THC63LVD1027_Rev.3.00_E THC63LVD1027 Dual Link LVDS Repeater General Description Features The THC63LVD1027 LVDS(Low Voltage Differential Signaling) repeater is designed to support pixel data transmission between Host and Flat Panel Display up to WUXGA resolution. THC63LVD1027 receives the dual link LVDS data streams and transmits the LVDS data through various line rate conversion modes, Dual Link Input / Dual Link Output, Single Link Input / Dual Link Output, and Dual Link Input / Single Link Output. • • • • • • 30bits/pixel dual link LVDS Receiver 30bits/pixel dual Link LVDS Transmitter Wide LVDS input skew margin: ± 480ps at 75MHz Accurate LVDS output timing: ± 250ps at 75MHz Reduced swing LVDS output mode supported to suppress the system EMI Various line rate conversion modes supported Dual link input / Dual link output [clkout=1x clkin] Single link input / Dual link output [clkout=1/2x clkin] Dual link input / Single link output [clkout=2x clkin] • • • • • Distribution (signal duplication) mode supported Power down mode supported 3.3V single voltage power supply No external components required for PLLs 64pin TSSOP with Exposed PAD (0.5mm lead pitch) Block Diagram Dual In / Dual Out Mode THine® THC63LVD1027 85MHz THC63LVD1027 85MHz 85MHz 30bit Data LVDS 1st Link Clock LVDS-Tx Serialize LVDS-Rx De-Serialize PLL 30bit Data LVDS 1st Link Inter-Link Multiplex & De-Multiplex 85MHz THC63LVD1027 PLL Single In / Dual Out Mode Clock 135MHz THC63LVD1027 LVDS 2nd Link LVDS-Rx De-Serialize 85MHz 85MHz LVDS 2nd Link 30bit Data Distribution Mode Clock PLL Clock 85MHz LVDS-Tx Serialize 30bit Data LDO Regulator 67.5MHz 67.5MHz Dual In / Single Out Mode 42.5MHz THC63LVD1027 85MHz 42.5MHz 3.3v Power Supply Decoupling Capacitor Copyright©2013 THine Electronics, Inc. 1/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Pin Out RS 1 64 GND CAP 2 63 CAP GND 3 62 GND VDD 4 61 VDD RA1– 5 60 TA1– RA1+ 6 59 TA1+ RB1– 7 58 TB1– RB1+ 8 57 TB1+ RC1– 9 56 TC1– RC1+ 10 55 TC1+ RCLK1– 11 54 TCLK1– RCLK1+ 12 53 TCLK1+ RD1– 13 52 TD1– RD1+ 14 51 TD1+ RE1– 15 50 TE1– RE1+ 16 49 TE1+ 48 TA2– 47 TA2+ 46 TB2– 45 TB2+ RA2– 17 RA2+ 18 RB2– 19 RB2+ 20 TSSOP64 Exposed PAD Top View 65 GND (Exposed PAD) RC2– 21 44 TC2– RC2+ 22 43 TC2+ RCLK2– 23 42 TCLK2– RCLK2+ 24 41 TCLK2+ RD2– 25 40 TD2– RD2+ 26 39 TD2+ RE2– 27 38 TE2– RE2+ 28 37 TE2+ VDD 29 36 VDD GND 30 35 GND CAP 31 34 MODE1 PD 32 33 MODE0 Copyright©2013 THine Electronics, Inc. 2/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Pin Description Pin Name Direction Type Description RA1+/– LVDS data input for channel A of 1st Link RB1+/– LVDS data input for channel B of 1st Link RC1+/– LVDS data input for channel C of 1st Link RD1+/– LVDS data input for channel D of 1st Link RE1+/– LVDS data input for channel E of 1st Link RCLK1+/– LVDS clock input for 1st Link RA2+/– LVDS data input for channel A of 2nd Link Input RB2+/– LVDS data input for channel B of 2nd Link RC2+/– LVDS data input for channel C of 2nd Link RD2+/– LVDS data input for channel D of 2nd Link RE2+/– LVDS data input for channel E of 2nd Link LVDS clock input for 2nd Link RCLK2+/– LVDS In Distribution and Single-in/Dual-out mode, RCLK2+/- must be Hi-Z. (see “Mode selection” below in this page.) TA1+/– LVDS data output for channel A of 1st Link TB1+/– LVDS data output for channel B of 1st Link TC1+/– LVDS data output for channel C of 1st Link TD1+/– LVDS data output for channel D of 1st Link TE1+/– LVDS data output for channel E of 1st Link TCLK1+/– TA2+/– LVDS clock output for 1st Link Output LVDS data output for channel A of 2nd Link TB2+/– LVDS data output for channel B of 2nd Link TC2+/– LVDS data output for channel C of 2nd Link TD2+/– LVDS data output for channel D of 2nd Link TE2+/– LVDS data output for channel E of 2nd Link TCLK2+/- LVDS clock output for 2nd Link Power Down PD H: Normal operation L: Power down state, all LVDS output signals turn to Hi-Z LVDS output swing level selection RS H: Normal swing L: Reduced swing Mode selection Input LV-TTL MODE1 MODE0 MODE1 MODE0 RCLK2+/- Description L L clkin Dual-in / Dual-out mode L L Hi-Z Distribution mode H L Hi-Z Single-in / Dual-out mode L H clkin Dual-in / Single-out mode H H - Reserved In Distribution and Single-in/Dual-out mode, RCLK2+/- must be Hi-Z. VDD GND 3.3v power supply pins Power CAP Copyright©2013 THine Electronics, Inc. — Ground pins (Exposed PAD is also Ground) Decoupling capacitor pins These pins should be connected to external decoupling capacitors (CCAP). Recommended CCAP is 0.1uF 3/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Mode Setting Input/Output MODE1 MODE0 (Input mode) (Output mode) H: Single H: Single L: Dual L: Dual CLK in L L Hi-Z L L Hi-Z H L CLK in L H -- H H RCLK2+/- Dual-In/Dual-Out (Fig.1-1, 12-1) Distribution (Fig.1-2, 12-2) Single-In/Dual-Out (Fig.1-3, 12-3) Dual-In/Single-Out (Fig.1-4, 12-4) Reserved Signal Flow for Each Setting Dual-In / Dual-Out CLK Frequency f RA1+/RB1+/RC1+/RD1+/DATA Rate RE1+/f RCLK1+/- Distribution mode TA1+/CLK TB1+/Frequency TC1+/f TD1+/TE1+/DATA Rate f TCLK1+/- CLK Frequency f RA2+/RB2+/RC2+/RD2+/DATA Rate RE2+/f RCLK2+/- TA2+/CLK TB2+/Frequency TC2+/f TD2+/TE2+/DATA Rate TCLK2+/f CLK Frequency f RA1+/RB1+/RC1+/RD1+/DATA Rate RE1+/f RCLK1+/- Same Data RA2+/RB2+/RC2+/RD2+/RE2+/RCLK2+/- Hi-z Must be Hi-z TA2+/CLK TB2+/Frequency TC2+/f TD2+/TE2+/DATA Rate TCLK2+/f =TCLK1+/- Fig.1-2 Single-In / Dual-Out Dual-In / Single-Out RA1+/RB1+/RC1+/RD1+/DATA Rate RE1+/f RCLK1+/- TA1+/CLK TB1+/Frequency TC1+/f/2 TD1+/TE1+/DATA Rate TCLK1+/f/2 RA2+/RB2+/RC2+/RD2+/RE2+/RCLK2+/- TA2+/CLK TB2+/Frequency TC2+/f/2 TD2+/TE2+/DATA Rate TCLK2+/f/2 Hi-z Must be Hi-z =TCLK1+/- Fig.1-1 CLK Frequency f CLK Frequency f RA1+/RB1+/RC1+/RD1+/DATA Rate RE1+/f RCLK1+/- TA1+/CLK TB1+/Frequency TC1+/2f TD1+/TE1+/DATA Rate TCLK1+/2f CLK Frequency f TA2+/TB2+/TC2+/TD2+/TE2+/TCLK2+/- RA2+/RB2+/RC2+/RD2+/DATA Rate RE2+/f RCLK2+/- Fig.1-3 Copyright©2013 THine Electronics, Inc. TA1+/CLK TB1+/Frequency TC1+/f TD1+/TE1+/DATA Rate TCLK1+/f Hi-z Fig.1-4 4/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Output Control / Fail Safe THC63LVD1027 has a function to control output depending on LVDS input condition. PD RCLK1+/- RCLK2+/- Output L * * All Hi-Z H Hi-Z * All Hi-Z H CLK in CLK in Refer to p.4 Mode Setting # H CLK in Hi-Z Refer to p.4 Mode Setting # *: Don’t care #: If a particular input data pair is