HDR-60 Base Board – Revision B User’s Guide April 2014 Revision: EB70_01.2 HDR-60 Base Board – Revision B Introduction The HDR-60 Base Board provides a low-cost evaluation and demonstration platform to evaluate, test and debug image signal processing user designs or IP, including High Dynamic Range (HDR) cores targeted for the LatticeECP3™-70 FPGA. The HDR-60 Base Board and NanoVesta Head Board have been designed to work together as part of the HDR-60 Video Camera Development Kit. Connections are available on the HDR-60 Base Board for the A-1000 HDRI sensor from Aptina, scalable to future sensors from Aptina, and adaptable to sensors from other manufacturers by redesigning the add-on NanoVesta Head Board. The HDR-60 Base Board features a LatticeECP3-70 FPGA in the 484-ball fpBGA package. The LatticeECP3 I/Os are connected to a rich variety of both generic and application-specific interfaces described later in this document. Important: This document (including the schematics in Appendix A) describes the HDR-60 Base Board marked as Revision B. This marking can be seen on the silkscreen of the printed circuit board, under the Lattice Semiconductor logo. The following are the changes from Revision A to Revision B. • Added R136 and R137 • Installed R130 and R131 • Moved DVI_DDC_SCL signal to U2 pin D22 • Moved DVI_DDC_SDA signal to U2 pin G19 • Moved DVI_HPD signal to U2 pin C22 The LatticeECP3 is a third-generation device utilizing reconfigurable SRAM logic technology optimized to deliver high-performance features such as an enhanced DSP architecture, high-speed SERDES and high-speed source synchronous interfaces in an economical FPGA fabric. The LatticeECP3 devices also provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), Delay Locked Loops (DLLs), and advanced configuration support, including encryption, multi-boot capabilities and TransFR™ field upgrade features. The LatticeECP3 SERDES dedicated PCS functions, high jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, SMPTE, Ethernet (XAUI, GbE, and SGMII), SATA I/II, OBSAI and CPRI. Transmit Pre-emphasis and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media. For a full description of the LatticeECP3 FPGA, including data sheet, technical notes and more, see the Lattice web site at www.latticesemi.com/products/fpga/ecp3. Some common uses for the HDR-60 Base Board include: • Security/surveillance and automotive camera applications • Evaluation of the Helion NanoVesta Head Board and other camera sensors • Applications using Aptina Head Boards • Evaluation of Helion IONOS Imaging Pipeline IP cores • Ethernet IP camera applications • Evaluation of Teradek H.264 compression modules Features Key features of the HDR-60 Base Board include: • SPI serial Flash device included for low-cost, non-volatile configuration storage • DDR2 SDRAM: 16-bit data over a 32M address space • Tri-speed (10/100/1000 Mbit) Ethernet PHY with RJ-45 (includes 12 core magnetics) 2 HDR-60 Base Board – Revision B • Built-in USB 2.0 download to LatticeECP3 • Can be configured for a flywire ispDOWNLOAD™ cable connection • HiSPi and parallel video data path connections with selectable VCCIO (1.8 V/2.5 V/3.3 V) • Connectors for Aptina standard Head Board with USB 2.0 interface • Connector for Teradek Capella H.264 codec board • Test point connections to 19 I/O pins for prototyping • Two MEMS and two crystal oscillators • HDMI/DVI output using four channels (one quad) of differential SERDES • 5.0 V, 3.3 V, 2.5 V, 1.8 V, 1.2 V voltages are generated from a single 12 V power source • ispVM™ System programming support General Description The heart of the HDR-60 Base Board is the LatticeECP3 FPGA. The devices and connectors attached to the LatticeECP3 provide a means to investigate applications developed for High Dynamic Range image signal processing. The board also provides several different interconnections and support devices that permit it to be used for a variety of purposes. The HiSPi and parallel video input, DDR2 memory, Tri-speed Ethernet PHY, and HDMI output are useful for applications using Lattice IP cores. A modest number of test points were added around the board for general purpose LatticeECP3 I/O usage. The SPI memory showcases the fail-safe capabilities of the LatticeECP3. Figure 1 is the block diagram for the HDR-60 Video Camera Development Kit. Figure 1. HDR-60 Video Camera Development Kit Block Diagram 27 MHz Teradek MPEG Ethernet Bank 6 Bank 7 25MHz Bank 0 Aptina Head Board Refclk Ch3 HDMI Quad SERDES Ch2 A Ch1 LatticeECP3 -70EA 484 fpBGA Ch0 Bank 1 Bank 3 Bank 2 NanoVesta Head Board DDR2 SDRAM 3 HDR-60 Base Board – Revision B Initial Setup and Handling The following is recommended reading prior to removing the evaluation board from the static shielding bag and may or may not apply to your particular use of the board. CAUTION: The devices on the board can be damaged by improper handling. The devices on the evaluation board contain fairly robust ESD (Electro Static Discharge) protection structures within them, able to withstand typical static discharges (see the “Human Body Model” specification for an example of ESD characterization requirements). Even so, the devices are static sensitive to conditions that exceed their designed in protection. For example: higher static voltages, as well as lower voltages with lower series resistance or larger capacitance than the respective ESD specifications can potentially damage or degrade the devices on the evaluation board. As such, it is recommended that you wear an approved and functioning grounded wrist strap at all times while handling the evaluation board when it is removed from the static shielding bag. If you will not be using the board for a while, it is best to put it back in the static shielding bag. Please save the static shielding bag and packing box for future storage of the board when it is not in use. When reaching for the board, it is recommended that you first touch the ground plane of the board (for example, the metal shielding of the HDMI connector). This will neutralize any static voltage difference between your body and the board prior to any contact with signal I/O. CAUTION: To minimize the possibility of ESD damage, the first and last electrical connections to the board should always be from test equipment chassis ground to the ground plane of the board. Before connecting signals or power to the board, attach a cable from chassis ground on grounded test equipment to the ground plane of the board. Connecting the board ground to test equipment chassis ground will decrease the risk of ESD damage to the I/O on the board as the initial connections to the board are made. Likewise, when unplugging cables from the evaluation board, the last connection unplugged, should be the chassis GND connection to the evaluation board GND. If you have a signal source that is floating with respect to chassis GND, attempt to neutralize any static charge on that signal source prior to attaching it to the evaluation board. If you are holding or carrying the board when it is not in a static shielding bag, please keep one finger on the ground plane of the board, for example the metal shielding of the HDMI connector. This will keep the board at the same voltage potential as your body until you can pick up the static shielding bag and put the board back in it. Electrical, Mechanical, and Environmental Specifications The nominal board dimensions are 203.2 mm x 42 mm (8.000” x 1.654”). Additional mechanical board dimension information is included on the mechanical drawing shown in Appendix A, Figure 24. On the physical board itself, connectors include pin 1 indictors as either an arrow, or triangle point near pin 1 on the outer layer silk screen. The environmental specifications are as follows: • Operating temperature: 0 °C to 55 °C • Storage temperature: -40 °C to 75 °C • Humidity: <95% without condensation • 11 V to 18 V DC (20 watts max.) 4 HDR-60 Base Board – Revision B Functional Description Figure 2. HDR-60 Base Board, Top View HDMI RJ45 & 2x USB Head Board Connector (HiSPi) Head Board Connector (Parallel) Aptina ISSI Headboard DDR2 Connector LatticeECP3-70 Broadcom FTDI FPGA Broadreach USB PHY Discera MEMs based oscillator (on reverse side of board) 12 V BNC (Not present DC on all boards. Input See note below) Note: The BNC connector (J11), and Delta Filter (U8) are designed for Ethernet-over-BNC. This is an unsupported feature. These components are not populated on most manufacturing runs of this board. LatticeECP3 Device This board features a LatticeECP3-70 FPGA with a 1.2 V DC core in a 484-ball fpBGA package. The LatticeECP335, -70 and -95 