an1583

Application Note 1583
ISL6745AHEVAL5Z and ISL6745ALEVAL5Z: TRIAC
Dimmer Compatible LED Driver
Abstract
Features of the Board
ISL6745AHEVAL5Z (high line) and ISL6745ALEVAL5Z
(low line) are low cost, high performance LED drivers
with Power Factor Correction (PFC). They use Intersil’s
voltage mode PWM controller ISL6745A to operate a
Flyback converter in Discontinuous Conduction Mode
(DCM) for PFC. The design gives high flexibility on both
input and output conditions. With the same circuit
configuration, they work well with wide range of TRIAC
dimmers. The brightness of the LED can be well
controlled by the dimmers with flicker free operation.
This driver circuit can be used for various LED lighting
applications. The number of LEDs in a string can be as
many as 9~12. The output current can be set to different
levels from 350mA to 1A. Therefore, the evaluation
boards can demonstrate high performance solutions for
wide range of LED lighting applications.
• VIN: 160~270VAC (ISL6745AHEVAL5Z), 90V~144V
(ISL6745ALEVAL5Z)
• IO = 350/500/700mA/1.05A; VO = 32/48V,
PO(MAX) = 33W
• Isolated, Flyback Converter
• Active Single-Stage PFC, PF > 0.95
• TRIAC Dimmable (by “Open Loop Dimming”) with
Inrush Current Control
• OCP: Pulse-by-Pulse OCP at Switching Frequency
• OVP: OVP for Output Open Circuit Protection
• Efficiency: 80%
• Dimension (L×W×H): 129×25×29mm3
• Recommended LED Load: 1 String of 9~12 LEDs
(350mA LED)
FIGURE 1. PHOTOS OF THE EVALUATION BOARD
September 21, 2010
AN1583.1
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 2010. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
Application Note 1583
FIGURE 2. DRAWING OF ASSEMBLY ON BOTTOM
DRV
IN RUSH
ISL6745AHEVAL5Z
ISL6745ALEVAL5Z
Q3
FLYBACK
T1
+
J2.1
VO
J1.1
L1
J1.2
J2.2
Q1
OTP
EL5420
OP AMP
U3A
BRIDGE
TRIAC
DIMMER
OVP
BIAS
SUPPLY
Q2
U3C
OPTOCOUPLER
ISL6745A
PWM
CONTROLLER
DUTY CYCLE
LIMIT
U6
U1
U3B
U3D
LED
IO_SEN
AC
12
CURRENT ERROR
AMPLIFIER
U2
FIGURE 3. BLOCK DIAGRAM OF THE EVALUATION BOARD
Operation Theory
The block diagram of ISL6745AHEVAL5Z LED driver is
shown in Figure 3. It is composed of a Flyback converter
and the following circuitries: Duty Cycle Limit, In-Rush
Control, OTP, OVP, Current Error Amplifier, Current Sense
Signal Amplifier and Bias Supply, etc.
The PFC is implemented by running the Flyback
converter in DCM. the input equivalent resistance of the
driver is:
R IN = 2*L p *f S ⁄ D
2
(EQ. 1)
Please refer to AN1387 for more details on general LED
lighting design guidelines.
Bias Supply
The bias supply in the primary side is shown in Figure 4.
It has two sources; one is from the rectified DC bus
(VBUS+) for start up, and the other is from the bias
winding of primary side for normal operation.
R55
BIAS WINDING
VBUS+
R19~22
D6
Q2
Where:
D5
VDD
R9,R10
Lp is the primary inductance of transformer,
fs is the switching frequency, and
D is the duty cycle.
DZ2
DZ3
R18
C20
VDD
C16
FIGURE 4. BIAS SUPPLY IN PRIMARY SIDE
Since the converter runs in constant frequency and D is
fixed in open loop operation, RIN is constant. Therefore,
the driver behaves like a pure resistive incandescent light
bulb, so the driver has a built-in PFC function.
2
The bias supply in the secondary side is shown in
Figure 5; it is powered by aux winding in secondary side.
September 21, 2010
AN1583.1
Application Note 1583
0.8
VCC
R54
2.5V
C10
DZ20
4
+
5 U3B
-
6
C38
U4
LM431
FIGURE 5. BIAS SUPPLY IN SECONDARY SIDE
Current Sense Signal Amplifier
The current sense signal amplifier circuit is shown in
Figure 6, which has a gain of 12 so that we can choose a
low resistance current sensing resistor R35 to reduce the
power dissipation. Iosen is the current sensing signal
from R35, and Ios is the output of this amplifier.
4
+
5 U3B
-
R37
0.4
OVP
SAFE OPERATION
AREA
0.2
0
0
10 16 20
30
40 48 50
OUTPUT VOLTAGE (V)
60
70
FIGURE 8. SAFE OPERATING AREA (VO IS SET TO 48V)
Overvoltage Protection
6
Ios
EL5420T
R40
FIGURE 6. SIGNAL AMPLIFIER
Current Error Amplifier
The current error amplifier shown in Figure 7 is
configured as a type-I compensator (an integrator). The
input signal Ios is from the current signal amplifier. The
reference signal of the output current is set by dividing
the 2.5V reference. By switching the R42~R44, the
reference can be easily changed. The current set point IO
is defined by R35, R63 and Rx with Equation 2:
(EQ. 2)
2.5V*R63 ⁄ ( R63 + Rx ) = 12*I O * R35
Where, Rx is one of the R41~R44, which depend on the
position of jumper J3.
