Application Note 1583 ISL6745AHEVAL5Z and ISL6745ALEVAL5Z: TRIAC Dimmer Compatible LED Driver Abstract Features of the Board ISL6745AHEVAL5Z (high line) and ISL6745ALEVAL5Z (low line) are low cost, high performance LED drivers with Power Factor Correction (PFC). They use Intersil’s voltage mode PWM controller ISL6745A to operate a Flyback converter in Discontinuous Conduction Mode (DCM) for PFC. The design gives high flexibility on both input and output conditions. With the same circuit configuration, they work well with wide range of TRIAC dimmers. The brightness of the LED can be well controlled by the dimmers with flicker free operation. This driver circuit can be used for various LED lighting applications. The number of LEDs in a string can be as many as 9~12. The output current can be set to different levels from 350mA to 1A. Therefore, the evaluation boards can demonstrate high performance solutions for wide range of LED lighting applications. • VIN: 160~270VAC (ISL6745AHEVAL5Z), 90V~144V (ISL6745ALEVAL5Z) • IO = 350/500/700mA/1.05A; VO = 32/48V, PO(MAX) = 33W • Isolated, Flyback Converter • Active Single-Stage PFC, PF > 0.95 • TRIAC Dimmable (by “Open Loop Dimming”) with Inrush Current Control • OCP: Pulse-by-Pulse OCP at Switching Frequency • OVP: OVP for Output Open Circuit Protection • Efficiency: 80% • Dimension (L×W×H): 129×25×29mm3 • Recommended LED Load: 1 String of 9~12 LEDs (350mA LED) FIGURE 1. PHOTOS OF THE EVALUATION BOARD September 21, 2010 AN1583.1 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2010. All Rights Reserved All other trademarks mentioned are the property of their respective owners. Application Note 1583 FIGURE 2. DRAWING OF ASSEMBLY ON BOTTOM DRV IN RUSH ISL6745AHEVAL5Z ISL6745ALEVAL5Z Q3 FLYBACK T1 + J2.1 VO J1.1 L1 J1.2 J2.2 Q1 OTP EL5420 OP AMP U3A BRIDGE TRIAC DIMMER OVP BIAS SUPPLY Q2 U3C OPTOCOUPLER ISL6745A PWM CONTROLLER DUTY CYCLE LIMIT U6 U1 U3B U3D LED IO_SEN AC 12 CURRENT ERROR AMPLIFIER U2 FIGURE 3. BLOCK DIAGRAM OF THE EVALUATION BOARD Operation Theory The block diagram of ISL6745AHEVAL5Z LED driver is shown in Figure 3. It is composed of a Flyback converter and the following circuitries: Duty Cycle Limit, In-Rush Control, OTP, OVP, Current Error Amplifier, Current Sense Signal Amplifier and Bias Supply, etc. The PFC is implemented by running the Flyback converter in DCM. the input equivalent resistance of the driver is: R IN = 2*L p *f S ⁄ D 2 (EQ. 1) Please refer to AN1387 for more details on general LED lighting design guidelines. Bias Supply The bias supply in the primary side is shown in Figure 4. It has two sources; one is from the rectified DC bus (VBUS+) for start up, and the other is from the bias winding of primary side for normal operation. R55 BIAS WINDING VBUS+ R19~22 D6 Q2 Where: D5 VDD R9,R10 Lp is the primary inductance of transformer, fs is the switching frequency, and D is the duty cycle. DZ2 DZ3 R18 C20 VDD C16 FIGURE 4. BIAS SUPPLY IN PRIMARY SIDE Since the converter runs in constant frequency and D is fixed in open loop operation, RIN is constant. Therefore, the driver behaves like a pure resistive incandescent light bulb, so the driver has a built-in PFC function. 