device densities in this package can be accommodated with no change in pin connections. A complete description of this device can be found on the Lattice web site at www.latticesemi.com/products/fpga/ecp3. Power Connector (J10) The board is supplied by a single 12 V DC power supply at J10. On-board step-down switching regulators then provide the necessary supply voltages: 3.3 V, 2.5 V, 1.8 V, 1.2 V. For proper operation, the 12 V DC power applied at J10 should be within the range of +11 V min. to +18 V max. The requirements for the J10 power jack itself are listed in Table 1. Table 1. Power Jack J10 Specifications Polarity Positive Center Inside Diameter 0.1” (2.5mm) Outside Diameter 0.218” (5.5mm) Current Capacity Up to 2.5A The on-board switching regulator output voltages can be measured at test points located around the board as shown in Table 2. Table 2. Test Points for On-Board Regulator Voltages Supply Switching Regulator Test Point Resistor Ratio 5.0 V U15 PP7 R123/R122 3.3 V U10 (side 2) PP1 R46/R45 2.5 V U10 (side 1) PP2 R53/R5 (default) (R56 and R51 modify ratio) 1.8 V U11 (side 2) PP3 R55/R6 1.2 V U11 (side 1) PP4 R54/R52 Comment 1.8 V: jumper on J4 pins 1-2 2.5 V: no jumper on J4 (default) 3.3 V: jumper on J4 pins 2-3 Each of the step-down switching regulators, U10, U11, and U15, incorporate typical resistor divider voltage feedback to divide down the regulator output voltage and compare it against an internal reference voltage. The regulator then adjusts the output voltage higher or lower such that the resistor divided voltage matches the internal 5 HDR-60 Base Board – Revision B reference. By doing this, the regulator output voltage remains at a constant voltage value independent of the load driven. Each regulator output voltage follows this equation: Vout = (1 + resistor ratio) x (regulator internal reference voltage) See the LT3503 and LT3508 device data sheets for additional details about these devices. The 2.5 V regulator output voltage can also be set to 1.8 V or 3.3 V by adding a shorting jumper on J4, as shown in Table 2. With no jumper on J4, the voltage divider is set by R53 and R5 and this divider sets up a nominal 2.5 V output voltage. When a shorting jumper is added to J4, the R56 and R51 resistors will be placed in parallel with either R53 or R5, which then changes the resistor divider ratio, and this changes side 1 of the U10 regulator output voltage to become 1.8 V or 3.3 V depending on the placement of the shorting jumper on J4. The SERDES 1.2 V regulators (U4) are low dropout linear types that deliver a constant 1.2 V output voltage when powered by the 3.3 V input voltage. In contrast to the switching regulators discussed above, the U4 linear regulars do not generate switching noise, so they are a good choice for powering the LatticeECP3 SERDES to give the lowest jitter generation. Also, U4 does not use resistor divider networks to set the output voltage, instead U4 is set up to directly copy its own internal 1.215 V reference voltage to its outputs. The U4 regulator outputs are available for testing at test points PP5 and PP6. See the LT3029 device data sheets for additional details about this device. When using the various I/O test points located around the board, be sure to not exceed the LatticeECP3 Family Data Sheet specified absolute maximum rating for Output Supply Voltage VCCIO range of -0.5 V to +3.75 V, or damage to the device may occur. Also, for I/O input capability of the various I/O standards supported by the LatticeECP3 sysIO structures, see the LatticeECP3 sysIO Usage Guide. LatticeECP3 I/O Bank Voltages Most of the bank voltages on the LatticeECP3 (U2) have been hard-wired to specific power supply values. Exceptions to this are banks 1 and 2 which can be set to other values used to power the sensor boards that plug into the parallel connector (J2) and HiSPi connector (J1). This is shown in Table 3. Table 3. LatticeECP3 (U2) Bank Voltage Settings LatticeECP3 Bank VCCIO Voltage 0 3.3 V 1 and 2 Adjustable 3 1.8 V Comment Aptina Head Board Sensor attached to J1 and J2 1.8 V: Jumper on J4 pins 1-2 2.5 V: No jumper on J4 (default) 3.3 V: Jumper on J4 pins 2-3 DDR2 Quad A 1.2 V SERDES 6 3.3 V Teradek MPEG Encoder 7 3.3 V Ethernet 8 3.3 V LatticeECP3 programming 6 HDR-60 Base Board – Revision B Default Jumper Settings Figure 3. Default Jumpers J4 J5 J6 On: 1.8V LatticeECP3 Off: 2.5V Aptina Head Board On: 3.3V Cypress Device VDDIO SCL SDA Figure 3 shows the HDR-60 Base Board default jumpers settings for VDDIO set to 2.5 V. By installing a jumper on J4 in the upper position, the VDDIO will change to 1.8 V and on the lower position, the VDDIO will change to 3.3 V. Only when using the Aptina Head Board, do the serial clock and data signals, J5 and J6 need to be of concern. J5 and J6 select whether the Aptina Head Board will be sourced from the Cypress device (U6) directly or from the LatticeECP3. Moving the jumpers from the lower position on J5 and J6 to the upper position will change the source of the serial clock and data to be from the LatticeECP3 device (U2). Prototype Areas For general purpose I/O testing or monitoring, 19 unconnected test points with reference labels TP1, 2, … are provided for direct access to the LatticeECP3 device. Other I/Os on the LatticeECP3 are brought to dedicated connectors such as J1, J2, J7, J8 and J9, which could also be considered as available prototype connectors when they are not in use. Crystal Oscillators There are two crystal oscillators and two MEMS-based oscillators on the HDR-60 Base Board. The two crystals are used for the two USB port connections. One MEMS-based oscillator is used to set the reference frequency for the Ethernet PHY, while the other is used to drive inputs to the LatticeECP3 (U2). Table 4 shows the oscillator usage. Locations Y1 and Y4 are the MEMS-based oscillators. Table 4. Crystal Oscillators Used on the HDR-60 Base Board Comment LatticeECP3 Input I/O Setting Location Frequency Y1 27.000 MHz DDR2 U2 pin R17 MPEG U2 pin T3 Y2 6.000 MHz USB FTD2232D U5 pin 43 (upper USB port at J12) — Y3 24.000 MHz USB Cypress U6 pin 11 (lower USB port at J12) — Y4 25.000 MHz Ethernet PHY U3 pin F1 — SSTL18 (no term) LVCMOS33 DVI Video Output The LatticeECP3 (U2) SERDES Quad A outputs drive the HDMI connector (J13) through inline AC coupling capacitors C55, C56, C57, C58, C218, C219, C220, and C221. The SERDES signal paths are 50 ohms between the LatticeECP3 outputs to the HDMI connector on the HDR-60 Base Board. The DVI signal connections between the LatticeECP3 device and the HDMI connector are shown in Table 5. 7 HDR-60 Base Board – Revision B Table 5. LatticeECP3 (U2) Connections to HDMI Output (J13) J13 Pin LatticeECP3 I/O Polarity sysIO Bank Signal Name 10 AB15 P Quad A DVI_HDOUTP0 12 AB14 N Quad A DVI_HDOUTN0 7 AB12 P Quad A DVI_HDOUTP1 9 AB13 N Quad A DVI_HDOUTN1 4 AB11 P Quad A DVI_HDOUTP2 6 AB10 N Quad A DVI_HDOUTN2 1 AB8 P Quad A DVI_HDOUTP3 3 AB9 N Quad A DVI_HDOUTN3 13 — — — CEC_OUT 15 E18 — 8 DVI_DDC_SCL 16 E17 — 8 DVI_DDC_SDA 19 A20 — 8 DVI_HPD HiSPi Connector (J1) The LatticeECP3 (U2) banks 1 and 2 can receive HiSPi sub-LVDS video signals from connector J1. When receiving HiSPi signals, you will need to set the LatticeECP3 input type to LVDS with differential 100 ohm termination. The signal connections between the LatticeECP3 device and the HiSPi connector are shown in Table 6. Table 6. LatticeECP3 (U2) Interface to HiSPi Connector J1 J1 Pin LatticeECP3 I/O BGA Ball Polarity sysIO Bank Differential Signal Parallel Signal 13 K21 P 2 SLVS_0P — 11 L21 N 2 SLVS_0N — 29 L22 P 2 SLVS_1P — 27 M22 N 2 SLVS_1N — 21 P21 P 2 SLVS_2P — 19 N22 N 2 SLVS_2N — 26 M18 P 2 SLVS_3P — 24 N17 N 2 SLVS_3N — 14 L18 P 2 SLVS_4P — 12 L19 N 2 SLVS_4N HISPI_LED 22 K20 P 2 SLVS_5P — 20 K19 N 2 SLVS_5N — 17 K17 P 2 SLVS_6P — 15 K18 N 2 SLVS_6N — 25 H21 P 2 SLVS_7P — 23 H22 N 2 SLVS_7N — 18 M21 P 2 SLVS_CP — 16 M20 N 2 SLVS_CN — 10 C13 — 1 — HISPI_RESETN 28 K22 — 2 Note 1 RESERVED_1 30 J22 — 2 Note 1 HISPI_SDATA 32 C14 — 1 — HISPI_SCLK 4 A13 — 1 — VDDIO_rH 1. Routed on the HDR-60 Base Board as a differential pair. 8 HDR-60 Base Board – Revision B Parallel Connector (J2) The LatticeECP3 (U2) bank 1 receives parallel video signals from connector J2. The signal connections between the LatticeECP3 device and the HiSPi connector are shown in Table 7. Table 7. LatticeECP3 (U2) Interface to Parallel Connector J2 LatticeECP3 I/O BGA Ball sysIO Bank Parallel Signal Differential Signal 16 J20 2 DOUT0 SLVS_8N 20 G22 2 DOUT1 SLVS_9N J2 Pin 15 F22 2 DOUT2 SLVS_11N 19 J18 2 DOUT3 SLVS_10N 14 A16 1 DOUT4 — 18 J19 2 DOUT5 SLVS_8P 13 C16 1 DOUT6 — 17 E22 2 DOUT7 SLVS_11P 22 