Hi-Z, the corresponding output data become L according to LVDS DC spec. For fail-safe purpose, all LVDS input pins are connected to VDD via resistance for detecting state of Hi-Z. VDD LVDS input buffer Internal circuit of THC63LVD1027 Fig.2 Copyright©2013 THine Electronics, Inc. 5/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Absolute Maximum Ratings Parameter Min Max Unit Power Supply voltage –0.3 4.0 V LVDS Input Voltage -0.3 VDD+0.3 V Junction Temperature — 125 ºC Storage Temperature –55 125 ºC Reflow Peak Temperature / Time — 260 / 10sec. ºC Maximum Power Dissipation @+25 °C — 2.5 W Operating Conditions Symbol Parameter Min Typ Max Unit Ta Ambient Temperature –20 25 70 ºC VDD Power Supply voltage 3.0 3.3 3.6 V Input 20 — 85 MHz Output 20 — 85 MHz Input 20 — 85 MHz Output 20 — 85 MHz Input 40 — 135 MHz Output 20 — 67.5 MHz Input 20 — 42.5 MHz Output 40 — 85 MHz Dual-in / Dual-out Distribution Fclk Single-in / Dual-out Dual-in / Single-out Copyright©2013 THine Electronics, Inc. 6/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Power Dissipation Symbol Parameter Conditions Dual-in/Dual-out Distribution Operating Current ICCW Min Typ Max Unit CLKIN=40MHz — — 265 mA CLKIN=65MHz — — 305 mA CLKIN=75MHz — — 325 mA CLKIN=85MHz — — 340 mA CLKIN=40MHz — — 215 mA CLKIN=65MHz — — 235 mA CLKIN=75MHz — — 245 mA CLKIN=85MHz — — 260 mA — — 175 mA — — 190 mA — — 200 mA CLKIN=85MHz — — 210 mA CLKIN=112MHz — — 230 mA CLKIN=135MHz — — 250 mA CLKIN=20MHz — — 215 mA CLKIN=32.5MHz — — 235 mA CLKIN=37.5MHz — — 245 mA CLKIN=42.5MHz — — 260 mA — — — 8 mA CLKIN=40MHz (Worst Case Pattern) Fig1 CLKIN=65MHz CLKIN=75MHz Single-in/Dual-out Dual-in/Single-out ICCS Power Down Current — RL_TX = 100Ω CL=5pF RS=VDD Fig2 TCLKx+ Tyx+ x=1,2 y= A, B, C, D, E Fig.3 Test Pattern (LVDS Output Full Toggle Pattern) x=1,2 y= A, B, C, CLK, D, E Tyx+ 5pF 100Ω TyxLVDS Output Load Fig.4 LVDS Output Load Copyright©2013 THine Electronics, Inc. 7/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Electrical Characteristics THC63LVD1027 DC Specifications Symbol Vcap Parameter Conditions Capacitor pin appearance voltage CCAP = 0.1µF Min. Typ. Max. — 1.8 — Units VIL_TTL LV-TTL Input Low Voltage — GND — 0.8 VIH_TTL LV-TTL Input High Voltage — 2.0 — VDD IIN_TTL LV-TTL Input Leakage Current — -4 — +4 μA Conditions Min. Typ. Max. Units V LVDS Receiver DC Specifications Symbol Parameter VIN_RX LVDS-Rx Input voltage range — 0.3 — 2.1 VIC_RX LVDS-Rx Common voltage — 0.6 1.2 1.8 VTH_RX LVDS-Rx differential High threshold — — +100 VTL_RX LVDS-Rx differential Low threshold -100 — — | VID_RX | LVDS-Rx differential Input Voltage — 100 — 600 LVDS-Rx Input Leakage current — -0.3 — 0.3 IIN_RX VIC_RX = 1.2V V mV mA LVDS Transmitter DC Specifications Symbol VOC_TX ΔVOC_TX | VOD_TX | ΔVOD_TX Parameter Conditions Min. Typ. Max. Units — 1.125 1.25 1.375 V — — — 35 mV Normal swing 250 350 450 Reduced swing 100 200 300 — — — 35 mV Vout= GND -24 — — mA Vout= GND to Vcc -10 — +10 uA LVDS-Tx Common voltage Change in VOC between complementary output states LVDS-Tx differential Output Voltage RL_TX = 100Ω Change in VOD between complementary output states IOS_TX LVDS-Tx Output Short current IOZ_TX LVDS-Tx Output