) at Max Control Voltage
A
25
-
0.5
2.0
mA
Full Range AGC Switching Large Signal Recovery (Note 4)
B
25
-
400
-
ns
Full Range AGC Switching 1dB Settling Time (Note 4)
B
25
-
1.5
-
µs
Power Down/Up Switching Speed (Note 4)
B
25
-
2
-
µs
Reference Voltage
A
Full
1.85
2.0
2.15
V
Reference Voltage Variation Over Temperature
B
25
-
800
-
µV/oC
Reference Voltage Variation Over Supply Voltage
B
25
-
1.6
-
mV/V
Reference Voltage Minimum Load Resistance
C
25
10
-
-
kΩ
PARAMETER
NOTES:
2. A = Production Tested, B = Based on Characterization, C = By Design.
3. 1.2V reference source in series with 410Ω.
4. Determined by external components.
5. Measured at probe.
7
HFA3766
Cascaded AC Electrical Specifications, Demodulator Chain Performance
VCC = 3.0V, LO = 560 MHz, and
IF = 280 MHz, Unless Otherwise Specified
(NOTE 6)
TEST LEVEL
TEMP. (oC)
MIN
TYP
MAX
UNITS
Cascaded Power Gain
TBD
TBD
TBD
TBD
TBD
TBD
Cascaded OIP3
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
PARAMETER
CASCADED CHARACTERISTICS
Cascaded Noise Figure
Cascaded Output 1dB Compression
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
IF Demodulator I and Q Outputs Voltage Swing
(IF input Range of -70dBm to -30dBm)
A
Full
-
250
-
mVP-P
IF Demodulator I and Q Channels Output Drive Capability
(ZOUT = 50Ω) CMAX = 10pF, VOUT = 500mVP-P
C
25
1.2
2
-
kΩ
IF Demodulator I/Q Amplitude Balance, IFin = -50dBm at 50Ω
A
Full
-1.0
0
+1.0
dB
IF Demodulator I/Q Phase Balance, IFin = -50dBm at 50Ω
A
Full
-4.0
0
+4.0
Degrees
TBD
TBD
TBD
TBD
TBD
mV
IF Demodulator Output, P1dB
NOTES:
6. A = Production Tested, B = Based on Characterization, C = By Design.
7. Determined by external components.
AC Electrical Specifications, Modulator Performance
VCC = 3.0V, Unless Otherwise Specified
SYMBOL
(NOTE 8)
TEST LEVEL
TEMP
(oC)
MIN
TYP
MAX
UNITS
Mabal
B
25
-1.0
0
+1.0
dB
IF Modulator I/Q Phase Balance (Note 9)
Mphbal
B
25
-4.0
0
+4.0
Degrees
IF Modulator SSB Output Power (Note 10)
Mssbpw
A
Full
-12
-7
-4
dBm
IF Modulator Side Band Suppression (Note 10)
Mssbss
A
Full
26
33
-
dBc
IF Mod Carrier Suppression (LO Buffer Enabled) (Note 10)
Mssbcs
A
Full
28
30
-
dBc
IF Mod Carrier Suppression (LO Buffer Disabled) (Note 10)
Mssbcs1
B
25
28
36
-
dBc
IF Modulator Output Noise Floor (Out of Band)
Moutn0
B
25
-
-132
-
dBm/Hz
IF Modulator I/Q 3dB Cutoff SEL0/1 = 2.2MHz (Note 11)
Msel1f
A
Full
1.8
2.2
2.5
MHz
IF Modulator I/Q 3dB Cutoff SEL0/1 = 4.4MHz (Note 11)
Msel2f
A
Full
3.6
4.4
5.0
MHz
IF Modulator I/Q 3dB Cutoff SEL0/1 = 8.8MHz (Note 11)
Msel3f
A
Full
7.3
8.8
9.8
MHz
IF Modulator I/Q 3dB Cutoff SEL0/1 = 17.6MHz (Note 11)
Msel4f
A
Full
14.6
17.6
19.6
MHz
IF Modulator Spread Spectrum Output Power (Note 12)
Mdsspw
B
25
-12
-7
-4
dBm
IF Modulator Side Lobe to Main Lobe Ratio, LPF = 8.8MHz
(Note 12)
Mdsssl
A
Full
32
35
-
dB
PARAMETER
IF Modulator I/Q Amplitude Balance (Note 9)
NOTES:
8. A = Production Tested, B = Based on Characterization, C = By Design.
9. Data is characterized by DC levels applied to MOD TXI and Q pins for 4 quadrants with LO output as reference or indirectly by the SSB
characteristics.