G21 2 DOUT8 SLVS_9P 24 G14 1 DOUT9 — 21 J17 2 DOUT10 SLVS_10P 23 C17 1 DOUT11 — 10 C12 1 PIXCLK — 9 A19 1 EXTCLK_FPGA — 11 A18 1 LINE_VALID — 12 B16 1 FRAME_VALID — 25 B18 1 TRIGGER — 27 A17 1 RESET_BAR — 29 F16 1 OUTPUT_EN_BAR — 31 F15 1 STANDBY — 26 G15 1 SADDR — 28 D15 1 SCLK — 30 C15 1 SDATA — 32 E15 1 OSC_ENABLE — 4 A12 1 VDDIO_rP — Aptina Head Board Connector Connectors J7 and J8 make up the Aptina Head Board connector. They are described below. Note that jumpers J5 and J6 may be required to be in the 2 and 3 positions if using Aptina DevWare software. Contact Aptina for details on running DevWare on the HDR-60 Base Board. Dual Row Connector (J7) The LatticeECP3 (U2) bank 0 interfaces to the Aptina dual row connector (J7) as shown in Table 8. Table 8. LatticeECP3 (U2) Interface to Aptina Dual Row Connector (J7) J7 Pin LatticeECP3 I/O BGA Ball sysIO Bank 1 C8 0 HEAD_DOUT0 2 C7 0 HEAD_DOUT1 3 F9 0 HEAD_DOUT2 4 E9 0 HEAD_DOUT3 5 C9 0 HEAD_DOUT4 9 Signal HDR-60 Base Board – Revision B Table 8. LatticeECP3 (U2) Interface to Aptina Dual Row Connector (J7) (Continued) J7 Pin LatticeECP3 I/O BGA Ball sysIO Bank Signal 6 C10 0 HEAD_DOUT5 7 B7 0 HEAD_DOUT6 8 A7 0 HEAD_DOUT7 9 B8 0 HEAD_DOUT8 10 A8 0 HEAD_DOUT9 13 A3 0 HEAD_LINE_VALID 14 B6 0 HEAD_SP5 15 G9 0 HEAD_SP7 16 F7 0 HEAD_SENSOR_RESETN 17 A4 0 HEAD_FRAME_VALID 19 E7 0 HEAD_SHIP_CLK 20 F8 0 HEAD_SP6 23 F11 0 HEAD_PIXCLK 26 D6 0 HEAD_MCLK Aptina Single Row Connector (J8) The LatticeECP3 (U2) bank 0 interfaces to the Aptina single row connector (J8) as shown in Table 9. Table 9. LatticeECP3 (U2) Interface to Aptina Single Row Connector (J8) J2 Pin LatticeECP3 I/O BGA Ball sysIO Bank 1 F10 0 HEAD_DOUT10 Signal 2 E10 0 HEAD_DOUT11 3 A9 0 HEAD_DOUT12 4 B10 0 HEAD_DOUT13 5 A10 0 HEAD_DOUT14 6 A11 0 HEAD_DOUT15 7 C5 0 HEAD_SP0 8 B4 0 HEAD_SP1 9 E6 0 HEAD_SP2 10 D5 0 HEAD_GSHT_CTL 11 C6 0 HEAD_TRIGGER Teradek MPEG Encoder Connector The LatticeECP3 (U2) bank 6 I/Os connect to the Teradek MPEG Encoder Connector (J9). The signal connections are shown in Table 10. Table 10. LatticeECP3 (U2) Connections to Teradek MPEG Encoder (J9) J9 Pin LatticeECP3 I/O sysIO Bank Signal Name 4 N3 6 MG_VID00 6 P3 6 MG_VID01 8 N5 6 MG_VID02 10 P6 6 MG_VID03 12 P1 6 MG_VID04 14 R1 6 MG_VID05 16 R3 6 MG_VID06 10 HDR-60 Base Board – Revision B Table 10. LatticeECP3 (U2) Connections to Teradek MPEG Encoder (J9) (Continued) J9 Pin LatticeECP3 I/O sysIO Bank Signal Name 18 R2 6 MG_VID07 3 W2 6 MG_VID08 5 Y1 6 MG_VID09 7 T4 6 MG_VID10 9 U4 6 MG_VID11 11 AA1 6 MG_VID12 13 Y2 6 MG_VID13 15 Y3 6 MG_VID14 17 AA2 6 MG_VID15 20 P5 6 MG_VID0_PIXCLK 19 T6 6 MG_VID1_PIXCLK 22 U1 6 VGPIO1 26 U2 6 VGPIO2 30 R7 6 VGPIO3 23 N1 6 MG_VSYNC 24 N2 6 MG_HSYNC 25 R4 6 MG_FIELD 27 V3 6 VIDEO_SCL 28 W1 6 VIDEO_SDA 31 L4 6 MG_MCLK_IN 32 W3 6 MG_LRCLK_IN 33 M5 6 MG_BCLK_IN 35 T5 6 MG_SPDIF 34 P7 6 MG_IDAT0 36 V1 6 MG_IDAT1 SPI Serial Flash The U9 SPI Flash device used on this board is a 16-pin, 64-Mbit device, sufficient to store two bitstreams simultaneously in order to support SPIm mode. The HDR-60 Base Board is configured to download bitstreams stored in the SPI Flash (U9) into the LatticeECP3 when the +12 V power is applied at connector J10. The SPI Flash device is a Numonyx SPI-M25P64 in a 16-pin SOIC package. Downloading Bitstreams into the LatticeECP3 (U2) In order to download bitstreams into the LatticeECP3 (U2) device, the HDR-60 Video Camera Development Kit includes two USB-A to USB-A cables that can connect a PC with ispVM System software installed, to the HDR-60 Base Board. Each USB-A to USB-A cable is 6’ (1.83 m) in length. As both ends of the USB cables are the same, either end can plug into a PC’s USB port, while the other end connects to the HDR-60 Base Board J12 upper USB port. The J12 upper USB port connects to a FTD2232D USB transceiver (U5) that can produce JTAG signals able to drive the LatticeECP3 device (U2). Given this, the ispVM System software can detect the LatticeECP3 device, download bitstreams directly into the LatticeECP3 SRAM, or bitstreams can be downloaded into the on board SPI Flash (U9). Note that the J12 lower USB port has no USB-to-JTAG signal path connections to any Lattice device, so the ispVM System software will not detect any devices at the J12 lower USB port. 11 HDR-60 Base Board – Revision B See the “Configuring/Programming the Board” section of this document for details on how to download bitstreams into the LatticeECP3 device. See www.latticesemi.com/hdr60 for additional downloadable project files and bitstreams designed for use with this board. LEDs There are three LEDs on the HDR-60 Base Board that are used to show the programming state of the LatticeECP3. See Table 11 for information on the programming state LEDs. Table 11. Programming LEDs LED Pin Color Function LED1 PROGRAMN Red On when signal is low LED2 INITN Red On when initializing LED3 DONE Green On when configuration is complete DDR2 Memory The HDR-60 Base Board is equipped with an 84-ball BGA DDR2 SDRAM such as the IS43DR16320B, which provides memory resources with16 bits of data width that span a 32M address space. The DDR2 memory is powered by an on-board 1.8 V regulator with a 0.9 V midpoint bias termination regulator (U12). The evaluation board includes terminations for address, command and data signals. The suggested configuration is to set the DDR2 SDRAM (U1) for internal 150 ohms ODT, and the LatticeECP3 (U2) address, control and data signals to slow slew, 8 ma, with no ODT. This gives a low-noise, low-power DDR2 memory configuration usable to over 400 MT/s. Table 12 shows the pin connections for both the LatticeECP3 (U2) and DDR2 SDRAM (U1). Table 12. LatticeECP3 Interface to DDR2 SDRAM Signal Name LatticeECP3 I/O Pin (U2) sysIO Bank DDR2 SDRAM Pin (U1) DDR2_DQ0 R22 3 G8 DDR2_DQ1 R20 3 G2 DDR2_DQ2 T20 3 H7 DDR2_DQ3 T22 3 H3 DDR2_DQ4 R21 3 H1 DDR2_DQ5 N19 3 H9 DDR2_DQ6 P22 3 F1 DDR2_DQ7 M19 3 F9 DDR2_DM0 N20 3 F3 DDR2_DQS0_P N18 3 F7 DDR2_DQS0_N P19 3 E8 DDR2_DQ8 Y21 3 C8 DDR2_DQ9 V22 3 C2 DDR2_DQ10 W22 3 D7 DDR2_DQ11 W21 3 D3 DDR2_DQ12 U22 3 D1 DDR2_DQ13 Y22 3 D9 DDR2_DQ14 R16 3 B1 DDR2_DQ15 P17 3 B9 DDR2_DM1 R18 3 B3 DDR2_DQS1_P T21 3 B7 DDR2_DQS1_N U20 3 A8 DDR2_VREF P20 3 J2 12 HDR-60 Base Board – Revision B Table 12. LatticeECP3 Interface to DDR2 SDRAM (Continued) Signal Name LatticeECP3 I/O Pin (U2) sysIO Bank DDR2 SDRAM Pin (U1) DDR2_A0 AB19 3 M8 DDR2_A1 R14 3 M3 DDR2_A2 AA21 3 M7 DDR2_A3 V17 3 N2 DDR2_A4 AB17 3 N8 DDR2_A5 W17 3 N3 DDR2_A6 Y17 3 N7 DDR2_A7 W18 3 P2 DDR2_A8 AB18 3 P8 DDR2_A9 U18 3 P3 DDR2_A10 T19 3 M2 DDR2_A11 AA17 3 P7 DDR2_A12 Y19 3 R2 DDR2_BA0 Y18 3 L2 DDR2_BA1 U15 3 L3 DDR2_CK_P AA22 3 J8 DDR2_CK_N AB21 3 K8 DDR2_CKE T18 3 K2 DDR2_RASN T14 3 K7 DDR2_CASN V18 3 L7 DDR2_WEN U16 3 K3 DDR2_ODT R19 3 K9 DDR2_CSN U19 3 L8 Ethernet PHY To the right of the LatticeECP3 FPGA is U3, a Broadcom BCM54810 triple-speed 10/100/1000BASE-T Gigabit Ethernet (GbE) transceiver. The LatticeECP3 FPGA interacts with the PHY over a 3.3 V Gigabit Media Independent Interface (GMII). The PHY is connected to an RJ45 connector J12 at the Media Dependent Interface (MDI). The RJ45 connector J12 has built-in magnetics and link activity indicator LEDs driven by the PHY. The J12 PHY link LEDs are set to indicate the link status, as shown in Table 13. Table 13. J12 Link Status LEDs J12 LED Color Link Status Orange and Green 1000Base-T Orange 100Base-T Green 10Base-T Yellow Activity (off) No link The PHY is available on the board in order to demonstrate the Lattice Ethernet Media Access (MAC) IP core. However, it is also possible to use the PHY to evaluate a custom MAC solution. During power-up, the resistors R21, R22, R23, R24, R25, R103, R105, and R107 set the initialized PHY configuration to: auto-negotiate, full duplex, 10/100/1000Base-T. The PHY can also be programmed after power-up to use a new configuration. The PHY signal path is factory-configured to send and receive 10/100/1000Base-T Ethernet signals at the RJ45 connector (J12). It is possible to change the configuration of the PHY signal path to instead 13 HDR-60 Base Board – Revision B provide a legacy Ethernet coaxial link using the BNC connector (J11) by removing three resistors off the HDR-60 Base Board and then add back on three resistors as shown in Table 14. However, Ethernet-over-BNC is an unsupported feature on this board. The BNC connector and Delta filter (U8) are unpopulated on most production runs of this board. This information is provided as a reference only. Table 14. Ethernet Connection at J11 or J121 Connector Cable J12 (RJ45) Cat5 J11 (BNC) Coaxial LAN Speed PCB Configuration 10/100/1000Base-T R31, R32 = 0 ohms R23 = 4.7K ohms R29, R30, R21 = open 