C21
The OVP circuit is shown in Figure 9. The op amp is
configured as a type-III compensator, clamping the VO,
which is VOUT in the schematic, to the set point when
output open circuit happens. The VOUT is feedback to the
inverting pin. The output signal Err controls the VERR of
ISL6745A through the isolation photo-coupler (U2). Once
the VOUT reaches the OVP set point, the VERR of U1 is
pulled down to reduce the duty cycle of the MOSFET gate
drive PWM signal.
The OVP setting point is determined by Equation 3:
U3D
12
11
+
C33
Ios
R45
VOUT
C31
C24
D8
U3C
8
R46
9
C40
R47
2.5V
R51
R41
R42
12
34
56
R43
R44
2.5V
FIGURE 7. CURRENT REGULATOR
Since the maximum output power is limited to 33W, the
maximum output current is limited when the output
voltage is high or the number of LEDs in series is large.
3
C28
R53
Err
EL5420T
J3
R63
(EQ. 3)
OVP = 2.5V*(1 + R56 ⁄ R47 )
7
-
EL5420T
33W
Iosen
C26
14
0.6
OVP
700mA
+
BIAS WINDING
OUTPUT CURRENT (A)
VCC
R16
-
D9
Err
The output voltage and current safe operation area is
shown in Figure 8.
DCM BOUNDARY
The Op Amp is supplied by VCC. The shunt regulator U4
generates 2.5V reference.
FIGURE 9. OVERVOLTAGE PROTECTION FOR OUTPUT
Over-Temperature Protection
The OTP circuit is shown in Figure 10; it’s a comparator
with hysteresis. RT1 is an NTC thermistor. It is placed
close to the hot spot inside the driver. When the
temperature rises too high, Err becomes low, and pulls
down VERR to limit the power delivery.
September 21, 2010
AN1583.1
Application Note 1583
In-Rush Control
The gate drive signal of Q3 is derived from the voltage on
the snubber capacitor C4. So this is a self driven scheme,
which does not need the IC’s support.
L1
C1
U3A
D3
1
2
C25
2.5V
2.5V
RT1
R48
EL5420T
R39
R49
R52
FIGURE 10. OVER-TEMPERATURE PROTECTION
CIRCUIT
R29
C3
DZ8
R26,R27
DZ5
FDU3N40
D7
15
+
Q3
-
R23 DZ7
Err
t
The in-rush circuit is shown in Figure 11. In each half AC
line cycle, the turn on of the TRIAC in the dimmer charges
C1 and C2 and forms the high inrush current. C1
capacitance is relatively small and the charge current to it
can be limited by the Rx and Ry with relatively small
resistance. C2 capacitance is much larger to deliver the
switching frequency current to the Flyback converter with
the compliance to the EMC standard. R6 and R7 are used
with larger resistance to reduce the high charge current. Q3
is used to bypass the R6 and R7 after the C2 is charged up
in each half line cycle, thus to reduce the power dissipation
caused by the normal operation current.
R2,R3
D1
C4
1
T1
4
R6,R7
C2
FIGURE 11. IN-RUSH CONTROL CIRCUIT
4
September 21, 2010
AN1583.1
Application Note 1583
Test Setup for the Driver
Performance Evaluation
Duty Cycle Limit
The duty cycle limit circuit shown in Figure 12 sets the
maximum duty cycle of the Flyback converter by
adjusting the VERR pin voltage of ISL6745A through the
POT RP2. U9 is used to accurately set the VERR voltage.
In order to maximize the dimming range and achieve
best dimming performance, RP2 needs to be adjusted for
different number of LEDs and different output current.
Note:
• Set the IO, VO and RP2 per the “Configuration
Tables” on page 23 (Tables 12 to 14) before the test.
• If using a VARIAC instead of an AC source, a
capacitor about 10µF/270VAC or so may need to be
connected between L and N (of J1) to avoid the
interactivity between the VARIAC and input EMI filter
of the LED driver.
VDD
U2
R58
VERR
• Some kinds of light dimmers need a minimum load,
so a 40W incandescent lamp may be needed
between J1.1 and J1.2 as a dummy load, otherwise
the dimmer may not function well.
R 62
RP2
C29
C27
U6
LMV431
• Do not try to run the LED driver out of its Safe
Operating Area. (For example, if set IO/VO to
700mA/”48V”, then the output voltage shall be
greater than 16V).