2 The bias supply in the secondary side is shown in Figure 5; it is powered by aux winding in secondary side. September 21, 2010 AN1583.1 Application Note 1583 0.8 VCC R54 2.5V C10 DZ20 4 + 5 U3B - 6 C38 U4 LM431 FIGURE 5. BIAS SUPPLY IN SECONDARY SIDE Current Sense Signal Amplifier The current sense signal amplifier circuit is shown in Figure 6, which has a gain of 12 so that we can choose a low resistance current sensing resistor R35 to reduce the power dissipation. Iosen is the current sensing signal from R35, and Ios is the output of this amplifier. 4 + 5 U3B - R37 0.4 OVP SAFE OPERATION AREA 0.2 0 0 10 16 20 30 40 48 50 OUTPUT VOLTAGE (V) 60 70 FIGURE 8. SAFE OPERATING AREA (VO IS SET TO 48V) Overvoltage Protection 6 Ios EL5420T R40 FIGURE 6. SIGNAL AMPLIFIER Current Error Amplifier The current error amplifier shown in Figure 7 is configured as a type-I compensator (an integrator). The input signal Ios is from the current signal amplifier. The reference signal of the output current is set by dividing the 2.5V reference. By switching the R42~R44, the reference can be easily changed. The current set point IO is defined by R35, R63 and Rx with Equation 2: (EQ. 2) 2.5V*R63 ⁄ ( R63 + Rx ) = 12*I O * R35 Where, Rx is one of the R41~R44, which depend on the position of jumper J3. C21 The OVP circuit is shown in Figure 9. The op amp is configured as a type-III compensator, clamping the VO, which is VOUT in the schematic, to the set point when output open circuit happens. The VOUT is feedback to the inverting pin. The output signal Err controls the VERR of ISL6745A through the isolation photo-coupler (U2). Once the VOUT reaches the OVP set point, the VERR of U1 is pulled down to reduce the duty cycle of the MOSFET gate drive PWM signal. The OVP setting point is determined by Equation 3: U3D 12 11 + C33 Ios R45 VOUT C31 C24 D8 U3C 8 R46 9 C40 R47 2.5V R51 R41 R42 12 34 56 R43 R44 2.5V FIGURE 7. CURRENT REGULATOR Since the maximum output power is limited to 33W, the maximum output current is limited when the output voltage is high or the number of LEDs in series is large. 3 C28 R53 Err EL5420T J3 R63 (EQ. 3) OVP = 2.5V*(1 + R56 ⁄ R47 ) 7 - EL5420T 33W Iosen C26 14 0.6 OVP 700mA + BIAS WINDING OUTPUT CURRENT (A) VCC R16 - D9 Err The output voltage and current safe operation area is shown in Figure 8. DCM BOUNDARY The Op Amp is supplied by VCC. The shunt regulator U4 generates 2.5V reference. FIGURE 9. OVERVOLTAGE PROTECTION FOR OUTPUT Over-Temperature Protection The OTP circuit is shown in Figure 10; it’s a comparator with hysteresis. RT1 is an NTC thermistor. It is placed close to the hot spot inside the driver. When