10/100Base-T R29, R30 = 0 ohms R21 = 4.7K ohms R31, R32, R23 = open 1. J11 (BNC) and U8 (Delta filter) are unpopulated on most manufacturing runs of this board. Ethernet-over-BNC is an unsupported feature of this board. The information in this table is for reference only. Refer to the HDR-60 Base Board schematic in Appendix A and the Broadcom BCM54810 Data Sheet for detailed information about the operation of the Ethernet PHY interface on this device. Refer to Table 15 for a description of the Ethernet PHY GMII connections to the LatticeECP3. Table 15. LatticeECP3 Interface to Ethernet PHY Signal Name LatticeECP3 I/O Pin (U2) sysIO Bank BCM54810 Pin (U3) PHY_A0 E3 7 H10 PHY_A1 D4 7 J10 PHY_A2 E5 7 J9 PHY_A3 E4 7 K10 PHY_A4 B2 7 K9 A7 GTXCLK F5 7 ECP3_GSRN F4 7 -- PHY_LOWPWR G4 7 F5 MDC G5 7 E3 TXD0 B1 7 C7 TXD1 G3 7 C8 TXD2 H6 7 B6 TXD3 C1 7 B7 TXD4 H4 7 B8 TXD5 E2 7 B9 TXD6 F3 7 B10 TXD7 H5 7 A10 TX_EN J4 7 A8 TX_ER G2 7 A9 CRS F1 7 E5 COL H2 7 D5 RESETN G1 7 E4 RXD0 J1 7 D4 RXD1 K6 7 D3 RXD2 J7 7 C3 RXD3 J3 7 C4 RXD4 J6 7 C5 14 HDR-60 Base Board – Revision B Table 15. LatticeECP3 Interface to Ethernet PHY (Continued) Signal Name LatticeECP3 I/O Pin (U2) sysIO Bank BCM54810 Pin (U3) RXD5 E1 7 B5 RXD6 H3 7 B4 RXD7 H1 7 B3 RX_ER K3 7 A1 TXC K4 7 C6 MDIO K5 7 F4 125MHz K1 7 B1 RX_DV L1 7 B2 RXC L5 7 A2 Configuring/Programming the Board Requirements • PC with Lattice ispVM System software version 17.9 (or later) installed with USB driver. Note: An option to install this driver is included as part of the ispVM System setup. For a complete discussion of the LatticeECP3 configuration and programming options, refer to the LatticeECP3 sysCONFIG Usage Guide. Download Procedures for the Lattice HDR-60 Base Board The download instructions described below show how to download bitstreams into the LatticeECP3 SRAM using the ispVM System software. Downloads can be either direct through a cable connection to a PC, or indirect by first programming the on-board SPI Flash and then downloading the bitstream to the LatticeECP3 SRAM from SPI Flash. You can download bitstreams through a download cable to the LatticeECP3 SRAM at any time. After a bitstream has been downloaded to SPI Flash, you can download the bitstream from SPI Flash to the LatticeECP3 SRAM by cycling the power to the evaluation board. The Lattice HDR-60 Base Board provides support for two types of download cable connections: a standard USB-A to USB-A cable at J12, or a Lattice ispDOWNLOAD cable (USB type or parallel port type with flywire connections) at J3 as described in Appendix C. Given that you might want to download to either the LatticeECP3 SRAM or the SPI Flash, separate LatticeECP3 download procedures will follow that cover each type of download. Note that the first download procedure shows the menus as viewed on a Windows XP operating system. Follow-on download procedures are very similar and do not show the menus. LatticeECP3 SRAM Configuration Using a Standard USB Cable at J12 The LatticeECP3 SRAM can be configured easily using the ispVM System software to download a bitstream via a standard USB-A to USB-A cable. The LatticeECP3 device is SRAM based, so it must remain powered on to retain its configuration when programming the SRAM. 1. Attach a ground connection from test equipment chassis ground to the ground plane of the board, for example, on the metal HDMI connector. 2. Connect the USB-A to USB-A cable from your PC’s USB connector to the upper USB port on J12 on the HDR60 Base Board. 3. Connect the 12 V wall power adaptor cable to J10 and check to see that the wall power adapter is plugged in to a 120 VAC source. 4. Start the ispVM System software. Select the menu items Options > Autoscan Options > Custom Scan as shown in Figure 4. 15 HDR-60 Base Board – Revision B Figure 4. Setting the ispVM Custom Scan Option 5. Select Options > Cable and I/O Port Setup. For the Cable Type, select USB2, then click OK. 6. Push the Scan button. You should now see the LFE3-95/70 device listed in the New Scan Configuration Setup window. In the device list, left-click on the LatticeECP3 device to select it. If offered other selections, select LFE3-70EA. See Figure 5. Figure 5. ispVM New Scan Configuration Setup 7. Click Edit > Edit Device to edit the device. A Device Information window will be opened. Click the Select button and select the package type 484-ball fpBGA as shown in Figure 6, then click OK. Figure 6. LatticeECP3 Package Size Selection 8. Check that the Device Access Options drop-down menu control selects the JTAG 1532 Mode. Check that the Operation drop-down menu selects Fast Program. 9. Click the data file Browse button and select the path to the LatticeECP3 “.BIT” bitstream file as shown in Figure 7, then click OK. 16 HDR-60 Base Board – Revision B Figure 7. Bitstream Ready to Download into LatticeECP3 SRAM 10. Click Project >Download or the green Go button to download the bitstream into the LatticeECP3 device (U2). A small window will appear as shown in Figure 8. It will take about 12 seconds to download the bitstream for a PC with USB 2.0 ports. When the LatticeECP3 has loaded in correctly, the ispVM status window will report “Operation Successful” as shown in Figure 9. Figure 8. Bitstream Downloading into LatticeECP3 Figure 9. Bitstream Download Operation Successful LatticeECP3 SRAM Configuration Using SPI Flash and USB Cable at J12 The LatticeECP3 SRAM can be configured easily using the ispVM System software to program the on-board SPI Flash via a standard USB cable connected to the upper USB port at J12. The LatticeECP3 device is SRAM-based, so it must remain powered on to retain its configuration when programming the SRAM. The on-board SPI Flash retains its programmed bitstreams when power is off, and can quickly load programmed bitstreams into the LatticeECP3 device when power is applied. 1. Attach a ground connection from test equipment chassis ground to the ground plane of the board, for example on the metal HDMI connector. 17 HDR-60 Base Board – Revision B 2. Connect the USB-A to USB-A cable from your PC’s USB connector to the upper USB port on J12 on the HDR60 Base Board. 3. Connect the 12 V wall power adaptor cable to J10 and check to see that the wall power adapter is plugged in to a 120 VAC source. 4. Start the ispVM System software. Select the menu items Options > Autoscan Options > Custom Scan. 5. Select Options > Cable and I/O Port Setup. For the Cable Type, select USB2, then click OK. 6. Push the Scan button. You should now see the LFE3-95/70 device listed in the New Scan Configuration Setup window. In the device list, left-click on the LatticeECP3 device to select it. If offered other selections, select LFE3-70EA. 7. Click Edit > Edit Device to edit the device. A Device Information window will be opened. Click the Select button and select the package type 484-ball fpBGA, then click OK. 8. Click the Device Access Options drop-down menu control and select SPI Flash Background Programming. A SPI Serial Flash Device window will open. 9. Push the Select button and select the Vendor as Numonyx, the device as SPI-M25P64 and the package 16lead SOIC as shown in Figure 10. Push the OK button. Figure 10. SPI Flash Device Selection 10. Click the data file Browse button and select the path to the LatticeECP3 “.BIT” bitstream file. Push the Load From File button and then click OK to complete the SPI Flash device selection as shown in Figure 11. Again click OK to exit the Device Information menu. The bitstream is now set up for downloading into the SPI Flash as shown in Figure 12. 