R30
FIGURE 12. DUTY CYCLE LIMITER
POWER ANALYZER
AC SOURCE
∫∫
∫∫
A
V
IIN
LED DRIVER
J1.2
L
VIN
∫∫
J2.1 +
VO
EUT
LOAD
-
N
J1.1
J2.2
∫∫
D
DIMMER
FIGURE 13. WIRING OF THE TEST
Test Data
SOURCE DIMMING
TABLE 1. SET IO TO 350mA/48V
VIN (V)
IIN (mA)
PF
PIN (W)
VO (V)
IO (mA)
PO (W)
EFF(%)
60
60
24.05
0.862
1.24
47.97
6.5
0.311805
25.15
80
80
29.6
0.886
2.1
47.97
17
0.81549
38.83
100
100
38.1
0.932
3.545
47.97
42.5
2.038725
57.51
120
120
49.3
0.9505
5.64
47.97
80
3.8376
68.04
140
140
53
0.9437
7.01
47.97
105
5.03685
71.85
160
160
57.1
0.945
8.64
47.97
137
6.57189
76.06
180
180
69.75
0.9616
12.08
47.97
196
9.40212
77.83
200
200
74.2
0.9593
14.23
47.97
238
11.41686
80.23
220
220
83.8
0.9628
17.76
47.97
301
14.43897
81.30
230
230
89.75
0.9662
20.06
47.97
341
16.35777
81.54
240
240
87.81
0.9581
20.21
47.97
344
16.50168
81.65
260
260
82.2
0.935
19.98
47.97
344
16.50168
82.59
270
270
79.6
0.9255
19.89
47.97
344
16.50168
82.96
5
September 21, 2010
AN1583.1
Application Note 1583
TABLE 2. SET IO TO 500mA/48V
60
VIN (V)
IIN (mA)
PF
PIN (W)
VO (V)
IO (mA)
PO (W)
EFF (%)
60
30.9
0.8765
1.62
47.97
12
0.57564
35.53
80
80
35
0.9118
2.55
47.97
25
1.19925
47.03
100
100
43.1
0.9375
4.04
47.97
52
2.49444
61.74
120
120
63.44
0.955
7.28
47.97
112
5.37264
73.80
140
140
77.2
0.96
10.37
47.97
168
8.05896
77.71
160
160
86.1
0.966
13.32
47.97
221
10.60137
79.59
180
180
99.7
0.9726
17.45
47.97
298
14.29506
81.92
200
200
111.2
0.9744
21.65
47.97
375
17.98875
83.09
220
220
122.3
0.9751
26.23
47.97
462
22.16214
84.49
230
230
125.01
0.9741
28.02
47.97
494
23.69718
84.57
240
240
121.23
0.9687
28.21
47.97
494
23.69718
84.00
260
260
113.8
0.9619
28.42
47.97
494
23.69718
83.38
270
270
110
0.9595
28.49
47.97
494
23.69718
83.18
TABLE 3. SET IO TO 700mA/48V
VIN (V)
PF
PIN (W)
VO (V)
IO (mA)
PO (W)
EFF (%)
60
60
40.6
0.857
2.1
47.97
19
0.91143
43.40
80
80
64.84
0.9545
4.95
47.97
70
3.3579
67.84
100
100
73.37
0.959
7.03
47.97
107
5.13279
73.01
120
120
91.85
0.9645
10.76
47.97
173
8.29881
77.13
140
140
99.9
0.9773
13.67
47.97
228
10.93716
80.01
160
160
117.6
0.9837
18.55
47.97
315
15.11055
81.46
180
180
130.5
0.9846
22.97
47.97
396
18.99612
82.70
200
200
162.2
0.9883
32.15
47.97
561
26.91117
83.71
220
220
181.5
0.9874
39.43
47.97
697
33.43509
84.80
230
230
174.2
0.982
39.5
47.97
697
33.43509
84.65
240
240
168.3
0.9761
39.5
47.97
697
33.43509
84.65
260
260
154.6
0.9738
39.29
47.97
697
33.43509
85.10
270
270
148.2
0.9742
39.05
47.97
696
33.38712
85.50
1.00
90
700
0.95
80
400
0.90
700mA
0.85
PF
500
500mA
500mA
0.80
350mA 700mA
0.75
300
200
350mA
100
0
60
EFFICIENCY (%)
800
600
IO (mA)
IIN (mA)
100
140
180
220
LINE VOLTAGE (V)
260
FIGURE 14A. OUTPUT CURRENT vs
INPUT VOLTAGE
0.70
0.65
0.60
60
100
180
220
260
LINE VOLTAGE (V)
60
700mA
50
40
30
20
60
500mA
350mA
100
140
180
220
LINE VOLTAGE (V)
260
FIGURE 14B. PF vs LINE VOLTAGE
FIGURE 14C. EFFICIENCY vs LINE
VOLTAGE
FIGURE 14. CHART OF THE DATA TABLE
The above test bypassed the inrush control circuit (R6,
R7, R24 and R25 is shorted), which is necessary if the
TRIAC dimming function is not needed. For better TRIAC
dimming performance, the inrush control is necessary.
6
140
70
Following is efficiency test data with R6 = R7 = 100Ω
and R24 = R25 = 25.5 Ω.