Tri-state current Copyright©2013 THine Electronics, Inc. PD=GND 8/22 mV THine Electronics,Inc. THC63LVD1027_Rev.3.00_E THC63LVD1027 AC Characteristics Symbol Parameter Conditions Phase Lock Loop Set Time (Fig.3) tLT tDL Min Typ Max Unit — — — 10 ms Dual-in/Dual-out CLKIN=75MHz 9tRCP+3 9tRCP+5 9tRCP+7 Distribution CLKIN=75MHz 9tRCP+3 9tRCP+5 9tRCP+7 Single-in/Dual-out CLKIN=75MHz (11+2/7)tRCP+3 (11+2/7)tRCP+5 (11+2/7)tRCP+7 Dual-in/Single-out CLKIN=37.5MHz (8+5/14)tRCP+3 (8+5/14)tRCP+5 (8+5/14)tRCP+7 — 2tRCP — — — 2tRCP — — — 4tRCP Must be 2ntRCP (n=integer) — — Data Latency (Fig.4) tDEH DE input High time (Fig.5) tDEL DE input Low time (Fig.5) Single-in/ Dual-out DE input Period (Fig.5) tDEINT AC Timing Diagrams VDD 3.0V RCLK1+/- 2.0V PD tLT TCLKx+/x=1,2 Note: 1) Vdifftc = (TCLK+) - (TCLK-) Vdifftc = 0V Fig.5 Phase Lock Loop Set Time Copyright©2013 THine Electronics, Inc. 9/22 THine Electronics,Inc. ns ns THC63LVD1027_Rev.3.00_E AC Timing Diagrams (Continued) RCLK1+ Vdiffrc = 0V Ryx+/x= 1,2 y= A, B, C, D, E Note: 1) Vdiffrc = (RCLK+) - (RCLK-) 2) Vdifftc = (TCLK+) - (TCLK-) Current Data tDL TCLK1+ Vdifftc = 0V Tyx+/x= 1,2 y= A, B, C, D, E Current Data Fig.6 DATA Latency RCLK1+ DE DE DE DE DE DE RC1+ tDEH tDEL tDEINT Fig.7 Single link input / Dual link output mode RC1(DE) input timing Copyright©2013 THine Electronics, Inc. 10/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E LVDS Receiver AC Characteristics Symbol Parameter Conditions Min Typ Max tRCP LVDS Clock Period — 7.4 — 50 tRCH LVDS Clock High duration — 2/7 tRCP 4/7 tRCP 5/7 tRCP tRCL LVDS Clock Low duration — 2/7 tRCP 3/7 tRCP 5/7 tRCP CLKIN=75MHz 480 — — CLKIN=112MHz(1) 250 — — CLKIN=135MHz(1) 220 — — CLKIN=75MHz 480 — — CLKIN=112MHz(1) 250 — — CLKIN=135MHz(1) 220 — — tRSUP tRHLD LVDS data input setup margin LVDS data input hold margin tRIP6 LVDS data input position 6 — 2/7tRCP - tRHLD 2/7 tRCP 2/7tRCP + tRSUP tRIP5 LVDS data input position 5 — 3/7tRCP - tRHLD 3/7 tRCP 3/7tRCP + tRSUP tRIP4 LVDS data input position 4 — 4/7tRCP - tRHLD 4/7 tRCP 4/7tRCP + tRSUP tRIP3 LVDS data input position 3 — 5/7tRCP - tRHLD 5/7 tRCP 5/7tRCP + tRSUP tRIP2 LVDS data input position 2 — 6/7tRCP - tRHLD 6/7 tRCP 6/7tRCP + tRSUP tRIP1 LVDS data input position 1 — 7/7tRCP - tRHLD 7/7 tRCP 7/7tRCP + tRSUP tRIP0 LVDS data input position 0 — 8/7tRCP - tRHLD 8/7 tRCP 8/7tRCP + tRSUP tCK12 Skew Time between RCLK1 and RCLK2 (Fig.6) — -0.3 tRCP — 0.3 tRCP (1) Single Link Input / Dual Link Output mode , VIC_RX = 1.2V , tRCH = 4/7 tRCP LVDS Receiver Input Timing tRIP0 tRIP1 tRIP2 tRIP3 tRIP4 tRIP5 tRIP6 Ryx+/- D<6> D<5> D<4> D<3> D<2> D’<1> D’<0> tRCP tRCH tRCL RCLKx+ RCLKxx= 1, 2 y= A, B, C, D, E Ry1+/- skew margin is the one between RCLK1+/- and Ry1+/-. Ry2+/- skew margin is the one between RCLK2+/- and Ry2+/-. Fig.8 Copyright©2013 THine Electronics, Inc. 11/22 THine Electronics,Inc. Unit ns ps ps ps THC63LVD1027_Rev.3.00_E LVDS Receiver Input Timing (Continued) Note: 1) Vdiffrc = (RCLK+) - (RCLK-) (RCLK1+)-(RCLK1-) Vdiffrc = 0V tCK12 (RCLK2+)-(RCLK2-) Vdiffrc = 0V Fig.9 Skew Time between RCLK1 and RCLK2 Copyright©2013 THine Electronics, Inc. 12/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E