18 HDR-60 Base Board – Revision B Figure 11. SPI Flash Device Setup Complete Figure 12. Bitstream Ready to Download into SPI Flash 11. Click Project > Download or the green Go button to download the bitstream into the SPI Flash device (U9), the bitstream download progress indictor will pop up as shown in Figure 13. When using the built-in USB download cable, it will take about two minutes to erase, program and verify the bitstream loaded properly into the SPI Flash for a PC with USB 2.0 ports. After the SPI Flash contents have been verified, the ispVM status window will report “Operation Successful” as shown in Figure 14. Figure 13. Bitstream Download Progress Indicator 19 HDR-60 Base Board – Revision B Figure 14. SPI Flash Download Operation Successful 12. Unpower the HDR-60 Base Board for a few seconds then power it back up. The design will load into the LatticeECP3 (U2) from the external SPI Flash (U9) in two seconds, and the “DONE” LED (LED3) will light up. References • HDR-60 Video Camera Development Kit web page • DS1021, LatticeECP3 Family Data Sheet • HB1009, LatticeECP3 Family Handbook • QS010, HDR-60 Video Camera Development Kit QuickSTART Guide • EB63, NanoVesta Head Board User’s Guide • TN1177, LatticeECP3 sysIO Usage Guide • TN1169, LatticeECP3 sysCONFIG Usage Guide 20 HDR-60 Base Board – Revision B Ordering Information Description Ordering Part Number China RoHS Environment-Friendly Use Period (EFUP) HDR-60 Video Camera Development Kit (Contains: HDR-60 Base Board with LatticeECP3 FPGA pre-loaded with Image Signal Processing (ISP) Demo, NanoVesta Head Board with Aptina A-1000 LFE3-70EAHDR60-DKN 720p HDR Sensor and Sunex lens, two USB cables, HDMI cable with HDMI-to-DVI adapter, 12 V AC adapter power supply, QuickSTART Guide) HDR-60 Video Camera Base Board (Contains: HDR-60 Base Board with LatticeECP3 FPGA pre-loaded with Image Signal Processing (ISP) Demo, two USB cables, HDMI cable with HDMI-to-DVI LFE3-70EAHDR60-EVN adapter, 12 V AC adapter power supply, QuickSTART Guide) Note: Does not include NanoVesta Head Board. Technical Support Assistance e-mail: [email protected] Internet: www.latticesemi.com Revision History Date Version Change Summary August 2012 01.0 Initial release. March 2013 01.1 Added HDR-60 Video Camera Base Board in Ordering Information. April 2014 01.2 Updated references to BNC connector (J11) and Delta filter (U8) to indicate these are unpopulated on most boards. Ethernet-over-BNC is an unsupported feature of this board. Updated Technical Support Assistance information. © 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 21 22 A B C D 5 (Sheet 9) Teradek MPEG Encoder, USB (Sheet 4) 1000Base-T PHY/RJ45 HDR-60 Base Board Block Diagram 5 A 1 4 4 (Sheet 9) Bank6 (Sheet 5) DVI Quad A (Sheet 5) SerDes 3 (Sheet 7) Bank3 Bank2 (Sheet 4) Lattice ECP3-70 484 ball Bank7 (Sheet 4) (Sheet 6) Bank8 Bank1 (Sheet 8) Bank0 (Sheet 8) (Sheet 8) (Sheet 8) (top view) Nanovesta Head Board Aptina Head Board 3 (Sheet 7) 2 (Sheet 2, 3) Voltage Regulators DDR2 16 Bit (Sheet 4) Nanovesta Head Board (Sheet 6) Built In USB 2.0 Download Programming 2 Date: Size C Title 1 Wednesday, September 21, 2011 Sheet 1 HDR-60 Base Board Schematic Project Block Diagram of 10 B Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 Rev B, 484 ball, -70 1 A B C D HDR-60 Base Board – Revision B Appendix A. Schematic Figure 15. Block Diagram A B C 1uF EN VIN 1 54_9K 22pF 5 1_2V, +1.2 V, 1A SW EN 4 VCC_CORE, +1.2 V, 1.35 A 1_8V, +1.8 V, 1.1 A SW 3_3V, +3.3 V, 1.35 A LDO EN PP7 5_0V, +5.0 V, 1.2 A 22uF C210 NV_VDD, +1.8v/+2.5v/+3.3v, 1.1 A SW EN 5_0v +5.0 v 1.2 A SW EN SW 10ms RC Power Supply Block Diagram 10_0K R122 R123 C207 CDRH4D15/SNP-2R2NC MBRM130LT3G L5 2.2uH D9 0.1uF C205 D10 CMDSH-4E 2 Vout = 0.78*(R123/R122+1) = 5.06v FB SW 4 1 Ramp voltage at EN pin provides soft start 0.1uF C209 6 100K 5 R124 U15 LT3503EDCB#PBF C206 (5A fused) 12_0V 63V 10uF C208 + 12_0V 1 2 D 1 2 3 GND BOOST PAD_GND 2 7 1 2 Voltage Regulators C76 HEADER 3 J4 R51 D3 DFLS220L L3 4.7uH C77 22uF,6.3V Male Power Jack 2.1mm 3 PJ-032A 3 POWER INPUT +11v to +18v 3_3V 2 R42 51k C64 R52 10_0K J10 C81 F1251CT-ND F1 R47 51k C70 24 2 1 8 7 22 23 R48 63.4k 12_0V C68 C78 D8 1N4448W R43 34k 22 23 24 2 C5 10uF,25V 5A Fast-Blo SMT Socketed Fuse 12_0VIN 1 3_3V C66 C69 1 8 7 C80 10uF,25V D5 1N4448W Vout = 0.8*(R53/R5+1) = 2.52 v 22_1K-0603SMT Vout = 0.8*(R54/R52+1) = 1.21 v PP4 C73 R56 R5 8_06K-0603SMT10_0K R53 21_5K D2 DFLS220L L1 6.8uH R54 5_11K 22uF,6.3V C85 VCC_CORE 22uF,6.3V C82 +1.2 v 1.35 A 1.2v/ms Short 2-3: 3.298v PP2 1 2 3 1.2v/ms 22uF,6.3V Short 1-2: 1.806v 22uF,6.3V C79 NV_VDD +2.5 v 1.1 A 3 1 2 2 4 1 2 1 2 1 2 R44 51k 2 RT/SYNC PG1 VC1 TRACK/SS1 FB1 SW1 BOOST1 21 R50 51k RT/SYNC PG1 VC1 TRACK/SS1 FB1 SW1 BOOST1 SHDN 1 2 1 21 SHDN GND1 GND2 GND3 GND4 2 9 VIN1 GND5 25 9 VIN1 3 4 5 6 GND1 GND2 GND3 GND4 3 4 5 6 GND5 25 11 20 19 17 18 Date: Size B Title PG2 VC2 TRACK/SS2 FB2 SW2 BOOST2 C63 C75 C71 D6 1N4448W C67 D7 1N4448W 3_3V R45 11.5k R46 35.7k PP1 D1 DFLS220L 3_3V R6 10k 1.2v/ms R55 12.4k PP3 D4 DFLS220L L2 6.8uH C8 22uF,6.3V C4 22uF,6.3V 1_8v C84 22uF,6.3V C7 22uF,6.3V +1.8v 1.1 A 3_3v +3.3 v 1.35 A Wednesday, September 21, 2011 1 Sheet 2 of 10 B Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 Vout = 0.8*(R55/R6+1) = 1.79 v R49 51k C72 C83 HDR-60 Base Board Schematic Project 1.2v/ms L4 4.7uH 1 Vout = 0.8*(R46/R45+1) = 3.28 v R41 51k C65 C74 Voltage Regulators 20 19 17 18 11 12 U11 LT3508EUF 12_0V PG2 VC2 TRACK/SS2 FB2 SW2 BOOST2 12 U10 LT3508EUF 12_0V 10 VIN2 GND6 GND7 GND8 GND9 13 14 15 16 2 1 2 1 10 1 2 1 2 VIN2 GND6 GND7 GND8 GND9 13 14 15 16 1 2 1 23 2 5 A B C D HDR-60 Base Board – Revision B Figure 16. Voltage Regulators A B C 1 16 BYP1 ADJ1 VOUT1 VOUT1_3 EN U4 5 8 9 7 6 10 COUT1 10uF 10uF 6.3V 0805 COUT2 R13 L11 M10 E8 U17 U14 N13 AB16 N21 G11 K10 C19 T13 K11 P18 AA11 V7 M3 L10 V9 H15 F6 L13 F17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 +1.2 v 500 mA FB1 PP6 BLM41PG600SN1 FB4 BLM41PG600SN1 + C182 + C178 + C179 C41 C46 C42 GND ECP3_70EA_BGA484 U2L GND 4 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 XRES N15 F2 U10 E14 N10 H8 AB22 W16 R5 M12 H18 AA16 V14 Y16 AA12 C11 E21 P2 T12 AA9 V15 M7 W20 M11 H10 302 mA max VCCA 100 mA max R90 10k1% C153 C145 C131 PCSA_VCCOB 28 mA max PCSA_VCCIB C126 C47 C158 C147 C177 C165 3 TP23 TP24 VCC_CORE C142 C163 C160 TP25 TP26 + C154 3_3V FB10 BLM41PG600SN1 C113 3_3V C156 C146 100NF-0402SMT C137 100NF-0402SMT 1NF-0402SMT FB2 BLM41PG600SN1 100NF-0402SMT 10NF-0402SMT 1_2v +1.2 v 500 mA PP5 1 2 0.46 v drop at 500 mA max 2.3v minimum input voltage 0.01uF CBYP2 CIN2 1uF 25V 0805 LT3029EDE BYP2 ADJ2 VOUT2 VOUT2_6 EN2 3_3v ECP3 Symbol Pins: * True LVDS Output ^ DQS Density shown as -70 0.01uF CBYP1 4 3 15 3_3v 14 13 VIN1 VIN1_13 12 11 VIN2 VIN2_11 NC GND GND_PAD 2 5 17 CIN1 1uF 25V 0805 1 2 GND 22UF-16V-TANTBSMT 22UF-16V-TANTBSMT 22UF-16V-TANTBSMT 1UF-16V-0805SMT 1UF-16V-0805SMT 1UF-16V-0805SMT 100NF-0402SMT 100NF-0402SMT 100NF-0402SMT 2 C168 + 2 C161 C134 C162 C128 C133 C155 C136 C143 C25 C139 C159 C152 100NF-0402SMT 10NF-0402SMT D 1UF-16V-0805SMT Core Power 3 C144 100NF-0402SMT 1NF-0402SMT 22UF-16V-TANTBSMT 100NF-0402SMT 1NF-0402SMT 1UF-16V-0805SMT Date: Size B Title C170 100NF-0402SMT 4 22UF-16V-TANTBSMT 10NF-0402SMT 10NF-0402SMT 100NF-0402SMT 10NF-0402SMT 10NF-0402SMT 10NF-0402SMT 10NF-0402SMT 10NF-0402SMT N11 K13 B9 G12 V2 K8 M16 Y4 N12 AA7 U13 AA10 AA15 D3 M13 AB1 AA13 T10 U9 L12 AA18 K12 R10 K2 Y7 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 10NF-0402SMT 1NF-0402SMT VCCA 10NF-0402SMT ECP3_70EA_BGA484 VCCAUX_M8 VCCAUX_R11 VCCAUX_H11 VCCAUX_M15 VCCAUX_R12 VCCAUX_H12 VCCAUX_L8 VCCAUX_L15 VCCA_V10 VCCA_V13 VCCA_U12 VCCA_U11 U2K ECP3_70EA_BGA484 VCCPLL_L_K9 VCCPLL_L_N9 VCCPLL_R_K14 VCCPLL_R_N14 U2M ECP3_70EA_BGA484 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 U2J 1 Wednesday, September 21, 2011 1 Sheet 3 HDR-60 Base Board Schematic Project M8 R11 H11 M15 R12 H12 L8 L15 V10 V13 U12 U11 K9 N9 K14 N14 J11 J9 P11 P12 J14 J13 M14 M9 P9 L9 P14 P10 J12 J10 L14 P13 VCC of 10 B Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 VCCPLL C149 C141 C129 10NF-0402SMT Core Power C148 10NF-0402SMT 1NF-0402SMT 1NF-0402SMT 1NF-0402SMT 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 24 T11 R8 B17 A1 R15 AA14 V8 P16 U6 N8 U21 J21 K15 L20 H13 L16 A22 J5 V16 W7 AA8 B13 B5 AB7 L7 10NF-0402SMT 5 A B C D HDR-60 Base Board – Revision B Figure 17. Core Power GND A BANK 7 5 ECP3 Symbol Pins: * True LVDS Output ^ DQS Density shown as -70 TP2 TP1 R96 4_7K R0402 C173 1uF C0603 C26 3_3V 4_7K C200 1uF, X5R, 6.3V R119 4 1 2 GTXCLK VCC OUT 4 3 D7 D6 F10 D8 E10 F1 F2 33 3_3V P_25MHz 3 100 FBGA REGOUT C181 C44 50 ohm ODT 10uF/6V3/X7R F5 E4 n.c. H4 B1 PHY_LOWPWR RESETN 125MHz LED1 LED2 LED3 LED4 n.c. PHY_A0 PHY_A1 PHY_A2 PHY_A3 PHY_A4 G7 G6 H6 G10 A3 A4 C1 E6 E7 E8 E9 F6 F7 F8 F9 G2 G4 G5 H2 H3 H7 H10 J10 J9 K10 K9 K1 K2 K4 K3 K5 K6 K8 K7 R0402 R35 R0603 R32 R0603 R31 R29 DNI R0603 Ferrites are all 0.45 ohm, 200ma, 0603 R100 DNI R0603 R19 GMII default 4_7K R0603 150 150 150 0R 0R 13 15 11 9 10 7 8 4 5 2 3 TP1+ TP1CT1 NC4 LED2_GRN_K LED2_ORN_K LED1_YEL_K TRD4+ TRD4- TRD3+ TRD3- TRD2+ TRD2- TRD1+ TRD1- R24 DNI R0402 R105 4_7K R0402 R107 4_7K R0603 R25 DNI R0402 R21 DNI R0603 R23 4_7K R0402 3_3V 2 All high speed signals use 50 ohm traces Date: Size B Title 12 14 3_3V C48 XTALVDD C185 C186 AVDDL PLLVDD C183 C45 C184 Wednesday, September 21, 2011 1 Sheet 4 HDR-60 Base Board Schematic of 10 B Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 2 FB16 Z-600 ohm / 74279265 1000Base-T PHY/RJ45 Project 2 3 4 100NF-0603SMT C215 2 FB14 Z-600 ohm / 74279265 REGOUT 1 J11 1 BNC LED3 1 1 2 FB5 Z-600 ohm / 74279265 REGOUT 1 AVDD LED1_A LED2_A J12A LED[1..4] powers up to: 1101 to set for auto-negotiate, full duplex, 10/100/1000Base-T R22 DNI R0402 R103 4_7K R0402 LED3 = Activity (Yellow ON) 8 7 6 5 C54 100NF-0603SMT MTP1+ MTP1NC6 NC5 U8 LFB0001-R 0862-1J1T-43-F 1 2 3 4 LED[21] = Link speed 00: 1000Base-T (Orange & Green ON) 01: 100Base-T (Orange ON) 10: 10Base-T (Green ON) 11: no link LED1 R0402 R33 LED2 R0402 R34 R30 DNI R0603 100NF-0603SMT C201 TDR0_P0 TDR0_M0 TRD outputs are all 100 ohm matched length diff pairs to RJ45 connector. Place TDR(0) resistor common ends together. 