September 21, 2010
AN1583.1
Application Note 1583
TABLE 4. SET IO TO 700mA (WITH INRUSH CONTROL)
VIN (V)
IIN (mA)
PF
PIN (W)
VO (V)
IO (mA)
PO (W)
EFF (%)
60
60
35.77
0.8944
1.85
47.97
13
0.62361
33.71
80
80
58.5
0.9651
4.52
47.97
59
2.83023
62.62
100
100
71.3
0.974
6.94
47.97
100
4.797
69.12
120
120
82.9
0.9834
9.735
47.97
150
7.1955
73.91
140
140
96.07
0.9833
13.22
47.97
211
10.12167
76.56
160
160
106.45
0.9881
16.77
47.97
275
13.19175
78.66
180
180
119.51
0.9887
21.25
47.97
353
16.93341
79.69
200
200
147.5
0.9912
28.5
47.97
477
22.88169
80.29
220
220
169.75
0.9913
36.94
47.97
622
29.83734
80.77
230
230
180.74
0.9852
41.08
47.97
696
33.38712
81.27
240
240
173.8
0.9763
41.09
47.97
696
33.38712
81.25
260
260
159.6
0.9715
40.7
47.97
696
33.38712
82.03
270
270
152.4
0.9746
40.45
47.97
693
33.24321
82.18
90
85
EFFICIENCY (%)
80
75
70
700mA
65
700mA*
60
55
50
*TEST CURVE WITH
INRUSH CONTROL
45
40
60
100
140
180
220
260
LINE VOLTAGE (V)
FIGURE 15. EFFECT OF INRUSH CONTROL ON EFFICIENCY
7
September 21, 2010
AN1583.1
Application Note 1583
TRIAC Dimming
TABLE 5. LOAD = 1P9S (ONE STRING OF 9 LEDS IN SERIES)
IGNITION ANGLE (°)
IIN (mA)
PIN (W)
VO (V)
IO (mA)
PO (W)
EFF (%)
0
111.1
24.81
29.84
692
20.64928
83.22967
30
120.6
25.35
30.12
696
20.96352
82.69633
60
132.5
21.95
29.29
587.7
17.21373
78.42247
90
121.5
14.1
28.23
362.8
10.24184
72.63719
120
100.1
6.31
26.41
134.9
3.562709
56.46132
130
91.7
4.54
25.86
85.9
2.221374
48.92894
140
70
2.52
24.87
36.6
0.910242
36.12071
TABLE 6. LOAD = 1P10S
IGNITION ANGLE (°)
IIN (mA)
PIN (W)
VO (V)
IO (mA)
PO (W)
EFF (%)
0
125.3
28.15
33.88
693
23.47884
83.40618
30
134
28.31
33.77
692.2
23.37559
82.5701
60
139
24.83
33.26
592.5
19.70655
79.36589
90
125
15.76
31.97
366.7
11.7234
74.38705
120
96
6.56
30.1
136.7
4.11467
62.72363
130
86
4.6
29.34
85.8
2.517372
54.72548
140
73.1
2.81
28.33
42.7
1.209691
43.0495
TABLE 7. LOAD = 1P11S
IGNITION ANGLE (°)
IIN (mA)
PIN (W)
VO (V)
IO (mA)
PO (W)
EFF (%)
0
139.1
31.32
37.68
693
26.11224
83.37241
30
147.1
31.53
37.62
692.5
26.05185
82.62559
60
150.5
27.13
36.9
585.7
21.61233
79.66211
90
131.5
17.2
35.6
361.1
12.85516
74.7393
120
96.5
6.83
33.28
136.6
4.546048
66.56
130
85
4.66
32.6
85.7
2.79382
59.95322
140
72
2.9
31.63
44.7
1.413861
48.75383
TABLE 8. LOAD = 1P12S
IGNITION ANGLE (°)
IIN (mA)
PIN (W)
VO (V)
IO (mA)
PO (W)
EFF (%)
0
152.2
34.34
41.15
693.8
28.54987
83.13882
30
159.58
34.45
41.06
690.7
28.36014
82.32262
60
159.3
29.76
40.41
588.3
23.7732
79.88307
90
138.5
18.62
38.98
358.1
13.95874
74.96637
120
100.3
7.36
36.57
134.6
4.922322
66.87938
130
90
4.87
35.69
83
2.96227
60.8269
140
75.2
2.83
34.5
43.2
1.4904
52.66431
8
September 21, 2010
AN1583.1
Application Note 1583
800
EFFICIENCY (%)
600
IO (mA)
80
10 LED
700
9 LED
500
400
11 LED
300
200
100
30
60
50
10 LED
40
9 LED
30
11 LED
20
10
12 LED
0
0
12 LED
70
60
90
120
IGNITION ANGLE (°)
150
0
0
180
FIGURE 16A. IO vs IGNITION ANGLE
30
60
90
120
IGNITION ANGLE (°)
150
180
FIGURE 16B. EFFICIENCY vs IGNITION ANGLE
FIGURE 16. PLOTS OF DIMMING AND EFFICIENCY
THD of Input Current
∞
∑I
n=2
THD =
TABLE 10. HARMONICS OF INPUT CURRENT (Continued)
2
ORDER
IN/I (%)
ORDER
IN/I (%)
37
0.249
38
0.904
39
0.594
40
0.852
41
0.124
42
0.837
43
0.065
44
0.328
45
0.179
46
0.169
47
0.377
48
0.036
49
0.688
50
0.116
THD(%)
12.8
(EQ. 4)
n
I1
TABLE 9. CURRENT THD (BY WT210, WITHOUT
DIMMER) LOAD USE LED (CREE)
230V/700mA
230V/350mA