the temperature rises too high, Err becomes low, and pulls down VERR to limit the power delivery. September 21, 2010 AN1583.1 Application Note 1583 In-Rush Control The gate drive signal of Q3 is derived from the voltage on the snubber capacitor C4. So this is a self driven scheme, which does not need the IC’s support. L1 C1 U3A D3 1 2 C25 2.5V 2.5V RT1 R48 EL5420T R39 R49 R52 FIGURE 10. OVER-TEMPERATURE PROTECTION CIRCUIT R29 C3 DZ8 R26,R27 DZ5 FDU3N40 D7 15 + Q3 - R23 DZ7 Err t The in-rush circuit is shown in Figure 11. In each half AC line cycle, the turn on of the TRIAC in the dimmer charges C1 and C2 and forms the high inrush current. C1 capacitance is relatively small and the charge current to it can be limited by the Rx and Ry with relatively small resistance. C2 capacitance is much larger to deliver the switching frequency current to the Flyback converter with the compliance to the EMC standard. R6 and R7 are used with larger resistance to reduce the high charge current. Q3 is used to bypass the R6 and R7 after the C2 is charged up in each half line cycle, thus to reduce the power dissipation caused by the normal operation current. R2,R3 D1 C4 1 T1 4 R6,R7 C2 FIGURE 11. IN-RUSH CONTROL CIRCUIT 4 September 21, 2010 AN1583.1 Application Note 1583 Test Setup for the Driver Performance Evaluation Duty Cycle Limit The duty cycle limit circuit shown in Figure 12 sets the maximum duty cycle of the Flyback converter by adjusting the VERR pin voltage of ISL6745A through the POT RP2. U9 is used to accurately set the VERR voltage. In order to maximize the dimming range and achieve best dimming performance, RP2 needs to be adjusted for different number of LEDs and different output current. Note: • Set the IO, VO and RP2 per the “Configuration Tables” on page 23 (Tables 12 to 14) before the test. • If using a VARIAC instead of an AC source, a capacitor about 10µF/270VAC or so may need to be connected between L and N (of J1) to avoid the interactivity between the VARIAC and input EMI filter of the LED driver. VDD U2 R58 VERR • Some kinds of light dimmers need a minimum load, so a 40W incandescent lamp may be needed between J1.1 and J1.2 as a dummy load, otherwise the dimmer may not function well. R 62 RP2 C29 C27 U6 LMV431 • Do not try to run the LED driver out of its Safe Operating Area. (For example, if set IO/VO to 700mA/”48V”, then the output voltage shall be greater than 16V). R30 FIGURE 12. DUTY CYCLE LIMITER POWER ANALYZER AC SOURCE ∫∫ ∫∫ A V IIN LED DRIVER J1.2 L VIN ∫∫ J2.1 + VO EUT LOAD - N J1.1 J2.2 ∫∫ D DIMMER FIGURE 13. WIRING OF THE TEST Test Data SOURCE DIMMING TABLE 1. SET IO TO 350mA/48V VIN (V) IIN (mA) PF PIN (W) VO (V) IO (mA) PO (W) EFF(%) 60 60 24.05 0.862 1.24 47.97 6.5 0.311805 25.15 80 80 29.6 0.886 2.1 47.97 17 0.81549 38.83 100 100 38.1 0.932 3.545 47.97 42.5 2.038725 57.51 120 120 49.3 0.9505 5.64 47.97 80 3.8376 68.04 140 140 53 0.9437 7.01 47.97 