2 PHY should power down when not in use LOWPWR NRESET TVCOI CLK125 LED[1] LED[2] LED[3] LED[4] NC3 NC4 NC21 NC46 NC47 NC48 NC49 NC56 NC57 NC58 NC59 NC62 NC64 NC65 NC72 NC73 NC77 PHYA[0] PHYA[1] PHYA[2] PHYA[3] PHYA[4] TRD[0]+ TRD[0]TRD[1]+ TRD[1]TRD[2]+ TRD[2]TRD[3]+ TRD[3]- 3_3V C180 +1.2v DVDD Z-600 ohm / 74279265 Z-600 ohm / 74279265 1 2 1 2 C43 FB3 FB13 100NF-0603SMT 3 BCM54810 R18 1_24K R0402 Place resistor near osc Place osc near U3 R0402 R115 TCK TDI TDO TMS NTRST XTALI XTALO MDIO MDC GTXCLK CRS COL TXC TX_EN TX_ER TXD[0] TXD[1] TXD[2] TXD[3] TXD[4] TXD[5] TXD[6] TXD[7] RXC RX_DV RX_ER RXD[0] RXD[1] RXD[2] RXD[3] RXD[4] RXD[5] RXD[6] RXD[7] DSC1001-CE-25.000 DI DSC1001-CE-25-000 EN GND Y4 R20 1_24K R0402 n.c. P_25MHz F4 E3 A7 E5 D5 4_7K C6 CRS COL A8 TXC A9 TX_EN A2 TX_ER RXC C7 C8 B6 B7 B8 B9 B10 A10 R0402 R99 MDIO MDC BLM21AG601SN1D A1 B2 RX_ER RX_DV TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 SW PUSHBUTTON-SPST SW1 GSRN R16 301K R0402 D4 D3 C3 C4 C5 B5 B4 B3 RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7 U3 C199 0.1uF FB20 3_3V C50 6 5 2 FB17 Z-600 ohm / 74279265 1 100NF-0603SMT Z-600 ohm / 74279265 1 2 REGSUPPLY FB15 C49 C187 BIASVDD C51 AVDDL PLLVDD XTALVDD 100NF-0603SMT 741X083472JP 8 3_3V 7 4_7K R0402 4_7K R17 100R R0402 R98 RN4 1 2 3 4 AVDD C194 3_3V 10uF/6V3/X7R 4 100NF-0603SMT C52 33uF/6V3 TX and RX traces are all matched length 125MHz RX_DV RXC RXD1 RXD0 TXC 3_3V C114 C31 C112 C151 C167 3_3V C169 ECP3_70EA_BGA484 1NF-0402SMT J8 K7 L6 MDIO 1NF-0402SMT VCCIO7_J8 VCCIO7_K7 VTT7 1 ECP3_GSRN TP5 TP6 PHY_LOWPWR MDC TXD5 TXD6 TXD4 TX_EN TXD0 TXD3 TXD7 TXD2 TXD1 TX_ER RXD5 CRS RESETN RXD7 RXD2 RXD4 COL RXD6 RXD3 RX_ER GTXCLK PHY_A0 PHY_A1 PHY_A2 PHY_A3 PHY_A4 10NF-0402SMT B E3 D4 E5 E4 B2 C2 F5 F4 D2 D1 G4 G5 E2 F3 H4 J4 B1 C1 H5 H6 G3 G2 E1 F1 G1 H1 J7 J6 H2 H3 J3 K3 J2 J1 K4 K5 K1 L1 L5 K6 100NF-0603SMT C PL8A PL8B PL10A* PL10B* PL11A* PL11B* PL13A^ PL13B^ PL14A PL14B PL16A* PL16B* PL26A PL26B PL28A* PL28B* PL29A* PL29B* PL31A^ PL31B^ PL32A PL32B PL34A*/VREF1_7 PL34B*/VREF2_7 PL35A PL35B PL37A*/LUM0_GDLLT_IN_A PL37B*/LUM0_GDLLT_IN_B PL38A*/LUM0_GDLLT_FB_A PL38B*/LUM0_GDLLT_FB_B PL40A^ PL40B^ PL41A PL41B PL43A*/PCLKT7_0 PL43B*/PCLKC7_0 PL43E_A/LUM0_GPLLT_FB_A PL43E_B/LUM0_GPLLT_FB_B PL43E_C/LUM0_GPLLT_IN_A PL43E_D/LUM0_GPLLT_IN_B U2E 10NF-0402SMT 10uF/6V3/X7R J1 D 100NF-0603SMT 10uF/6V3/X7R C10 D1 D10 2 FB18 Z-600 ohm / 74279265 3_3V 10uF/6V3/X7R G1 XTALVDD E1 PLLVDD J3 J4 AVDDL1 AVDDL2 J2 J8 AVDD1 AVDD2 GND1 GND2 GND3 GND4 GND5 GND6 GND7 C2 C9 D9 E2 J5 J6 J7 BIASVDD H1 6 CT 1000Base-T PHY/RJ45 1 2 100NF-0603SMT OVDD OVDD_RGMII F3 REGOUT A6 A5 RDAC RJ45 (1..8) GND 1 G3 REGSUPPLY RGMII_SEL[0] RGMII_SEL[1] H5 D2 10uF/6V3/X7R 10uF/6V3/X7R 10uF/6V3/X7R DVDD1 DVDD2 DVDD3 TEST0 TEST1 TEST2 TEST3 H8 H9 G8 G9 100NF-0603SMT 100NF-0603SMT 25 100NF-0603SMT 5 A B C D HDR-60 Base Board – Revision B Figure 18. 100Base-T PHY/RJ45 A B C DVI_DDC_SCL DVI_HPD DVI_DDC_SDA 100R DNI R132 100R R131 R130 5 W15 W12 W11 W8 W14 W13 W10 W9 Y15 Y14 Y12 Y13 Y11 Y10 Y8 Y9 AB15 AB14 AB12 AB13 AB11 AB10 AB8 AB9 V12 V11 5_0V ECP3_70EA_BGA484 SERDES Quad A PCSA_VCCIB0 PCSA_VCCIB1 PCSA_VCCIB2 PCSA_VCCIB3 PCSA_VCCOB0 PCSA_VCCOB1 PCSA_VCCOB2 PCSA_VCCOB3 ECP3 Symbol Pins: * True LVDS Output ^ DQS Density shown as -70 {6} U2F PCSA_HDINP0 PCSA_HDINN0 PCSA_HDINP1 PCSA_HDINN1 PCSA_HDINP2 PCSA_HDINN2 PCSA_HDINP3 PCSA_HDINN3 PCSA_HDOUTP0 PCSA_HDOUTN0 PCSA_HDOUTP1 PCSA_HDOUTN1 PCSA_HDOUTP2 PCSA_HDOUTN2 PCSA_HDOUTP3 PCSA_HDOUTN3 PCSA_REFCLKP PCSA_REFCLKN PCSA_VCCOB PCSA_VCCIB HPD DDC_SCL DDC_SDA CEC_OUT DVI_HDOUTP0 DVI_HDOUTN0 DVI_HDOUTP1 DVI_HDOUTN1 DVI_HDOUTP2 DVI_HDOUTN2 DVI_HDOUTP3 DVI_HDOUTN3 27K D 4.7K R135 DVI 4.7K R134 26 R133 5 4 4 C219 1uF C56 1uF C220 1uF C57 1uF TMDSOUT_DATACLK- TMDSOUT_DATACLK+ All high speed signals use 50 ohm traces C221 1uF C58 1uF C218 1uF C55 1uF DVI signals are all matched length 3 3 TMDSOUT_DATA0+ TMDSOUT_DATA0- NAME NC SCL SDA DDC/CEC GROUND +5V POWER 15 16 17 18 TMDSOUT_DATA1- TMDSOUT_DATA1+ 2 TMDSOUT_DATA2- TMDSOUT_DATA2+ HOT PLUG DETECT CEC 14 19 TMDS CLOCK- 13 TMDS CLOCK SHIELD 11 12 TMDS CLOCK+ 10 TMDS DATA0+ 7 TMDS DATA0 SHIELD TMDS DATA1- 6 TMDS DATA0- TMDS DATA1 SHIELD 9 TMDS DATA1+ 5 8 TMDS DATA2- 4 TMDS DATA2 SHIELD TMDS DATA2+ 3 2 1 PIN NO 2 Date: Size B Title J13 20 21 22 23 20 21 22 23 1M 100nF Wednesday, September 21, 2011 1 Sheet 5 of 10 B Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 SHIELD R36 C59 HDR-60 Base Board Schematic Project BLM41PG600SN1 5_0V HDMI/DVI Output 10nF C222 500254_1927 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 DVI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 100nF C60 FB21 1 A B C D HDR-60 Base Board – Revision B Figure 19. DVI A B C C61 100nF C62 100nF FLASH_DIS 5 ECP3 Symbol Pins: * True LVDS Output ^ DQS Density shown as -70 3_3V R40 10k 3_3V 100nF C53 5_0V 1 2 3 4 5 6 7 8 1 2 DI M25P64 NHOLD VCC NC1 NC2 NC3 NC4 NS Q U9 5 6 ORG C D NC8 NC7 NC6 NC5 VSS NW R38 10k NW R37 10k USB1_Q FPGA_MCLK FPGA_SISPI 4 R39 10k 3_3V USB1_SK USB1_D R126 27 R125 27 R110 1M DI USB1_CS SPI0_Q FPGA_CSSPI0N_DI 16 15 14 13 12 11 10 9 10k DIN QOUT R116 VSS 3 U7 M93C46-WMN6TP 8 1 VCC CS 7 2 CLK N.C. DI R113 1K 0862-1J1T-43-F VP USBUSB+ GND USB2_1 USB2_2 USB2_3 USB2_4 100nF C195 12pF 6 MHz 12pF DI DI ATS060SM-1 HC-49/US-SM C189 Y2 (Upper USB, ispVM) PROG J12C C216 4 C211 33pF R137 1K R27 1k5 R112 10k 100nF EECS EESK EEDATA TEST XTOUT XTIN NOT_RSTOUT USBDM USBDP NOT_RSTIN 3V3OUT TXD_UART RXD_UART C37 C123 3_3V DVI_DDC_SDA SPI0_Q FPGA_SISPI 3_3V {5} {5} DVI_HPD DVI_DDC_SCL FPGA_MCLK FPGA_WRITEN 3 G16 H16 C18 B19 E18 E17 A20 B20 D18 D19 C21 D21 F19 F18 A21 B22 J16 H17 C22 D22 G17 G18 G19 G20 H19 H20 41 30 29 28 27 26 40 39 38 37 36 35 33 32 15 13 12 11 10 24 23 22 21 20 19 17 16 0R 0R 0R 0R 100nF TXD_UART RXD_UART R106 R102 R104 R101 C188 3_3V 3 CFG0 CFG1 CFG2 BANK 8 ECP3_70EA_BGA484 VCCIO8_G16 VCCIO8_H16 PT140A PT140B PT142A PT142B PT143A PT143B PT145A PT145B H7 G7 G6 C3 C4 E20 E19 B21 F21 0R R86 DONE INITN F20 PROGRAMN D20 R11 2k2 3_3V C20 USB_TCK USB_TDI USB_TDO USB_TMS PR5A PR5B/DI/CSSPI0N/CSSPIN PR7A/CS1N/HOLDN/CONT2N PR7B/CSN/SN/CONT1N PR8A/DOUT/CS0N/CSSPI1N PR8B/MCLK PR10A/WRITEN PR10B/D0/SPIFASTN PR11A/D1 PR11B/D2 PROGRAMN PR13A/D3/SI PR13B/D4/SO INITN PR14A/D5 PR14B/D6/SPID1 CCLK PR16A/D7/SPID0 PR16B/BUSY/SISPI DONE U2G NOT_PWREN BCBUS0 BCBUS1 BCBUS2 BCBUS3 SI/WUB BDBUS0 BDBUS1 BDBUS2 BDBUS3 BDBUS4 BDBUS5 BDBUS6 BDBUS7 ACBUS0 ACBUS1 ACBUS2 ACBUS3 SI/WUA ADBUS0 ADBUS1 ADBUS2 ADBUS3 ADBUS4 ADBUS5 ADBUS6 ADBUS7 U5 FTD2232D 3_3V TP15 FPGA_CSSPI0N_DI FPGA_CS1N FPGA_CSN 48 1 2 47 44 43 5 8 7 4 6 R109 330R 5_0V C121 TP19 TP18 TP11 TP3 TP21 TP12 TP16 TP13 TP20 TP7 R65 R70 R71 4_7K 4_7K 4_7K 3_3V 2_2K R136 DNI R114 DI C212 33pF 33nF C190 100nF C191 1NF-0402SMT D 5_0V C193 10NF-0402SMT USB Download 4 46 AVCC 3 42 14 31 DVCC_3 DVCC_42 VCCIOA VCCIOB DGND_9 DGND_18 DGND_25 DGND_34 9 18 25 34 AGND 45 100NF-0603SMT 2 R12 10K R10 2k2 1 R8 2k2 ECP3_70EA_BGA484 VCCJ TCK TDI TDO TMS U2H 2 3_3V LED2 LED3 green Date: Size B Title VCC NC TCK TMS INITN GND 7 1 R13 R9 R7 DONE INITN PROGRAMN 1 Wednesday, September 21, 2011 1 Sheet 6 HDR-60 Base Board Schematic Project 3_3V 100NF-0603SMT of 10 B Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 2k2 2k2 3_3V 2k2 TMS GND TCK DONE INITn +3.3V TDO TDI PROGRAMn HEADER 10 DNI TDO ispEN_N TDI DONE J3 2 3 4 5 6 8 9 10 USB Download LED1 red R4 4_7k red R1 1_0k Q1 MMBT3904 3_3V R2 4_7k R3 4_7k 3_3V C6 100nF 3 27 2 C3 Local JTAG header (ispVM) 5 A B C D HDR-60 Base Board – Revision B Figure 20. USB Download A B C 100nf C118 DDR2_VREF DDR2_VTT 1k 1 5 LP2998 VREF 10nf 10nf C110 8 5 6 7 100nF BA0 BA1 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10/AP A11 A12 47uF + C93 1_8V IS43DR16320B 4 47uF + C13 DDR2_DM1 DDR2_DQ8 DDR2_DQ9 DDR2_DQ10 DDR2_DQ11 DDR2_DQ12 DDR2_DQ13 DDR2_DQ14 DDR2_DQ15 DDR2_DM0 DDR2_DQ0 DDR2_DQ1 DDR2_DQ2 DDR2_DQ3 DDR2_DQ4 DDR2_DQ5 DDR2_DQ6 DDR2_DQ7 F3 G8 G2 H7 H3 H1 H9 F1 F9 B3 C8 C2 D7 D3 D1 D9 B1 B9 DDR2_DQS1_P DDR2_DQS1_N DDR2_DQS0_P DDR2_DQS0_N DDR2_BA0 DDR2_BA1 DDR2_A0 DDR2_A1 DDR2_A2 DDR2_A3 DDR2_A4 DDR2_A5 DDR2_A6 DDR2_A7 DDR2_A8 DDR2_A9 DDR2_A10 DDR2_A11 DDR2_A12 DDR2_CSN DDR2_RASN DDR2_CASN DDR2_WEN DDR2_CK_N DDR2_CK_P DDR2_CKE B7 A8 F7 E8 L2 L3 M8 M3 M7 