12.8%
16.9%
TABLE 10. HARMONICS OF INPUT CURRENT
ORDER
IN/I (%)
ORDER
IN/I (%)
1
/
2
0.467
3
9.89
4
0.543
8
5
4.453
6
0.175
7
7
3.296
8
0.176
9
3.191
10
0.369
11
0.285
12
0.284
3
13
2.965
14
0.109
2
15
0.77
16
0.212
1
17
1.003
18
0.112
19
1.255
20
0.199
21
0.529
22
0.091
23
1.007
24
0.334
25
0.61
26
0.257
27
0.913
28
0.106
29
0.492
30
0.083
31
0.783
32
0.038
33
1.332
34
0.512
35
1.02
36
0.949
9
10
9
6
5
4
0
1
6
11
16
21
26
31
36
41
46
FIGURE 17. SPECTRUM OF INPUT CURRENT
September 21, 2010
AN1583.1
Application Note 1583
Waveforms
Line Voltage and Current
FIGURE 18A. VIN = 160V
FIGURE 18B. VIN = 230V
FIGURE 18C. VIN = 270V
FIGURE 18. WAVEFORMS OF LINE CURRENT AND VOLTAGE; CH2: LINE CURRENT; CH4: LINE VOLTAGE; NO DIMMER
10
September 21, 2010
AN1583.1
Application Note 1583
Line Voltage and Current (Continued)
FIGURE 19A. IGNITION ANGLE IS 30°
FIGURE 19B. IGNITION ANGLE IS 60°
FIGURE 19C. IGNITION ANGLE IS 90°
FIGURE 19D. IGNITION ANGLE IS 120°
FIGURE 19. WAVEFORM OF LINE CURRENT AND VOLTAGE (IO = 700mA), CH2: LINE CURRENT; CH4: LINE VOLTAGE;
VIN = 230VAC
11
September 21, 2010
AN1583.1
Application Note 1583
Ripple Voltage and Output Current
FIGURE 20A. IGNITION ANGLE IS 0°
FIGURE 20B. IGNITION ANGLE IS 30°
FIGURE 20C. IGNITION ANGLE IS 60°
FIGURE 20D. IGNITION ANGLE IS 90°
FIGURE 20E. IGNITION ANGLE IS 120°
FIGURE 20. WAVEFORM OF VO AND IO RIPPLE (VIN = 230VAC); CH2: RIPPLE CURRENT; CH4: RIPPLE VOLTAGE
12
September 21, 2010
AN1583.1
Application Note 1583
Voltage on Rectified DC Bus
FIGURE 21B. VOLTAGE ON C1
FIGURE 21A. D4(+)
FIGURE 21C. VOLTAGE ON C2
FIGURE 21. RECTIFIED DC BUS, (IGNITION ANGLE = 30°); CH2: LINE CURRENT; CH4: VOLTAGE OF DC BUS
13
September 21, 2010
AN1583.1
Application Note 1583
Voltage on Rectified DC Bus (Continued)
FIGURE 22B. VOLTAGE ON C1
FIGURE 22A. D4(+)
FIGURE 22C. VOLTAGE ON C2
FIGURE 22. RECTIFIED DC BUS, (IGNITION ANGLE = 90°)
14
September 21, 2010
AN1583.1
Application Note 1583
Voltage on Rectified DC Bus (Continued)
FIGURE 23A. D4(+)
FIGURE 23B. VOLTAGE ON C1
FIGURE 23C. VOLTAGE ON C2
FIGURE 23. RECTIFIED DC BUS, (IGNITION ANGLE = 120°)
15
September 21, 2010
AN1583.1
Application Note 1583
Voltage on Snubber Capacitor
FIGURE 24A. IGNITION ANGLE = 30°
FIGURE 24B. IGNITION ANGLE = 60°
FIGURE 24C. IGNITION ANGLE = 90°
FIGURE 24D. IGNITION ANGLE = 120°
FIGURE 24E. IGNITION ANGLE = 90° (ZOOM IN)
FIGURE 24. WAVEFORM OF VOLTAGE ON SNUBBER CAPACITOR C4; CH2: LINE CURRENT; CH4: VOLTAGE ON C4
16
September 21, 2010
AN1583.1
Application Note 1583
Inrush Control Circuit
FIGURE 25A. IGNITION ANGLE = 30°
FIGURE 25B. IGNITION ANGLE = 60°
FIGURE 25C. IGNITION ANGLE = 90°
FIGURE 25D. IGNITION ANGLE = 120°
FIGURE 25E. IGNITION ANGLE = 120° (ZOOM IN)
FIGURE 25. VGS AND VDS OF Q3 (NEED AN ISOLATION TRANSFORMER TO PROBE THE WAVEFORM); CH2: LINE
CURRENT; CH3:VGS; CH4: VDS
17
September 21, 2010
AN1583.1
Application Note 1583
Reference
[1] Fred Greenfeld, Intersil Application Note AN1387,
“White LED Driver Circuits for Off-Line Applications using
Standard PWM Controllers”
18
September 21, 2010
AN1583.1
Schematic
[Patent Applications Pending]
Inrush
R23 DZ7
R24
Q3
-
D4
C7
R26
DZ8
D7
2
1
R6
L1
1
T1
VOUT
D2
R14
R15
11
10
6
C2
C15
R12
R13
13
12
4
5
R7
C1
14
2
3
C4
R3
R3'
+
Flyback
D1
R2
R2'
DZ5
FDU3N40
RV1
R27
C3
F1
J1
R29
9
R35
R25
19
EMC
12X
VCC C23
C26
R9
R8
R19
R20
4
C37
C20
EL5420T
C21
VDD
Q2
U3D
VDD
R5
3
4
DZ3
C16
5
C17
U1