105 5.03685 71.85 160 160 57.1 0.945 8.64 47.97 137 6.57189 76.06 180 180 69.75 0.9616 12.08 47.97 196 9.40212 77.83 200 200 74.2 0.9593 14.23 47.97 238 11.41686 80.23 220 220 83.8 0.9628 17.76 47.97 301 14.43897 81.30 230 230 89.75 0.9662 20.06 47.97 341 16.35777 81.54 240 240 87.81 0.9581 20.21 47.97 344 16.50168 81.65 260 260 82.2 0.935 19.98 47.97 344 16.50168 82.59 270 270 79.6 0.9255 19.89 47.97 344 16.50168 82.96 5 September 21, 2010 AN1583.1 Application Note 1583 TABLE 2. SET IO TO 500mA/48V 60 VIN (V) IIN (mA) PF PIN (W) VO (V) IO (mA) PO (W) EFF (%) 60 30.9 0.8765 1.62 47.97 12 0.57564 35.53 80 80 35 0.9118 2.55 47.97 25 1.19925 47.03 100 100 43.1 0.9375 4.04 47.97 52 2.49444 61.74 120 120 63.44 0.955 7.28 47.97 112 5.37264 73.80 140 140 77.2 0.96 10.37 47.97 168 8.05896 77.71 160 160 86.1 0.966 13.32 47.97 221 10.60137 79.59 180 180 99.7 0.9726 17.45 47.97 298 14.29506 81.92 200 200 111.2 0.9744 21.65 47.97 375 17.98875 83.09 220 220 122.3 0.9751 26.23 47.97 462 22.16214 84.49 230 230 125.01 0.9741 28.02 47.97 494 23.69718 84.57 240 240 121.23 0.9687 28.21 47.97 494 23.69718 84.00 260 260 113.8 0.9619 28.42 47.97 494 23.69718 83.38 270 270 110 0.9595 28.49 47.97 494 23.69718 83.18 TABLE 3. SET IO TO 700mA/48V VIN (V) PF PIN (W) VO (V) IO (mA) PO (W) EFF (%) 60 60 40.6 0.857 2.1 47.97 19 0.91143 43.40 80 80 64.84 0.9545 4.95 47.97 70 3.3579 67.84 100 100 73.37 0.959 7.03 47.97 107 5.13279 73.01 120 120 91.85 0.9645 10.76 47.97 173 8.29881 77.13 140 140 99.9 0.9773 13.67 47.97 228 10.93716 80.01 160 160 117.6 0.9837 18.55 47.97 315 15.11055 81.46 180 180 130.5 0.9846 22.97 47.97 396 18.99612 82.70 200 200 162.2 0.9883 32.15 47.97 561 26.91117 83.71 220 220 181.5 0.9874 39.43 47.97 697 33.43509 84.80 230 230 174.2 0.982 39.5 47.97 697 33.43509 84.65 240 240 168.3 0.9761 39.5 47.97 697 33.43509 84.65 260 260 154.6 0.9738 39.29 47.97 697 33.43509 85.10 270 270 148.2 0.9742 39.05 47.97 696 33.38712 85.50 1.00 90 700 0.95 80 400 0.90 700mA 0.85 PF 500 500mA 500mA 0.80 350mA 700mA 0.75 300 200 350mA 100 0 60 EFFICIENCY (%) 800 600 IO (mA) IIN (mA) 100 140 180 220 LINE VOLTAGE (V) 260 FIGURE 14A. OUTPUT CURRENT vs INPUT VOLTAGE 0.70 0.65 0.60 60 100 180 220 260 LINE VOLTAGE (V) 60 700mA 50 40 30 20 60 500mA 350mA 100 140 180 220 LINE VOLTAGE (V) 260 FIGURE 14B. PF vs LINE VOLTAGE FIGURE 14C. EFFICIENCY vs LINE VOLTAGE FIGURE 14. CHART OF THE DATA TABLE The above test bypassed the inrush control circuit (R6, R7, R24 and R25 is shorted), which is necessary if the TRIAC dimming function is not needed. For better TRIAC dimming performance, the inrush control is necessary. 