LVDS Transmitter AC Characteristics Symbol Parameter Conditions Min Typ Max tTCP LVDS Clock Period — 11.76 — 50 tTCH LVDS Clock High duration — — 4/7 tTCP — tTCL LVDS Clock Low duration — — 3/7 tTCP — tTSUP LVDS data output setup CLKOUT=75MHz — — 250 tTHLD LVDS data output hold CLKOUT=75MHz — — 250 tTOP6 LVDS data output position 6 — 2/7tTCP - tTHLD 2/7 tTCP 2/7tTCP + tTSUP tTOP5 LVDS data output position 5 — 3/7tTCP - tTHLD 3/7 tTCP 3/7tTCP + tTSUP tTOP4 LVDS data output position 4 — 4/7tTCP - tTHLD 4/7 tTCP 4/7tTCP + tTSUP tTOP3 LVDS data output position 3 — 5/7tTCP - tTHLD 5/7 tTCP 5/7tTCP + tTSUP tTOP2 LVDS data output position 2 — 6/7tTCP - tTHLD 6/7 tTCP 6/7tTCP + tTSUP tTOP1 LVDS data output position 1 — 7/7tTCP - tTHLD 7/7 tTCP 7/7tTCP + tTSUP tTOP0 LVDS data output position 0 — 8/7tTCP - tTHLD 8/7 tTCP 8/7tTCP + tTSUP tLVT LVDS Transition Time (Fig7) — — 0.6 1.5 LVDS Transmitter Output Timing tTOP0 tTOP1 tTOP2 tTOP3 tTOP4 tTOP5 tTOP6 Tyx+/- D<6> D<5> D<4> D<3> D<2> D’<1> D’<0> tTCP tTCH TCLKx+ tTCL TCLKxx=1,2 y= A, B, C, D, E Ty1+/- output timing is the one between TCLK1+/- and Ty1+/-. Ty2+/- output timing is the one between TCLK2+/- and Ty2+/-. Fig.10 Vdifft 80% 80% 20% 20% tLVT Note: 1) Vdifft = (Tyx+) - (Tyx-) x= 1, 2 y= A, B, C, CLK, D, E tLVT Fig.11 LVDS Transition Time Copyright©2013 THine Electronics, Inc. 13/22 THine Electronics,Inc. Unit ns ps ps ns THC63LVD1027_Rev.3.00_E LVDS Data Mapping Dual-in / Dual-out mode LVDS-Rx Input Mapping RCLK1+/– RA1+/– G1 [4] R1 [9] R1 [8] R1 [7] R1 [6] R1 [5] R1 [4] G3 [4] R3 [9] R3 [8] R3 [7] R3 [6] R3 [5] R3 [4] RB1+/– B1 [5] B1 [4] G1 [9] G1 [8] G1 [7] G1 [6] G1 [5] B3 [5] B3 [4] G3 [9] G3 [8] G3 [7] G3 [6] G3 [5] RC1+/– DE VSYNC HSYNC B1 [9] B1 [8] B1 [7] B1 [6] DE VSYNC HSYNC B3 [9] B3 [8] B3 [7] B3 [6] RD1+/– data11 B1 [3] B1 [2] G1 [3] G1 [2] R1 [3] R1 [2] data11 B3 [3] B3 [2] G3 [3] G3 [2] R3 [3] R3 [2] RE1+/– data12 B1 [1] B1 [0] G1 [1] G1 [0] R1 [1] R1 [0] data12 B3 [1] B3 [0] G3 [1] G3 [0] R3 [1] R3 [0] RA2+/– G2 [4] R2 [9] R2 [8] R2 [7] R2 [6] R2 [5] R2 [4] G4 [4] R4 [9] R4 [8] R4 [7] R4 [6] R4 [5] R4 [4] RB2+/– B2 [5] B2 [4] G2 [9] G2 [8] G2 [7] G2 [6] R2 [5] B4 [5] B4 [4] G4 [9] G4 [8] G4 [7] G4 [6] G4 [5] RC2+/– DE VSYNC HSYNC B2 [9] B2 [8] B2 [7] B2 [6] DE VSYNC HSYNC B4 [9] B4 [8] B4 [7] B4 [6] RD2+/– data21 B2 [3] B2 [2] G2 [3] G2 [2] R2 [3] R2 [2] data21 B4 [3] B4 [2] G4 [3] G4 [2] R4 [3] R4 [2] RE2+/– data22 B2 [1] B2 [0] G2 [1] G2 [0] R2 [1] R2 [0] data22 B4 [1] B4 [0] G4 [1] G4 [0] R4 [1] R4 [0] RCLK2+/– LVDS-Tx Output Mapping TCLK1+/– TA1+/– G1 [4] R1 [9] R1 [8] R1 [7] R1 [6] R1 [5] R1 [4] G3 [4] R3 [9] R3 [8] R3 [7] R3 [6] R3 [5] R3 [4] TB1+/– B1 [5] B1 [4] G1 [9] G1 [8] G1 [7] G1 [6] G1 [5] B3 [5] B3 [4] G3 [9] G3 [8] G3 [7] G3 [6] G3 [5] TC1+/– DE VSYNC HSYNC B1 [9] B1 [8] B1 [7] B1 [6] DE VSYNC HSYNC B3 [9] B3 [8] B3 [7] B3 [6] TD1+/– data11 B1 [3] B1 [2] G1 [3] G1 [2] R1 [3] R1 [2] data11 B3 [3] B3 [2] G3 [3] G3 [2] R3 [3] R3 [2] TE1+/– data12 B1 [1] B1 [0] G1 [1] G1 [0] R1 [1] R1 [0] data12 B3 [1] B3 [0] G3 [1] G3 [0] R3 [1] R3 [0] TA2+/– G2 [4] R2 [9] R2 [8] R2 [7] R2 [6] R2 [5] R2 [4] G4 [4] R4 [9] R4 [8] R4 [7] R4 [6] R4 [5] R4 [4] TB2+/– B2 [5] B2 [4] G2 [9] G2 [8] G2 [7] G2 [6] G2 [5] B4 [5] B4 [4] G4 [9] G4 [8] G4 [7] G4 [6] G4 [5] TC2+/– DE VSYNC HSYNC B2 [9] B2 [8] B2 [7] B2 [6] DE VSYNC HSYNC B4 [9] B4 [8] B4 [7] B4 [6] TD2+/– data21 B2 [3] B2 [2] G2 [3] G2 [2] R2 [3] R2 [2] data21 B4 [3] B4 [2] G4 [3] G4 [2] R4 [3] R4 [2] TE2+/– data22 B2 [1] B2 [0] G2 [1] G2 [0] R2 [1] R2 [0] data22 B4 [1] B4 [0] G4 [1] G4 [0] R4 [1] R4 [0] TCLK2+/– ( Regardless of the Data Latency ) Data bits “data11, data12, data21, data22” are available for additional data transmission. Fig.12-1 Copyright©2013 THine Electronics, Inc. 14/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Distribution Mode In Distribution mode, RCLK2+/- must be High-Z. LVDS-Rx Input Mapping RCLK1+/– RA1+/– G1 [4] R1 [9] R1 [8] R1 [7] R1 [6] R1 [5] R1 [4] G2 [4] R2 [9] R2 [8] R2 [7] R2 [6] R2 [5] R2 [4] RB1+/– B1 [5] B1 [4] G1 [9] G1 [8] G1 [7] G1 [6] G1 [5] B2 [5] B2 [4] G2 [9] G2 [8] G2 [7] G2 [6] G2 [5] RC1+/– DE VSYNC HSYNC B1 [9] B1 [8] B1 [7] B1 [6] DE VSYNC HSYNC B2 [9] B2 [8] B2 [7] B2 [6] RD1+/– data11 B1 [3] B1 [2] G1 [3] G1 [2] R1 [3] R1 [2] data11 B2 [3] B2 [2] G2 [3] G2 [2] R2 [3] R2 [2] RE1+/– data12 B1 [1] B1 [0] G1 [1] G1 [0] R1 [1] R1 [0] data12 B2 [1] B2 [0] G2 [1] G2 [0] R2 [1] R2 [0] Hi-Z RCLK2+/– RA2+/– no care RB2+/– no care RC2+/– no care RD2+/– no care RE2+/– no care LVDS-Tx Output Mapping TCLK1+/– TA1+/– G1 [4] R1 [9] R1 [8] R1 [7] R1 [6] R1 [5] R1 [4] G2 [4] R2 [9] R2 [8] R2 [7] R2 [6] R2 [5] R2 [4] TB1+/– B1 [5] B1 [4] G1 [9] G1 [8] G1 [7] G1 [6] G1 [5] B2 [5] B2 [4] G2 [9] G2 [8] G2 [7] G2 [6] G2 [5] TC1+/– DE VSYNC HSYNC B1 [9] B1 [8] B1 [7] B1 [6] DE VSYNC HSYNC B2 [9] B2 [8] B2 [7] B2 [6] TD1+/– data11 B1 [3] B1 [2] G1 [3] G1 [2] R1 [3] R1 [2] data11 B2 [3] B2 [2] G2 [3] G2 [2] R2 [3] R2 [2] TE1+/– data12 B1 [1] B1 [0] G1 [1] G1 [0] R1 [1] R1 [0] data12 B2 [1] B2 [0] G2 [1] G2 [0] R2 [1] R2 [0] TA2+/– G1 [4] R1 [9] R1 [8] R1 [7] R1 [6] R1 [5] R1 [4] G2 [4] R2 [9] R2 [8] R2 [7] R2 [6] R2 [5] R2 [4] TB2+/– B1 [5] B1 [4] G1 [9] G1 [8] G1 [7] G1 [6] G1 [5] B2 [5] B2 [4] G2 [9] G2 [8] G2 [7] G2 [6] G2 [5] TC2+/– DE VSYNC HSYNC B1 [9] B1 [8] B1 [7] B1 [6] DE VSYNC HSYNC B2 [9] B2 [8] B2 [7] B2 [6] TD2+/– data11 B1 [3] B1 [2] G1 [3] G1 [2] R1 [3] R1 [2] data11 B2 [3] B2 [2] G2 [3] G2 [2] R2 [3] R2 [2] TE2+/– data12 B1 [1] B1 [0] G1 [1] G1 [0] R1 [1] R1 [0] data12 B2 [1] B2 [0] G2 [1] G2 [0] R2 [1] R2 [0] TCLK2+/– (Regardless of the Data Latency) Data bits “data11, data12” are available for additional data transmission. Fig.12-2 Copyright©2013 THine Electronics, Inc. 15/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Single-in / Dual-out mode In Single-in / Dual-out mode, RCLK2+/- must be High-Z. LVDS-Rx Input Mapping RCLK1+/– RA1+/– G1 [4] R1 [9] R1 [8] R1 [7] R1 [6] R1 [5] R1 [4] G2 [4] R2 [9] R2 [8] R2 [7] R2 [6] R2 [5] R2 [4] RB1+/– B1 [5] B1 [4] G1 [9] G1 [8] G1 [7] G1 [6] G1 [5] B2 [5] B2 [4] G2 [9] G2 [8] G2 [7] G2 [6] G2 [5] RC1+/– DE VSYNC HSYNC B1 [9] B1 [8] B1 [7] B1 [6] DE VSYNC HSYNC B2 [9] B2 [8] B2 [7] B2 [6] RD1+/– data11 B1 [3] B1 [2] G1 [3] G1 [2] R1 [3] R1 [2] data11 B2 [3] B2 [2] G2 [3] G2 [2] R2 [3] R2 [2] RE1+/– data12 B1 [1] B1 [0] G1 [1] G1 [0] R1 [1] R1 [0] data12 B2 [1] B2 [0] G2 [1] G2 [0] R2 [1] R2 [0] Hi-Z RCLK2+/– RA2+/– no care RB2+/– no care RC2+/– no care RD2+/– no care RE2+/– no care LVDS-Tx Output Mapping TCLK1+/– TA1+/– G1 [4] R1 [9] R1 [8] R1 [7] R1 [6] R1 [5] R1 [4] TB1+/– B1 [5] B1 [4] G1 [9] G1 [8] G1 [7] G1 [6] G1 [5] TC1+/– DE VSYNC HSYNC B1 [9] B1 [8] B1 [7] B1 [6] TD1+/– data11 B1 [3] B1 [2] G1 [3] G1 [2] R1 [3] R1 [2] TE1+/– data12 B1 [1] B1 [0] G1 [1] G1 [0] R1 [1] R1 [0] TA2+/– G2 [4] R2 [9] R2 [8] R2 [7] R2 [6] R2 [5] R2 [4] TB2+/– B2 [5] B2 [4] G2 [9] G2 [8] G2 [7] G2 [6] G2 [5] TC2+/– DE VSYNC HSYNC B2 [9] B2 [8] B2 [7] B2 [6] TD2+/– data11 B2 [3] B2 [2] G2 [3] G2 [2] R2 [3] R2 [2] TE2+/– data12 B2 [1] B2 [0] G2 [1] G2 [0] R2 [1] R2 [0] TCLK2+/– ( Regardless of the Data Latency ) Data bits “data11, data12” are available for additional data transmission. Fig.12-3(a) Copyright©2013 THine Electronics, Inc. 16/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Single Link Input RCLK1+ DE DE DE DE DE DE RC1+/Ry1+/- A B C D y= A, B, C, D, E Dual Link Output TCLK1+ TCLK2+ DE DE DE TC1+/TC2+/Ty1+/- A C Ty2+/- B D ( Regardless of the Data Latency ) Schematic diagram of DE transition Single-in / Dual-out mode uses DE signal L-to-H-edge to start distribution of input data. Fig.12-3(b) Copyright©2013 THine Electronics, Inc. 17/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Dual-in / Single-out mode LVDS-Rx Input Mapping RCLK1+/– RA1+/– G1 [4] R1 [9] R1 [8] R1 [7] R1 [6] R1 [5] R1 [4] RB1+/– B1 [5] B1 [4] G1 [9] G1 [8] G1 [7] G1 [6] G1 [5] RC1+/– DE VSYNC HSYNC B1 [9] B1 [8] B1 [7] B1 [6] RD1+/– data11 B1 [3] B1 [2] G1 [3] G1 [2] R1 [3] R1 [2] RE1+/– data12 B1 [1] B1 [0] G1 [1] G1 [0] R1 [1] R1 [0] RA2+/– G2 [4] R2 [9] R2 [8] R2 [7] R2 [6] R2 [5] R2 [4] RB2+/– B2 [5] B2 [4] G2 [9] G2 [8] G2 [7] G2 [6] G2 [5] RC2+/– DE VSYNC HSYNC B2 [9] B2 [8] B2 [7] B2 [6] RD2+/– data21 B2 [3] B2 [2] G2 [3] G2 [2] R2 [3] R2 [2] RE2+/– data22 B2 [1] B2 [0] G2 [1] G2 [0] R2 [1] R2 [0] RCLK2+/– LVDS-Tx Output Mapping TCLK1+/– TA1+/– G1 [4] R1 [9] R1 [8] R1 [7] R1 [6] R1 [5] R1 [4] G2 [4] R2 [9] R2 [8] R2 [7] R2 [6] R2 [5] R2 [4] TB1+/– B1 [5] B1 [4] G1 [9] G1 [8] G1 [7] G1 [6] G1 [5] B2 [5] B2 [4] G2 [9] G2 [8] G2 [7] G2 [6] G2 [5] TC1+/– DE VSYNC HSYNC B1 [9] B1 [8] B1 [7] B1 [6] DE VSYNC HSYNC B2 [9] B2 [8] B2 [7] B2 [6] TD1+/– data11 B1 [3] B1 [2] G1 [3] G1 [2] R1 [3] R1 [2] data21 B2 [3] B2 [2] G2 [3] G2 [2] R2 [3] R2 [2] TE1+/– data12 B1 [1] B1 [0] G1 [1] G1 [0] R1 [1] R1 [0] data22 B2 [1] B2 [0] G2 [1] G2 [0] R2 [1] R2 [0] TCLK2+/– Hi-Z TA2+/– Hi-Z TB2+/– Hi-Z TC2+/– Hi-Z TD2+/– Hi-Z TE2+/– Hi-Z ( Regardless of the Data Latency ) Data bits “data11, data12, data21, data22” are available for additional data transmission. Fig.12-4 Copyright©2013 THine Electronics, Inc. 18/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Note 1)LVDS input pin connection When LVDS line is not drived from the previous device, the line is pulled up to 3.3V internally in THC63LVD1027. This can cause violation of absolute maximum ratings to the previous LVDS Tx device whose operating condition is lower voltage power supply than 3.3V. This phenomenon may happen at power on phase of the whole system including THC63LVD1027. One solution