SS
RTD
VERR
VDD
VDDP
OUTB
CS
OUTA
CT
GND
10 R50
15
R62
9
8
C35
R44
C5
1
U3A
D3
2
C25
R48
EL5420T
OTP
R39
7
6
R49
R52
C6
C28
R53
C31
10k
U6
7
U3C
EL5420T
R30
OVP
LMV431
D Limit
2.5V
VCC R54
DZ20
C38
U4
VOUT
LM431
R46 C24
D8
+
C29
-
RP2
2.5V
RT1
C10
2.5V
C27
R43
i-Reg
t
2
PWM
R42
12
34
56
R63
C33
+
1
C9
EL5420T
R41
J3
R61
VDD
D5
U2
-
D6
R59
R45
11
+
R58
DZ2
14
VCC
12
-
R4
8
9
C40
R47
2.5V
R51
Vin=230V±10%;Io=0.35/0.5/0.7/1.05A;Po=33W(max)
Title
ISL6745AHEVAL,33W Triac Dimmable LED Driv er (9~12 LEDs)
FIGURE 26. SCHEMATICS OF THE EVALUATION BOARD
September 21, 2010
AN1583.1
Size
Document Number
Rev
Application Note 1583
R60
R11
R17
R55
6
R40
Q1
STF8NK100Z
R10
+
U3B
-
5
R37
R18
R21
R22
BIAS
J2
*
VCC
R16
D9
1
2
C30
C11
Application Note 1583
TABLE 11. BILL OF MATERIALS
REFERENCE
QTY DESIGNATOR
DESCRIPTION
MANUFACTURER
MANUFACTURER
PART
1
C37
CAP, RADIAL DISK, 15.5mm, 4700pF, 250V,
20%, X1Y1
TDK
CD16-E2GA472MYNS
1
C2
CAP, RADIAL, 17.5X17.5, 0.33µF, 250/275V,
20%, POLYFILM
PANASONIC
ECQ-U2A334ML
1
C31
CAP, SMD, 0402, 100pF, 25V, 10%, C0G
AVX
04023A101KA72A
2
C27, C40
CAP, SMD, 0402, 1000pF, 25V, 10%, X7R
MURATA
GRP155R71E102K
1
C29
CAP, SMD, 0402, 0.1µF, 25V, 10%, X5R
TDK
C1005X5R1E104K
1
C20
CAP, SMD, 0402, 47pF, 50V, 5%, NPO
MURATA
GRM36COG470J050AQ
1
C17
CAP, SMD, 0402, 470pF, 25V, 10%, X7R
MURATA
GRP155R71E471K
1
C3
CAP, SMD, 0603, 0.01µF, 25V, 10%, X7R
VENKEL
C0603X7R250-103KNE
6
C23, C24,
C25, C26,
C28, C33
CAP, SMD, 0603, 0.1µF, 25V, 10%, X7R
MURATA
GRM39X7R104K025AD
1
C30
CAP, SMD, 0603, 0.1µF, 50V, 10%, X7R
TDK
C1608X7R1H104K
1
C21
CAP, SMD, 0603, 1µF, 25V, 10%, X5R
MURATA
GRM188R61E105KA12D
1
C9
CAP, SMD, 0603, 2.2µF, 6.3V, 10%, X7R
MURATA
GCM188R70J225KE22D
1
C15
CAP, SMD, 0603, 47pF, 200V, 5%, C0G
KEMET
C0603C470J2GACTU
3
C5, C10,
C35
CAP, SMD, 0603, 0.47µF, 25V, 10%, X7R
MURATA
GRM188R71E474KA12D
1
C6
CAP, SMD, 0603, 820pF, 50V, 5%, C0G
KEMET
C0603C821J5GACTU
1
C4
CAP, SMD, 1206, 2200pF, 630V, 10%, X7R
PANASONIC
ECJ-3FB2J222K
1
C7
CAP, RADIAL, DISK, 220pF, 300V, 10%, Y5S,
X1/Y2, 7.5mmLS
VISHAY/BC COMPONENTS
VY2221K29Y5SS63V7
1
C11
CAP, RADIAL, 18X20, 1000µF, 50V,2 0%,
ALUM.ELEC.
UNITED CHEMI-CON
EKY-500ELL102MM20S
2
C16, C38
CAP, RADIAL, 6.3X11, 100µF, 25V, 20%,
ALUM.ELEC.
UNITED CHEMI-CON
EKZE250ELL101MF11D
1
J2
CONN-HEADER, 1X2,SOLID, 3.96mm,
VERT, FRICTION LOCK
TYCO ELECTRONICS
1-1318300-2
1
J1
CONN-HEADER, 1X2, 5.08mm, VERT, FRICTION
LOCK
MOLEX
10-32-1021
1
J3
CONN-HEADER, 2x3, BRKAWY 2X36, 2.54mm,
VERTICAL
BERG/FCI
67996-272HLF
2
D5, D6
DIODE-RECTIFIER, 2P, SMD, SOD-523, 100V,
250mA
DIODES INC.
1N4148WT-7
1
D8
DIODE-SCHOTTKY, SMD, SOT23, 3P, 30V, 200mA,
SINGLE DIODE
FAIRCHILD
BAT54
1
D3
DIODE-RECTIFIER, SMD, SOT23, 30V, 200mA
FAIRCHILD
BAT54A
1
DZ7
DIODE-ZENER, SMD, SOD-123, 15V, 500mW
DIODES, INC.
BZT52C15-7-F
1
DZ20
DIODE-ZENER, SMD, SOD-123, 16V, 500mW
DIODES, INC.
BZT52C16-7-F
1
DZ5
DIODE-ZENER, SMD, 2P, SOD-123, 24V, 500mW
DIODES, INC.
BZT52C24-7-F
1
DZ8
DIODE-ZENER, SMD, 2P, SOD-123F, 75V,3 75mW
DIODES, INC.
BZT52H-C75,115
1
DZ2
DIODE-ZENER, SMD, 3P, SOT23, 12V, 225mW, 5%
ON SEMICONDUCTOR
BZX84C12LT1G
1
DZ3
DIODE-ZENER, SMD, SOT-23, 3P, 18V, 0.250A
ON SEMICONDUCTOR
BZX84C18LT1G-T
20
September 21, 2010
AN1583.1
Application Note 1583
TABLE 11. BILL OF MATERIALS (Continued)
REFERENCE
QTY DESIGNATOR
DESCRIPTION
MANUFACTURER
MANUFACTURER
PART
1
D4
DIODE-RECTIFIER, 4P, SMD, DF-S(8.5X6.5),
1000V, 1A
DIODES, INC.