N2 N8 N3 N7 P2 P8 P3 M2 P7 R2 L8 K7 L7 K3 K8 J8 K2 3_3V 100nF C10 VSSQ_A7 UDQS VSSQ_B2 NOT_UDQS VSSQ_B8 LDQS VSSQ_D2 NOT_LDQS VSSQ_D8 VSSQ_E7 LDM VSSQ_F2 DQ0 VSSQ_F8 DQ1 VSSQ_H2 DQ2 VSSQ_H8 DQ3 DQ4 DQ5 VDD_A1 DQ6 VDD_E1 DQ7 VDD_J9 VDD_M9 UDM VDD_R1 DQ8 DQ9 DQ10 VSS_A3 DQ11 VSS_E3 DQ12 VSS_J3 DQ13 VSS_N1 DQ14 VSS_P9 DQ15 VDDQ_A9 VDDQ_C1 VDDQ_C3 VDDQ_C7 VDDQ_C9 VDDQ_E9 VDDQ_G1 VDDQ_G3 VDDQ_G7 VDDQ_G9 VDDL VSSDL NOT_CS NOT_RAS NOT_CAS NOT_WE N.C.1 N.C.2 N.C.3 N.C.4 N.C.5 N.C.6 DDR2_VTT A3 E3 J3 N1 P9 A1 E1 J9 M9 R1 A7 B2 B8 D2 D8 E7 F2 F8 H2 H8 A9 C1 C3 C7 C9 E9 G1 G3 G7 G9 J1 J7 A2 E2 L1 R3 R7 R8 C15 DDR2_VTT VDDQ AVIN PVIN VTT 100nf C108 100nf C103 VSENSE NSD GND U12 C117 4 3 2 C109 1uf 22uF / 6V3 ECP3 Symbol Pins: * True LVDS Output ^ DQS Density shown as -70 3_3V R59 FB8 BLM41PG600SN1 1uf C104 C102 1_8V 22uF / 6V3 C101 1_8V 100nf 1uf 22uF / 6V3 FB9 BLM41PG600SN1 C111 C115 FB11 BLM41PG600SN1 10nf 100nf C116 1_8V C106 C107 NOT_CLK CLK CKE VREF C23 100nF D J2 U1 C96 100nF DDR2_VREF C21 100nf ODT C94 100nF K9 C99 100nF DDR2_ODT DNI R64 F_27MHz R91 49_9R R0402 R88 40_2R R0402 DDR2_CK_N DDR2_CK_P 50R 50R R60 R61 10nf C105 Place resistors near U2 F_27MHz C24 100nF 4 C18 100nF DDR2 Memory 10nf C20 10nf C22 10nf C97 10nf C95 10nf C16 10nf C19 10nf C17 10nf C98 28 C100 100nF 5 3 3 47uF C88 + 10nf 100nf 47uF C89 + C92 C12 N16 P15 M17 P22 R21 N19 M19 R22 T22 N18 P19 T20 R20 P20 N20 U22 V22 R16 P17 Y22 W22 T21 U20 Y21 W21 R19 R18 V21 V20 R17 T17 AA22 AB21 T19 T18 U19 U18 AA21 Y20 W19 V19 AA20 AB20 U16 U15 AB17 AA17 T14 R14 AB18 AB19 W18 W17 Y17 Y18 V18 V17 AA19 Y19 T15 T16 1_8V 1_8V DDR2_VTT DDR2_A12 DDR2_WEN DDR2_BA1 DDR2_A4 DDR2_A11 DDR2_RASN DDR2_A1 DDR2_A8 DDR2_A0 DDR2_A7 DDR2_A5 DDR2_A6 DDR2_BA0 DDR2_CASN DDR2_A3 DDR2_CK_P DDR2_CK_N DDR2_A10 DDR2_CKE DDR2_CSN DDR2_A9 DDR2_A2 DDR2_DQ6_r DDR2_DQ4_r DDR2_DQ5_r DDR2_DQ7_r DDR2_DQ0_r DDR2_DQ3_r DDR2_DQS0_P_r DDR2_DQS0_N_r DDR2_DQ2_r DDR2_DQ1_r DDR2_VREF DDR2_DM0_r DDR2_DQ12_r DDR2_DQ9_r DDR2_DQ14_r DDR2_DQ15_r DDR2_DQ13_r DDR2_DQ10_r DDR2_DQS1_P_r DDR2_DQS1_N_r DDR2_DQ8_r DDR2_DQ11_r DDR2_ODT DDR2_DM1_r BANK 3 10nf C11 2 Place DQS resistors close to ECP3 All high speed signals use 50 ohm traces 100nf C14 ECP3_70EA_BGA484 VCCIO3_N16 VCCIO3_P15 VTT3 PR44A PR44B PR46A*/PCLKT3_0 PR46B*/PCLKC3_0 PR47A* PR47B* PR49A^ PR49B^ PR50A PR50B PR52A*/VREF1_3 PR52B*/VREF2_3 PR53A PR53B PR55A* PR55B* PR56A* PR56B* PR58A^ PR58B^ PR59A PR59B PR61A* PR61B* PR61E_A/RLM1_GPLLT_FB_A PR61E_B/RLM1_GPLLT_FB_B PR61E_C/RLM1_GPLLT_IN_A PR61E_D/RLM1_GPLLT_IN_B PR89A PR89B PR91A* PR91B* PR92A* PR92B* PR94A^ PR94B^ PR95A PR95B PR97A* PR97B* PB133A PB133B PB134A PB134B PB136A PB136B PB137A PB137B PB139A PB139B PB140A PB140B PB142A PB142B PB143A PB143B PB145A PB145B U2I 2 R85 R81 R75 R76 R14 R15 R74 R68 R77 R69 R63 R72 R66 R67 R78 R62 R73 R84 Date: DDR2 Memory RN2 1 2 3 4 5 6 7 8 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R 33R DDR2_DQS1_P_r DDR2_DQS1_N_r DDR2_DQS0_P_r DDR2_DQS0_N_r DDR2_DM0_r DDR2_DM1_r DDR2_DQ0_r DDR2_DQ1_r DDR2_DQ2_r DDR2_DQ3_r DDR2_DQ4_r DDR2_DQ5_r DDR2_DQ6_r DDR2_DQ7_r DDR2_DQ8_r DDR2_DQ9_r DDR2_DQ10_r DDR2_DQ11_r DDR2_DQ12_r DDR2_DQ13_r DDR2_DQ14_r DDR2_DQ15_r DDR2_VTT DDR2_VTT Wednesday, September 21, 2011 1 Sheet 7 HDR-60 Base Board Schematic Project 1 2 3 4 5 6 7 8 DDR2_VTT of 10 B Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 R83 R82 Size B RN3 100 OHM ARRAY DI 16 15 14 13 12 11 10 9 DDR2_DQS1_P R0402 DDR2_DQS1_N R0402 Title 1 2 3 4 5 6 7 8 100 OHM ARRAY DI 16 15 14 13 12 11 10 9 R79 R80 R0402 R0402 DDR2_DM0 DDR2_DM1 RN1 100 OHM ARRAY DI 16 15 14 13 12 11 10 9 DDR2_DQS0_P R0402 DDR2_DQS0_N R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 DDR2_DQ0 DDR2_DQ1 DDR2_DQ2 DDR2_DQ3 DDR2_DQ4 DDR2_DQ5 DDR2_DQ6 DDR2_DQ7 DDR2_DQ8 DDR2_DQ9 DDR2_DQ10 DDR2_DQ11 DDR2_DQ12 DDR2_DQ13 DDR2_DQ14 DDR2_DQ15 DDR2_ODT DDR2_CASN DDR2_CKE DDR2_BA1 DDR2_BA0 DDR2_A10 DDR2_A7 DDR2_A11 DDR2_A8 DDR2_A12 DDR2_WEN DDR2_CSN DDR2_RASN DDR2_A0 DDR2_A1 DDR2_A2 DDR2_A3 DDR2_A4 DDR2_A5 DDR2_A9 DDR2_A6 1 A B C D HDR-60 Base Board – Revision B Figure 21. DDR2 Memory C9 100nF A B C C1 5_0V SLVS_11N SLVS_11P SLVS_10N SLVS_10P 5_0V C2 5_0V ECP3 Symbol Pins: * True LVDS Output ^ DQS Density shown as -70 5_0V 5 SLVS_0N SLVS_0P SLVS_6N SLVS_6P SLVS_2N SLVS_2P SLVS_7N SLVS_7P SLVS_1N SLVS_1P 5_0V 5_0V EXTCLK_FPGA LINE_VALID DOUT6 DOUT2 DOUT7 DOUT3 DOUT10 DOUT11 TRIGGER RESET_BAR OUTPUT_EN_BAR STANDBY 1NF-0402SMT SHIELD2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 SHIELD1 PIN2 PIN4 PIN6 PIN8 PIN10 PIN12 PIN14 PIN16 PIN18 PIN20 PIN22 PIN24 PIN26 PIN28 PIN30 PIN32 PIN34 PIN36 PIN38 PIN40 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 R93 R87 R92 STANDBY RESET_BAR SADDR 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 100_R 100_R 100_R 100_R TP4 SLVS_8N SLVS_8P SLVS_9N SLVS_9P TP8 TP10 TP17 DOUT9 TRIGGER OUTPUT_EN_BAR DOUT4 5_0V TP22 HISPI_RESETN HISPI_LED SLVS_4N SLVS_4P SLVS_CN SLVS_CP SLVS_5N SLVS_5P SLVS_3N SLVS_3P RESERVED_1 HISPI_SDATA HISPI_SCLK VDDIO_rH 5_0V DF12__-40DS-0.5V_RECEPTACLE SHIELD_2 PIN2 PIN4 PIN6 PIN8 PIN10 PIN12 PIN14 PIN16 PIN18 PIN20 PIN22 PIN24 PIN26 PIN28 PIN30 PIN32 PIN34 PIN36 PIN38 PIN40 HiSPI PIN1 PIN3 PIN5 PIN7 PIN9 PIN11 PIN13 PIN15 PIN17 PIN19 PIN21 PIN23 PIN25 PIN27 PIN29 PIN31 PIN33 PIN35 PIN37 PIN39 DNI DNI DNI DNI 5_0V PIXCLK FRAME_VALID DOUT4 DOUT0 DOUT5 DOUT1 DOUT8 DOUT9 SADDR SCLK SDATA OSC_ENABLE VDDIO_rP 4 VCCIO1_G13 VCCIO1_H14 SLVS_11P SLVS_11N SLVS_10P SLVS_10N SLVS_9P SLVS_9N SLVS_8P SLVS_8N SLVS_7P SLVS_7N SLVS_6P SLVS_6N HISPI_SDATA RESERVED_1 SLVS_5P SLVS_5N SLVS_0P SLVS_0N SLVS_4P SLVS_4N SLVS_1P SLVS_1N SLVS_CP SLVS_CN SLVS_2P SLVS_2N SLVS_3P SLVS_3N BANK 2 3 3_3V 5_0V 3 All high speed signals use 50 ohm traces C29 C32 C34 C30 C33 C127 ECP3_70EA_BGA484 VCCIO2_15 VCCIO2_K16 VTT2 PR26A PR26B PR28A* PR28B* PR29A* PR29B* PR31A^ PR31B^ PR32A PR32B PR34A*/VREF1_2 PR34B*/VREF2_2 PR35A PR35B PR37A*/RUM0_GDLLT_IN_A PR37B*/RUM0_GDLLT_IN_B PR38A*/RUM0_GDLLT_FB_A PR38B*/RUM0_GDLLT_FB_B PR40A^ PR40B^ PR41A PR41B PR43A*/PCLKT2_0 PR43B*/PCLKC2_0 PR43E_A/RUM0_GPLLT_FB_A PR43E_B/RUM0_GPLLT_FB_B PR43E_C/RUM0_GPLLT_IN_A PR43E_D/RUM0_GPLLT_IN_B U2C C35 C135 NV_VDD NV_VDD J15 K16 L17 E22 F22 J17 J18 G21 G22 J19 J20 H21 H22 K17 K18 J22 K22 K20 K19 K21 L21 L18 L19 L22 M22 M21 M20 P21 N22 M18 N17 C132 C125 C36 C120 BANK 1 ECP3_70EA_BGA484 C138 G13 H14 PT74A PT74B PT76A/PCLKT1_0 PT76B/PCLKC1_0 PT77A PT77B PT79A^ PT79B^ PT80A PT80B PT82A PT82B PT83A PT83B PT85A PT85B PT86A PT86B PT88A^ PT88B^ PT89A PT89B PT91A PT91B PT128A PT128B PT130A PT130B PT131A PT131B PT133A^ PT133B^ PT134A PT134B PT136A/VREF1_1 PT136B/VREF2_1 U2B C122 NV_VDD NV_VDD B11 B12 C12 PIXCLK D12 A12 VDDIO_rP A13 VDDIO_rH E12 E13 C13 HISPI_RESETN C14 HISPI_SCLK D13 D14 A14 B14 F13 F14 R94 0402 33_R A15 B15 E16 E15 OSC_ENABLE C15 SDATA D15 SCLK G15 SADDR G14 DOUT9 A16 DOUT4 B16 FRAME_VALID F15 STANDBY OUTPUT_EN_BAR F16 A17 RESET_BAR B18 TRIGGER C17 DOUT11 C16 DOUT6 A18 LINE_VALID A19 EXTCLK_FPGA D16 D17 U2-J22 and U2-K22 are routed as a matched length diff pair Place 100 ohm resistors as close as possible to ECP3 pins R89 5_0V FRAME_VALID DF12(4.0)-40DP-0.5V_HEADER SHIELD_2 PIN1 PIN3 PIN5 PIN7 PIN9 PIN11 PIN13 PIN15 PIN17 PIN19 PIN21 PIN23 PIN25 PIN27 PIN29 PIN31 PIN33 PIN35 PIN37 PIN39 SHIELD_1 SHIELD_1 J1 SHIELD2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 SHIELD1 Parallel 1NF-0402SMT 1NF-0402SMT J2 4 1NF-0402SMT 1NF-0402SMT 5 10NF-0402SMT D 1NF-0402SMT 10NF-0402SMT 10NF-0402SMT {9} CYP_SDA {9} CYP_SCL BLM41PG600SN1 FB7 BLM41PG600SN1 FB6 C87 100nF R58 4_7K C90 100nF R57 4_7K ECP3_SHIP_DATA HEAD_SHIP_DATA CYP_SDA 3_3V ECP3_SHIP_CLK HEAD_SHIP_CLK CYP_SCL 3_3V C91 100nF Aptina 2 4 6 8 10 12 14 16 18 20 22 24 26 J6 J5 HEADER 3 1 2 3 HEADER 3 1 2 3 100nF 1 2 3 4 5 6 7 8 9 10 11 12 13 J8 HEAD_MCLK HEAD_SP5 HEAD_SENSOR_RESETN HEAD_SHIP_DATA HEAD_SP6 HEAD_DOUT1 HEAD_DOUT3 HEAD_DOUT5 HEAD_DOUT7 HEAD_DOUT9 2 PINHD-1X13-FEMALE-ROUND 1 2 3 4 5 6 7 8 9 10 11 12 13 C86 PINHD-2X13-FEMALE-ROUND 1 3 5 7 9 11 13 15 17 19 21 23 25 HEAD_DOUT10 HEAD_DOUT11 HEAD_DOUT12 HEAD_DOUT13 HEAD_DOUT14 HEAD_DOUT15 HEAD_SP0 HEAD_SP1 HEAD_SP2 HEAD_GSHT_CTL HEAD_TRIGGER HEAD_SYS_3_3V HEAD_LINE_VALID HEAD_SP7 HEAD_FRAME_VALID HEAD_SHIP_CLK HEAD_VBUS_OUT HEAD_PIXCLK HEAD_DOUT0 HEAD_DOUT2 HEAD_DOUT4 HEAD_DOUT6 HEAD_DOUT8 J7 2 1 Wednesday, September 21, 2011 Sheet 8 HDR-60 Base Board Schematic Project Head Board of 10 B Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 C174 C175 C40 C176 C39 Date: Size C BANK 0 ECP3_70EA_BGA484 VCCIO0_G10 VCCIO0_H9 PT2A PT2B PT4A/VREF1_0 PT4B/VREF2_0 PT5A PT5B PT7A^ PT7B^ PT8A PT8B PT10A PT10B PT11A PT11B PT13A PT13B PT14A PT14B PT56A PT56B PT58A PT58B PT59A PT59B PT61A^ PT61B^ PT62A PT62B PT64A PT64B PT65A