6 140 70 Following is efficiency test data with R6 = R7 = 100Ω and R24 = R25 = 25.5 Ω. September 21, 2010 AN1583.1 Application Note 1583 TABLE 4. SET IO TO 700mA (WITH INRUSH CONTROL) VIN (V) IIN (mA) PF PIN (W) VO (V) IO (mA) PO (W) EFF (%) 60 60 35.77 0.8944 1.85 47.97 13 0.62361 33.71 80 80 58.5 0.9651 4.52 47.97 59 2.83023 62.62 100 100 71.3 0.974 6.94 47.97 100 4.797 69.12 120 120 82.9 0.9834 9.735 47.97 150 7.1955 73.91 140 140 96.07 0.9833 13.22 47.97 211 10.12167 76.56 160 160 106.45 0.9881 16.77 47.97 275 13.19175 78.66 180 180 119.51 0.9887 21.25 47.97 353 16.93341 79.69 200 200 147.5 0.9912 28.5 47.97 477 22.88169 80.29 220 220 169.75 0.9913 36.94 47.97 622 29.83734 80.77 230 230 180.74 0.9852 41.08 47.97 696 33.38712 81.27 240 240 173.8 0.9763 41.09 47.97 696 33.38712 81.25 260 260 159.6 0.9715 40.7 47.97 696 33.38712 82.03 270 270 152.4 0.9746 40.45 47.97 693 33.24321 82.18 90 85 EFFICIENCY (%) 80 75 70 700mA 65 700mA* 60 55 50 *TEST CURVE WITH INRUSH CONTROL 45 40 60 100 140 180 220 260 LINE VOLTAGE (V) FIGURE 15. EFFECT OF INRUSH CONTROL ON EFFICIENCY 7 September 21, 2010 AN1583.1 Application Note 1583 TRIAC Dimming TABLE 5. LOAD = 1P9S (ONE STRING OF 9 LEDS IN SERIES) IGNITION ANGLE (°) IIN (mA) PIN (W) VO (V) IO (mA) PO (W) EFF (%) 0 111.1 24.81 29.84 692 20.64928 83.22967 30 120.6 25.35 30.12 696 20.96352 82.69633 60 132.5 21.95 29.29 587.7 17.21373 78.42247 90 121.5 14.1 28.23 362.8 10.24184 72.63719 120 100.1 6.31 26.41 134.9 3.562709 56.46132 130 91.7 4.54 25.86 85.9 2.221374 48.92894 140 70 2.52 24.87 36.6 0.910242 36.12071 TABLE 6. LOAD = 1P10S IGNITION ANGLE (°) IIN (mA) PIN (W) VO (V) IO (mA) PO (W) EFF (%) 0 125.3 28.15 33.88 693 23.47884 83.40618 30 134 28.31 33.77 692.2 23.37559 82.5701 60 139 24.83 33.26 592.5 19.70655 79.36589 90 125 15.76 31.97 366.7 11.7234 74.38705 120 96 6.56 30.1 136.7 4.11467 62.72363 130 86 4.6 29.34 85.8 2.517372 54.72548 140 73.1 2.81 28.33 42.7 1.209691 43.0495 TABLE 7. LOAD = 1P11S IGNITION ANGLE (°) IIN (mA) PIN (W) VO (V) IO (mA) PO (W) EFF (%) 0 139.1 31.32 37.68 693 26.11224 83.37241 30 147.1 31.53 37.62 692.5 26.05185 82.62559 60 150.5 27.13 36.9 585.7 21.61233 79.66211 90 131.5 17.2 35.6 361.1 12.85516 74.7393 120 96.5 6.83 33.28 136.6 4.546048 66.56 130 85 4.66 32.6 85.7 2.79382 59.95322 140 72 2.9 31.63 44.7 1.413861 48.75383 TABLE 8. LOAD = 1P12S IGNITION ANGLE (°) IIN (mA) PIN (W) VO (V) IO (mA) PO (W) EFF (%) 0 152.2 34.34 41.15 693.8 28.54987 83.13882 30 159.58 34.45 41.06 690.7 28.36014 82.32262 60 159.3 29.76 40.41 588.3 23.7732 79.88307 90 138.5 18.62 38.98 358.1 13.95874 74.96637 120 100.3 7.36 36.57 134.6 4.922322 66.87938 130 90 4.87 35.69 83 2.96227 60.8269 140 75.2 2.83 34.5 43.2 1.4904 52.66431 8 September 21, 2010 AN1583.1 Application Note 1583 800 EFFICIENCY (%) 600 IO (mA) 80 10 LED 700 9 LED 500 400 11 LED 300 200 100 30 60 50 10 LED 40 9 LED 30 11 LED 20 10 12 LED 0 0 12 LED 70 60 90 120 IGNITION ANGLE (°) 150 0 0 180 FIGURE 16A. IO vs IGNITION ANGLE 30 60 90 120 IGNITION ANGLE (°) 150 180 FIGURE 16B. EFFICIENCY vs IGNITION ANGLE FIGURE 16. PLOTS OF DIMMING AND EFFICIENCY THD of Input Current ∞ ∑I n=2 THD = TABLE 10. HARMONICS OF INPUT CURRENT (Continued) 2 ORDER IN/I (%) ORDER IN/I (%) 37 