DF10S
1
D7
DIODE-RECTIFIER, SMD, 2P, SMA, 500V, 1A
FAIRCHILD
ES1H
1
D2
DIODE-RECTIFIER, SMD, DPAK(TO252), 200V, 6A
FAIRCHILD
FFD06UP20S
1
D9
DIODE-SWITCHING, SMD, SOT-23, 100V, 250mA
INFINEON TECHNOLOGY
MMBD914LT1
1
D1
DIODE-RECTIFIER, SMD, 2P, SMA, 1000V, 1A, 1.4W FAIRCHILD
1
L1
COIL-COMMON MODE CHOKE, TH, 6P, 100mH,
CUSTOM
MAIN POWER ELECTRIC CO.,LTD J11-016-001
1
U3
IC-12MHz R/R OP AMP, 16P, QFN
INTERSIL
EL5420TILZ
1
U1
IC-BRIDGE CONTROLLER, 10P, MSOP
INTERSIL
ISL6745AAUZ
1
U4
IC-ADJ.ZENER SHUNT REGULATOR, SOT23, 2.5V
NATIONAL SEMICONDUCTOR
LM431BIM3/NOPB
1
U6
IC-ADJ.SHUNT REGULATOR, SMD, SOT-23-3,
1.24V, 0.5%
NATIONAL SEMICONDUCTOR
LMV431BIMF/NOPB
1
U2
IC-HI ISO PHOTOCOUPLER, 4P, SSOP
CALIFORNIA EASTERN
LABORATORIES
PS2801-1-A
1
Q3
TRANSIST-MOS, N-CHANNEL, TH, I-PAK, 400V, 2A
FAIRCHILD
FDU3N40TU
1
Q2
TRANSISTOR-QFET, N-CHANNEL, SMD, DPAK,
600V, 1A
FAIRCHILD
FQD1N60CTM
1
Q1
TRANSIST-MOS, N-CHANNEL, TH, TO-220FP,
1000V, 6.5A
STMICROELECTRONICS
STF8NK100Z
1
RP2
POT-TRIM, 1/4 ROUND, TH, 3P, 10k, 0.5W, 10%,
TOP ADJ
BOURNS
3329H-1-103LF
4
R19, R20,
R21, R22
RES, SMD, 1206,100Ω, 1/2W, 1%, TF
VISHAY/DALE
CRCW1206100RFKEAHP
1
R50
RES, SMD, 0402, 10Ω, 1/16W, 1%, TF
PANASONIC
ERJ-2RKF10R0X
2
R16, R17
RES, SMD, 0402, 100Ω, 1/16W, 1%, TF
PANASONIC
ERJ-2RKF1000X
S1M
3
R48, R51, R53 RES, SMD, 0402, 1k, 1/16W, 1%, TF
VENKEL
CR0402-16W-102JT
3
R37, R58, R62 RES, SMD, 0402, 10k, 1/16W, 1%, TF
PANASONIC
ERJ-2RKF1002X
2
R45, R46
RES, SMD, 0402, 100k, 1/16W, 1%, TF
PANASONIC
ERJ2RKF1003
1
R40
RES, SMD, 0402, 110k, 1/16W, 1%, TF
VISHAY
CRCW0402110KFKED
1
R44
RES, SMD, 0402, 13k, 1/16W, 1%, TF
ROHM
MCR01MZPF1302
1
R63
RES, SMD, 0402, 20k, 1/16W, 1%, TF
PANASONIC
ERJ2RKF2001
1
R43
RES, SMD, 0402, 2.05k, 1/16W, 1%, TF
VISHAY
CRCW04022K05FKED
1
R42
RES, SMD, 0402, 26.1k, 1/16W, 1%, TF
VENKEL
CR0402-16W-2612FT
1
R49
RES, SMD, 0402, 27k, 1/16W, 1%, TF
ROHM
MCR01MZPF2702
1
R30
RES, SMD, 0402, 3.83k, 1/16W, 1%, TF
VENKEL
CR0402-16W-3831FT
1
R5
RES, SMD, 0402, 39.2k, 1/16W, 1%, TF
PANASONIC
ERJ-2RK3922X
1
R41
RES, SMD, 0402, 46.4k, 1/16W, 1%, TF
PANASONIC
ERJ2RKF4642
1
R52
RES, SMD, 0402,47kΩ, 1/16W, 1%, TF
ROHM
MCR01MZPF4702
1
R39
RES, SMD, 0402, 470k, 1/16W, 1%, TF
ROHM
MCR01MZPF4703
2
R54, R59
RES, SMD, 0402, 5.1k, 1/16W, 1%, TF
MULTICOMP
MC0402WGF5101TCETR
1
R47
RES, SMD, 0402, 5.11k, 1/16W, 1%, TF
PANASONIC
ERJ-2RKF5111X
21
September 21, 2010
AN1583.1
Application Note 1583
TABLE 11. BILL OF MATERIALS (Continued)
REFERENCE
QTY DESIGNATOR
DESCRIPTION
MANUFACTURER
MANUFACTURER
PART
0
R61
RES,SMD,0402, DNP, DNP, DNP, TF
1
R18
RES, SMD, 0603, 10Ω, 1/10W, 1%, TF
KOA
RK73H1JT10R0F
1
R60
RES, SMD, 0603, 10k, 1/10W, 1%, TF
KOA
RK73H1JT1002F
2
R23, R29
RES, SMD, 0603, 39k, 1/10W, 1%, TF
PANASONIC
ERJ-3EKF3902V
1
R11
RES, SMD, 0805, 10Ω, 1/8W, 1%, TF
VENKEL
CR0805-8W-10R0FT
1
R13
RES, SMD, 0805, 0Ω, 1/8W, TF