for this problem is PD=L control during no LVDS input period because pull-up resistors are cut off at power down state. LVDS Tx side PCB LVDS Rx side PCB VDD Low VDD THC63LVD1027 LVDS Tx or LVDS Tx integrated device LVDS input buffer Internal circuit of THC63LVD1027 2)Power On Sequence Don’t input RCLK#+/- before THC63LVD1027 is on in order to keep absolute maximum ratings. Copyright©2013 THine Electronics, Inc. 19/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E 3)Cable Connection and Disconnection Don’t connect and disconnect the LVDS cable, when the power is supplied to the system. 4)GND Connection Connect the each GND of the PCB which Transmitter, Receiver and THC63LVD1027 on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible. 5)Multi Drop Connection Multi drop connection is not recommended. THC63LVD1027 TCLK1,2- LVDS Rx TCLK1,2+ LVDS Rx 6)Asynchronous use Asynchronous use such as following systems are not recommended. Page.11 tCK12 spec should be kept. CLKOUT IC LVDS Tx RCLK1+/- LVDS Tx RCLK2+/- DATAOUT CLKOUT DATAOUT THC63LVD1027 Asynchronous use such as following systems are not recommended. CLKIN TCLK1+/- LVDS Rx DATAIN IC THC63LVD1027 TCLK2+/- Copyright©2013 THine Electronics, Inc. LVDS Rx DATAIN 20/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Package THC63LV1027 1 17.00 ± 0.10 ± 0.20 6.10 ± 0.10 8.10 S 0.50 ± 0.10 0.10 S 0.20 TYP 1.10 MAX 0.90 3.05 REF 4.45 REF ± 0.10 0 ~ 8 deg 0.25 BSC 0.60 0.05 ~ 0.15 ± 0.15 1.00 REF Detail of Lead End Unit: mm Exposed PAD is GND and must be soldered to PCB. Copyright©2013 THine Electronics, Inc. 21/22 THine Electronics,Inc. THC63LVD1027_Rev.3.00_E Notices and Requests 1. The product specifications described in this material are subject to change without prior notice. 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. We are not responsible for possible errors and omissions in this material. Please note if errors or omissions should be found in this material, we may not be able to correct them immediately. 3. This material contains our copy right, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without our prior permission is prohibited. 4. Note that if infringement of any third party's industrial ownership should occur by using this product, we will be exempted from the responsibility unless it directly relates to the production process or functions of the product. 5. This product is presumed to be used for general electric equipment, not for the applications which require very high reliability (including medical equipment directly concerning people's life, aerospace equipment, or nuclear control equipment). Also, when using this product for the equipment concerned with the control and safety of the transportation means, the traffic signal equipment, or various Types of safety equipment, please do it after applying appropriate measures to the product. 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage. 7. Please note that this product is not designed to be radiation-proof. 8. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Control Law. THine Electronics, Inc. E-mail : [email protected] Copyright©2013 THine Electronics, Inc. 22/22 THine Electronics,Inc.