PT65B PT67A PT67B PT68A PT68B PT70A^ PT70B^ PT71A PT71B PT73A/PCLKT0_0 PT73B/PCLKC0_0 U2 U2A C150 G10 H9 C5 B4 E6 D5 C6 B6 F8 G9 B3 A2 D6 D7 A3 A4 F7 G8 A5 A6 C8 C7 F9 E9 C9 C10 D9 D10 B7 A7 D8 E7 B8 A8 F10 E10 A9 B10 E11 D11 A10 A11 F11 F12 C157 3_3V 3_3V Title HEAD_DOUT14 HEAD_DOUT15 HEAD_PIXCLK ECP3_SHIP_CLK HEAD_DOUT8 HEAD_DOUT9 HEAD_DOUT10 HEAD_DOUT11 HEAD_DOUT12 HEAD_DOUT13 HEAD_DOUT6 HEAD_DOUT7 HEAD_DOUT0 HEAD_DOUT1 HEAD_DOUT2 HEAD_DOUT3 HEAD_DOUT4 HEAD_DOUT5 HEAD_LINE_VALID HEAD_FRAME_VALID HEAD_SENSOR_RESETN ECP3_SHIP_DATA HEAD_MCLK HEAD_SP0 HEAD_SP1 HEAD_SP2 HEAD_GSHT_CTL HEAD_TRIGGER HEAD_SP5 HEAD_SP6 HEAD_SP7 1 1NF-0402SMT 100NF-0603SMT 100NF-0603SMT 1NF-0402SMT 100NF-0603SMT 10NF-0402SMT 10NF-0402SMT 10uF/6V3/X7R 100NF-0603SMT HRS-DF12A-(3.0)-40D*-0.5V** 10uF/6V3/X7R 10NF-0402SMT 100NF-0603SMT 29 100NF-0603SMT HRS-DF12A(3.0)-40D*-0.5V** 10uF/6V3/X7R Head Board A B C D HDR-60 Base Board – Revision B Figure 22. Head Board 5 C166 C164 C172 C28 C27 C171 3_3V C38 ECP3_70EA_BGA484 BANK 6 10uF/6V3/X7R 3_3V 100NF-0603SMT N7 P8 M6 10NF-0402SMT A VCCIO6_N7 VCCIO6_P8 VTT6 100NF-0603SMT AA3 AB2 10NF-0402SMT B (spare) (spare) MG_VID00 MG_VID01 MG_VID02 MG_VID03 MG_VID04 MG_VID05 MG_VID06 MG_VID07 MG_VID0_PIXCLK VGPIO1 MG_HSYNC VGPIO2 VIDEO_SDA VGPIO3 MG_LRCLK_IN MG_IDAT0 MG_IDAT1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 BOSS1 PIN2 PIN4 PIN6 PIN8 PIN10 PIN12 PIN14 PIN16 PIN18 PIN20 PIN22 PIN24 PIN26 PIN28 PIN30 PIN32 PIN34 PIN36 PIN38 PIN40 BOSS1 10NF-0402SMT PIN1 PIN3 PIN5 PIN7 PIN9 PIN11 PIN13 PIN15 PIN17 PIN19 PIN21 PIN23 PIN25 PIN27 PIN29 PIN31 PIN33 PIN35 PIN37 PIN39 FITTING1 J9 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 FITTING1 MG_VSYNC MG_FIELD VIDEO_SCL MG_VID08 MG_VID09 MG_VID10 MG_VID11 MG_VID12 MG_VID13 MG_VID14 MG_VID15 MG_VID1_PIXCLK 3 3_3V C204 Y3 2 DI CT GND NMR C202 12pF DI DI R118 0R R28 RDY0 RDY1 R120 3_3V 3_3V 4 5 R117 1M DNI NRESET VDD 12pF 24 MHz DI ATS24ASM-1 HC-49/US-SM C197 1 1 2 3 U14 TPS3836L30 2 10K DI 1M 4 ECP3 Symbol Pins: * True LVDS Output ^ DQS Density shown as -70 1 2 3 4 U13 24LC64I/SN 8 7 6 5 A0 VCC A1 WP A2 SCL VSS SDA R111 2_2K R0402 CYP_SCL CYP_SDA R108 2_2K R0402 3_3V 3 All high speed signals use 50 ohm traces C192 10NF CYP_SCL CYP_SDA 2 77 11 10 79 22 84 3_3V AGND_19 AGND_12 AVCC_9 AVCC_16 DMINUS DPLUS SCL SDA IFCLK BKPT TXD1 RXD1 TXD0 RXD0 T0 T1 T2 RESEVED RDY0/SLRD RDY1/SLRW RDY2 RDY3 RDY4 RDY5 CLKOUT XTALIN XTALOUT WAKEUP INT4 INT5 RESET CTL0 CTL1 CTL2 CTL3 54 55 56 51 52 76 13 14 15 Wednesday, September 21, 2011 1 Sheet 9 HDR-60 Base Board Schematic Project PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 67 68 69 70 71 72 73 74 31 32 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD 9 FD10 FD11 FD12 FD13 FD14 FD15 34 35 36 37 44 45 46 47 80 81 82 83 95 96 97 98 57 58 59 60 61 62 63 64 1M R121 of 10 B Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 NC_13 NC_14 NC_15 RD WR CTL0/FLAGA CTL1/FLAGB CTL2/FLAGC CTL3 CTL4 CTL5 PA0/INT0 PA1/INT1 PA2/SLOE PA3/WU2 PA4/FIFOADR0 PA5/FIFOADR1 PA6/PKTEND PA7/FLAGD/SLCS PB0/FD0 PB1/FD1 PB2/FD2 PB3/FD3 PB4/FD4 PB5/FD5 PB6/FD6 PB7/FD7 PD0/FD8 PD1/FD9 PD2/FD10 PD3/FD11 PD4/FD12 PD5/FD13 PD6/FD14 PD7/FD15 PC0/GPIFADR0 PC1/GPIFADR1 PC2/GPIFADR2 PC3/GPIFADR3 PC4/GPIFADR4 PC5/GPIFADR5 PC6/GPIFADR6 PC7/GPIFADR7 FN_HI 86 87 88 89 90 91 92 93 3_3V 3_3V C198 C203 PE0/T0OUT PE1/T1OUT PE2/T2OUT PE3/RXD0OUT PE4/RXD1OUT PE5/INT6 PE6/T2EX PE7/GPIFADR8 U6 1 Teradek MPEG Encoder 19 12 9 16 18 17 29 30 26 28 42 43 40 41 23 24 25 27 3 4 5 6 7 8 100 Date: Size B Title TP9 5_0V MG_MCLK_IN MG_HSYNC MG_BCLK_IN MG_VSYNC PA0 MG_SPDIF PA1 R26 MG_VID00 3_3V 3_3V MG_VID01 10k MG_VID02 5_0V BOSS2 FITTING2 MG_VID03 BOSS2 FITTING2 MG_VID04 MG_VID05 DF17(4.0)-40DP-0.5V(5?) MG_VID0_PIXCLK PA2 R129 IFCLK MG_VID06 DNI MG_VID07 C217 VGPIO1 VGPIO2 100nF (spare) CTL1 CYP_SCL (spare) CYP_SDA CTL2 J12B USB1_1 F_27MHz R0402 R97 49_9R R128 0 VP USB1_2 (spare) CTL3 CYP USB- USB1_3 MG_IDAT0 Place resistor near pin T3 of U1 USB+ USB1_4 MG_IDAT1 (Lower USB) GND VIDEO_SDA R127 0 C213 C214 VGPIO3 0862-1J1T-43-F PA4 DNI DNI VIDEO_SCL MG_LRCLK_IN MG_FIELD MG_SPDIF MG_VID08 MG_VID09 MG_VID10 FB12 FB19 MG_VID11 3_3V 3_3V MG_VID12 BLM21AG601SN1D BLM21AG601SN1D R95 Y1 1 4 MG_VID13 C196 VCC 3 2 EN MG_VID1_PIXCLK F_27MHz C130 2.2uF F_27MHz GND OUT PA5 0.1uF 6.3v 4_7K MG_VID14 0603 DSC1001-AC2-027.0000 C140 MG_VID15 1uF, X5R, 6.3V DI Place Y1 near U2 PA6 Route signal F_27MHz to R97 first, then to the DDR2 clock input resistors CTL0 FD0 FD1 FD2 FD3 FD4 FD5 FD6 FD7 FD8 FD9 FD10 FD11 FD12 FD13 FD14 FD15 CYP_SCL CYP_SDA RDY0 RDY1 MG_MCLK_IN IFCLK PA3 PA7 MG_BCLK_IN 1NF-0402SMT C AB3 AB4 W4 Y5 AA4 AA5 W5 W6 AB5 AB6 V6 U7 Y6 AA6 U8 T8 R9 T9 L3 L2 L4 M4 M2 M1 M5 N6 N2 N1 N4 P4 N3 P3 N5 P6 P1 R1 P5 R6 R3 R2 U1 U2 T2 T1 T3 U3 P7 V1 W1 R7 T7 V3 W3 R4 T5 W2 Y1 T4 U4 AA1 Y2 T6 U5 Y3 AA2 V4 V5 1NF-0402SMT D PB2A PB2B PB4A PB4B PB5A PB5B PB7A PB7B PB8A PB8B PB10A PB10B PB11A PB11B PB13A PB13B PB16A PB16B PL44A PL44B PL46A*/PCLKT6_0 PL46B*/PCLKC6_0 PL47A* PL47B* PL49A^ PL49B^ PL50A PL50B PL52A*/VREF1_6 PL52B*/VREF2_6 PL53A PL53B PL55A* PL55B* PL56A* PL56B* PL58A^ PL58B^ PL59A PL59B PL61A* PL61B* PL61E_A/LLM1_GPLLT_FB_A PL61E_B/LLM1_GPLLT_FB_B PL61E_C/LLM1_GPLLT_IN_A PL61E_D/LLM1_GPLLT_IN_B PL82B* PL83A* PL83B* PL85A^ PL85B^ PL86A PL86B PL88A* PL88B* PL89A PL89B PL91A* PL91B* PL92A* PL92B* PL94A^ PL94B^ PL95A PL95B RESERVE_AA3 PL97A* RESERVE_AB2 PL97B* 10NF-0402SMT 5_0V 3_3V C124 C119 Hirose DF17 Series U2D 1 2 100NF-0603SMT Teradek MPEG Encoder 4 100NF-0603SMT 85 78 53 66 49 38 33 20 1 VCC_85 VCC_78 VCC_53 VCC_66 VCC_49 VCC_38 VCC_33 VCC_20 VCC_1 CY7C68013A-100AXC GND_99 GND_94 GND_75 GND_39 GND_65 GND_50 GND_48 GND_21 GND_2 30 99 94 75 39 65 50 48 21 2 100NF-0603SMT 5 A B C D HDR-60 Base Board – Revision B Figure 23. Teradek MPEG Encoder Title Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 1 31 Date: 1 Wednesday, September 21, 2011 Sheet 10 HDR-60 Base Board Schematic Project Mechanical Drawing of 10 B Rev A A Size C B B 5 C 2 2 C 3 3 D 4 4 D Mechanical Drawing 5 HDR-60 Base Board – Revision B Figure 24. Mechanical Drawing HDR-60 Base Board – Revision B Appendix B. Silkscreen 32 HDR-60 Base Board – Revision B Appendix C. Programming Using JTAG Flywire Connections LatticeECP3 Configuration Using JTAG Flywire Connections The HDR-60 Base Board includes a provision for the flywire connected programming header J3. The pins for the J3 header are not installed, as typical use of the board will be through the USB download. In the instance where a user of the board would like to use a flywire JTAG connection rather than the built-in USB download at J12, the user will need to first acquire and install the header pins for J3. The pinout for J3 is provided in Table 16. Important Note: The board must be un-powered when connecting, disconnecting, or reconnecting an ispDOWNLOAD cable or USB cable. Always connect an ispDOWNLOAD cable’s GND pin (black wire), before connecting any other JTAG pins. Failure to follow these procedures can in result in damage to the LatticeECP3 FPGA and render the board inoperable. Table 16. JTAG Flywire Programming Header J3 J3 Pin JTAG Signal 1 3_3V 2 TDO 3 TDI 4 NC 5 NC 6 TMS 7 GND 8 TCK 9 NC 10 NC Requirements • PC with Lattice ispVM System programming software version 17.9 (or later), installed with appropriate drivers (USB driver for USB cable, Windows NT/2000/XP parallel port driver for ispDOWNLOAD cable). Note: An option to install these drivers is included as part of the ispVM System setup. • Any ispDOWNLOAD or Lattice USB cable (pDS4102-DL2x, HW7265-DL3x, HW-USB-2x, etc.). For a complete discussion of the LatticeECP3’s configuration and programming options, refer to the LatticeECP3 sysCONFIG Usage Guide. The remainder of this JTAG flywire download procedure is identical to the download procedures described previously in the sections of this document: “LatticeECP3 SRAM Configuration Using a Standard USB Cable at J12” and “LatticeECP3 SRAM Configuration Using SPI Flash and USB Cable at J12”. However, instead of the programming signals arriving at J12, they arrive at J3, and in step 5 of those procedures, where it says to select USB2, instead select the Lattice ispDOWNLOAD flywire connected cable type you are attaching to the J3 header pins. 33 HDR-60 Base Board – Revision B Appendix D. Known Issues The following resistors should not be populated by default: R87, R89, R92 and R93. The location of these resistors is on the bottom side of the HDR-60 Base Board Revision B (reverse side of the LatticeECP3-70). These resistors may have been installed on some boards and may cause issues for custom designs that use the signals connected to these resistors. 34