10. Power at the fundamental SSB frequency of two 6MHz, 90 degrees apart square waves applied at TXI and TXQ inputs. VIH = 3.0V,
VIL = 0.5V. LPF selected to 8.8MHz cutoff.
11. Cutoff frequencies are specified for both modulator and demodulator as the filter bank is shared and multiplexed for Transmit and Receive. Data
is characterized by observing the attenuation of the fundamental of a square wave digital input swept at each channel separately. The IF output
is down converted by an external wideband mixer with a coherent LO input for each of quadrature signals separately.
12. Typical ratio characterization with RTUNE set to 7.7MHz, LPF selected for 8.8MHz. TXI and TXQ Digital Inputs at two independent and aligned
11M chip/s, 223-1 sequence code signals.
8
HFA3766
AC Electrical Specifications, Cascaded AGC Stages Performance
VCC = 3.0V
(NOTE 13)
TEST LEVEL
TEMP. (oC)
MIN
TYP
MAX
UNITS
Frequency Range (Note 14)
B
25
10
-
400
MHz
Voltage Gain at Max Gain (Note 15)
(VAGC = 0.8V, RS = 50Ω, RL = 500Ω)
B
25
78
82
-
dB
Voltage Gain at Min Gain (VAGC = 2.1V, RS = 50Ω, RL = 500Ω)
B
25
-
7
-
dB
Noise Figure at Max Gain, RS = 50Ω
B
25
-
10
11
dB
Output P 1dB at Min Gain, RS = 50Ω, dBm into RL = 500Ω
B
25
-16
-13
-
dBm
Input P 1dB at Min Gain, RS = 50Ω
B
25
-13
-10
-
dBm
Output IP3 at Min Gain, dBm into RL = 500Ω
B
25
-5
-2
-
dBm
Input IP3 at Min Gain, RS = 50Ω
B
25
-2
1
-
dBm
Group Delay, 20MHz Bandwidth
B
25
-
2.0
-
nsP-P
Single Ended Input Impedance, AGC_SEL = floating
B
25
-
50
-
Ω
Differential Input Impedance, AGC_SEL = ground
B
25
-
100
-
Ω
Differential Output Impedance
B
25
-
80
-
Ω
PARAMETER
NOTES:
13. A = Production Tested, B = Based on Characterization, C = By Design.
14. Determined by external components.
15. Measured at probe.
AC Electrical Specifications, I/Q Down Converter Individual Performance
VCC = 3.0V
(NOTE 16)
TEST LEVEL
TEMP. (oC)
MIN
TYP
MAX
UNITS
Quadrature Demodulator Input Frequency Range
B
25
10
-
400
MHz
Demodulator Baseband I/Q Frequency Range
C
25
-
-
30
MHz
Demodulator Voltage Gain at Frequency Range
B
25
6
8
9
dB
Demodulator Differential Input Resistance
C
25
-
1
-
kΩ
Demodulator Differential Input Capacitance
C
25
-
0.5
-
pF
Demodulator Differential Output Level at 4K Load,
(Output Controlled By AGC Action)
B
25
400
500
560
mVP-P
Demodulator Amplitude Balance
B
25
-1.0
-
1.0
dB
Demodulator Phase Balance at 286MHz
B
25
-4
-
4
Degrees
Demodulator Phase Balance at 400MHz
B
25
-4
-
4
Degrees
Demodulator Output 1dB Compression Voltage at 4K Load
B
25
-
1.25
-
VP-P
(NOTE 17)
TEST LEVEL
TEMP. (oC)
MIN
TYP
MAX
UNITS
2XLO Input Frequency Range (2 X Input Range)
B
25
20
-
800
MHz
2XLO Input Current Range
C
25
50
200
300
µARMS
2XLO Input Impedance
C
25
-
130
-
Ω
Buffered LO Output Voltage, Single Ended
C
25
50
100
-
mVP-P
PARAMETER
NOTE:
16. A = Production Tested, B = Based on Characterization, C = By Design.
AC Electrical Specifications, LO Individual Performance
PARAMETER
9
VCC = 3.0V
HFA3766
AC Electrical Specifications, LO Individual Performance
VCC = 3.0V (Continued)
(NOTE 17)
TEST LEVEL
TEMP. (oC)
MIN
TYP
MAX
UNITS
Buffered LO Output Impedance
C
25
-
50
-
Ω
Quadrature IF Modulator Output Frequency Range
B
25
10
-
400
MHz
IF Modulator I/Q Input Frequency Range
C
25
-
-
30
MHz
IF Modulator Differential I/Q Max Input Voltage
C
25
-
2.25
-
VP-P
IF Modulator Differential I/Q Input Impedance
C
25
-
4
-
kΩ
IF Modulator Differential Input Capacitance
C
25
-
0.5
-
pF
IF Modulator I/Q Amplitude Balance
A
25
-0.5
-
0.5
dB
IF Modulator I/Q Phase Balance at 200MHz
A
25
-2
-
2
Degrees
IF Modulator I/Q Phase Balance at 400MHz
B
25
-4
-
4
Degrees
IF Modulator Output at SSB Into 50Ω, I and Q, 500mVP-P
A
25
-22
-
-10.0
dBm
IF Modulator Carrier Suppression (LO Buffer Enabled)
A
25
28
30
-
dBc
IF Modulator Carrier Suppression (LO Buffer Disabled)
A
25
28
36
-
dBc
IF Modulator SSB Sideband Suppression at 200MHz
A
25
28
-
-
dBc
IF Modulator SSB Sideband Suppression at 400MHz
B
25
26
-
-
dBc
IF Output Level Compression Point
C
25
-
1.0
-
VP-P
IF Modulator Intermodulation Suppression
B
25
26
-
-
dBc
PARAMETER
NOTE:
17. A = Production Tested, B = Based on Characterization, C = By Design.
AC Electrical Specifications, RX 5TH Order LPF Cascaded Performance
VCC = 3.0V
(NOTE 18)
TEST LEVEL
TEMP. (oC)
MIN
TYP
MAX
UNITS
RX LPF 3dB Bandwidth, Sel0 = 0, Sel1 = 0
D
25
1.8
2.20
2.4
MHz
RX LPF 3dB Bandwidth, Sel0 = 1, Sel1 = 0
D
25
3.6
4.40
4.8
MHz
RX LPF 3dB Bandwidth, Sel0 = 0, Sel1 = 1
D
25
7.4
8.80
9.6
MHz
RX LPF 3dB Bandwidth, Sel0 = 1, Sel1 = 1
D
25
14.8
17.60
19.2
MHz
RX LPF Sel0, Sel1 Tuning Speed
B
25
-
-
1
µs
RX LPF 3dB Bandwidth Tuning
D
25
-20
-
+20
%
LPF Tune Nominal Resistance
B
25
-
787
-
Ω
RX LPF Voltage Gain
D
25
-1.0
0
1.0
dB
RX LPF DC Output Voltage
A
25
-
1.3
-
V
TX/RX Offset Voltage
A
25
TBD
0
TBD
V
RX LPF Single Ended Output Voltage Swing at 2kΩ Load
(Controlled By AGC Action)
B
25
-
-
550
mVP-P
RX LPF Differential Input Impedance
C
25
4
5
-
kΩ
RX I/Q Channel Amplitude Match
C
Full
-1
-
1
dB
RX I/Q Channel Phase Match
C
Full
-4
-
4
Degrees
RX LPF Total Harmonic Distortion
A
25
-
3
6
%
LPF Output Impedance, Single-Ended
C
25
-
50
-
Ω
PARAMETER
NOTE:
18. A = Production Tested, B = Based on Characterization, C = By Design D = Measured at Probe.
10
HFA3766
TABLE 1. LOW PASS FILTER PROGRAMING AND TUNING INFORMATION
MODE
LPF SEL1
LPF SEL0
f3dB
(NOMINAL RTUNE)
BW0
0
0
2.2MHz
BW1
0
1
4.4MHz
BW2
1
0
8.8MHz
BW3
1
1
17.6MHz
PERCENT OF NOMINAL FREQUENCY
f 3dBNOMINAL∗ 787
f TUNED 3dB = ----------------------------------------------------------R TUNE
+20%
-20%
-30
-25
-20
-15
-10
-5
0
+5
+10 +15 +20 +25 +30
[(787 - RTUNE)/RTUNE] * 100%
FREQUENCY
RTUNE
20% Low
984Ω
Nominal
787Ω
20% High
656Ω
FIGURE 1. TYPICAL f 3dB vs RTUNE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
11
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029