YAGEO
RC0805JR-070RL
0
R14, R15
RES, SMD, 0805, DNP-PLACE HOLDER
2
R12, R55
RES, SMD, 1206, 10Ω, 1/4W, 1%, TF
VENKEL
CR1206-4W-10R0FT
1
R8
RES, SMD, 1206, 0Ω, 1/4W, TF
VISHAY
CRCW1206-000Z
2
R9,R10
RES, SMD, 1206, 1M, 1/4W, 1%, TF
VENKEL
CR1206-4W-1004FT
4
R2', R2, R3',
R3
RES, SMD, 1206, 300k, 1/4W, 1%, TF
YAGEO
RC1206FR-07300KL
2
R26,R27
RES,SMD,1206, 49.9k,1/4W,1%,TF
VENKEL
CR1206-4W-4992FT
1
R35
RES, SMD, 2512, 0.18Ω, 1W, 1%, TF
ROHM
MCR100JZHFLR180
1
R4
RES, SMD, 2512, 0.36Ω,1W, 1%, TF
VENKEL
CR2512-1W-R360FT
2
R24,R25
RES, AXIAL, 27Ω, 2W, 5%, MOF
YAGEO
RSF200JB-27R
2
R6,R7
RES, AXIAL, 100Ω, 2W, 5%, MOF
PANASONIC
ERG-2SJ101A
1
F1
FUSE-TIME-LAG, TH, 8.5X8.0, 1.60A, 250V,
601mW
LITTELFUSE
40011600440
1
C1
CAP-EMI, RADIAL, 10.5X18, 0.1µF, 305V, 20%,
15mmLS
EPCOS, INC
B32922C3104M
1
RT1
THERMISTOR-NTC, SMD, 0805, 22k, 5%,
210mW
EPCOS, INC
B57620C0223J062
1
RV1
TVS-VARISTOR, TYPE D, RADIAL, 14mm, 390V,
4500A
PANASONIC
ERZV14D391
1
T1
TRANSFORMER, TH, 23.5x20.3, 14P, 4 50µH,
5%, CUSTOM
COILCRAFT
CN7225-AL
22
September 21, 2010
AN1583.1
Application Note 1583
Configuration Tables
TABLE 12. SELECT MAXIMUM OUTPUT VOLTAGE
16V
32V
48V
NUMBER OF LEDS
3, 4
5, 6, 7, 8
9, 10, 11, 12
C11
3300µF/16V
1800µF/35V
1000µF/50V
VENDOR
Nichicon
Panasonic-ECG
United Chemi-Con
PART #
Nichicon
UPW1C392MHD6
or
Panasonic-ECG
EEU-FC1C392S
1800µF/35V
Panasonic-ECG
EEU-FC1V182S
United Chemi-Con
EKY-500ELL102MM20S
INTERNAL PART #
(N/A)
(N/A)
(N/A)
R47
15k(19.2V)
6.8k(39.3)
5.11k(51.4V)
VENDOR
Panasonic-ECG
Panasonic-ECG
Panasonic-ECG
PART #
ERJ-2RKF1502X
ERJ-2RKF6801X
ERJ-2RKF5111X
INTERNAL PART #
H2510-01502-1/16W1
H2510-06801-1/16W1
H2510-05111-1/16W1
R13
Open
Open
Shorted
R14
Open
Shorted
Open
R15
Shorted
Open
Open
TABLE 13. PROGRAM THE OUTPUT CURRENT
J3
350mA
500mA
700mA
1.05A
1, 3
2, 4
3, 5
4, 6
TABLE 14. ADJUST THE RP2 FOR DIFFERENT VO AND IO
COMBINATION
350mA
500mA
700mA
1050mA
16V Depending on the VO and IO, Adjust RP2 so that the
output current can not be greater than the set value
32V unless the input is equal to, or greater than, nominal
48V line voltage (220 or 230 V).
Low Line Version
TABLE 15. CHANGE FOR LOW LINE VERSION
LOW LINE VERSION
(THE PARAMETERS NEED
MORE TEST FOR
VERIFYING)
HIGH LINE
VERSION
T1
For Pin 1~4:
Pin 1, 2 connected;
Pin 3, 4 connected.
For Pin 1~4:
Pin 2, 3 connected.
R29
100k
30k
DZ8
0V (shorted)
75V
R6, R7
43Ω/2W,
100Ω/2W
R24,
R25
5.6Ω/3W for Rev.D
16Ω/2W for Rev.B
27Ω/2W for Rev.D
36Ω/1W for Rev.B
R4
0.18Ω
0.36Ω
C1
220nF for Rev.D
100nF for Rev.B
100nF
C2
680nF for Rev.D
220nF for Rev.B
100nF for Rev.D
330nF for Rev.B
Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the
reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding.
For information regarding Intersil Corporation and its products, see www.intersil.com
23
September 21, 2010
AN1583.1