0.249 38 0.904 39 0.594 40 0.852 41 0.124 42 0.837 43 0.065 44 0.328 45 0.179 46 0.169 47 0.377 48 0.036 49 0.688 50 0.116 THD(%) 12.8 (EQ. 4) n I1 TABLE 9. CURRENT THD (BY WT210, WITHOUT DIMMER) LOAD USE LED (CREE) 230V/700mA 230V/350mA 12.8% 16.9% TABLE 10. HARMONICS OF INPUT CURRENT ORDER IN/I (%) ORDER IN/I (%) 1 / 2 0.467 3 9.89 4 0.543 8 5 4.453 6 0.175 7 7 3.296 8 0.176 9 3.191 10 0.369 11 0.285 12 0.284 3 13 2.965 14 0.109 2 15 0.77 16 0.212 1 17 1.003 18 0.112 19 1.255 20 0.199 21 0.529 22 0.091 23 1.007 24 0.334 25 0.61 26 0.257 27 0.913 28 0.106 29 0.492 30 0.083 31 0.783 32 0.038 33 1.332 34 0.512 35 1.02 36 0.949 9 10 9 6 5 4 0 1 6 11 16 21 26 31 36 41 46 FIGURE 17. SPECTRUM OF INPUT CURRENT September 21, 2010 AN1583.1 Application Note 1583 Waveforms Line Voltage and Current FIGURE 18A. VIN = 160V FIGURE 18B. VIN = 230V FIGURE 18C. VIN = 270V FIGURE 18. WAVEFORMS OF LINE CURRENT AND VOLTAGE; CH2: LINE CURRENT; CH4: LINE VOLTAGE; NO DIMMER 10 September 21, 2010 AN1583.1 Application Note 1583 Line Voltage and Current (Continued) FIGURE 19A. IGNITION ANGLE IS 30° FIGURE 19B. IGNITION ANGLE IS 60° FIGURE 19C. IGNITION ANGLE IS 90° FIGURE 19D. IGNITION ANGLE IS 120° FIGURE 19. WAVEFORM OF LINE CURRENT AND VOLTAGE (IO = 700mA), CH2: LINE CURRENT; CH4: LINE VOLTAGE; VIN = 230VAC 11 September 21, 2010 AN1583.1 Application Note 1583 Ripple Voltage and Output Current FIGURE 20A. IGNITION ANGLE IS 0° FIGURE 20B. IGNITION ANGLE IS 30° FIGURE 20C. IGNITION ANGLE IS 60° FIGURE 20D. IGNITION ANGLE IS 90° FIGURE 20E. IGNITION ANGLE IS 120° FIGURE 20. WAVEFORM OF VO AND IO RIPPLE (VIN = 230VAC); CH2: RIPPLE CURRENT; CH4: RIPPLE VOLTAGE 12 September 21, 2010 AN1583.1 Application Note 1583 Voltage on Rectified DC Bus FIGURE 21B. VOLTAGE ON C1 FIGURE 21A. D4(+) FIGURE 21C. VOLTAGE ON C2 FIGURE 21. RECTIFIED DC BUS, (IGNITION ANGLE = 30°); CH2: LINE CURRENT; CH4: VOLTAGE OF DC BUS 13 September 21, 2010 AN1583.1 Application Note 1583 Voltage on Rectified DC Bus (Continued) FIGURE 22B. VOLTAGE ON C1 FIGURE 22A. D4(+) FIGURE 22C. VOLTAGE ON C2 FIGURE 22. RECTIFIED DC BUS, (IGNITION ANGLE = 90°) 14 September 21, 2010 AN1583.1 Application Note 1583 Voltage on Rectified DC Bus (Continued) FIGURE 23A. D4(+) FIGURE 23B. VOLTAGE ON C1 FIGURE 23C. VOLTAGE ON C2 FIGURE 23. RECTIFIED DC BUS, (IGNITION ANGLE = 120°) 15 September 21, 2010 AN1583.1 Application Note 1583 Voltage on Snubber Capacitor FIGURE 24A. IGNITION ANGLE = 30° FIGURE 24B. IGNITION ANGLE = 60° FIGURE 24C. IGNITION ANGLE = 90° FIGURE 24D. IGNITION ANGLE = 120° FIGURE 24E. IGNITION ANGLE = 90° (ZOOM IN) FIGURE 24. WAVEFORM OF VOLTAGE ON SNUBBER CAPACITOR C4; CH2: LINE CURRENT; CH4: VOLTAGE ON C4 16 September 21, 2010 AN1583.1 Application Note 1583 Inrush Control Circuit FIGURE 25A. IGNITION ANGLE = 30° FIGURE 25B. IGNITION ANGLE = 60° FIGURE 25C. IGNITION ANGLE = 90° FIGURE 25D. IGNITION ANGLE = 120° FIGURE 25E. IGNITION ANGLE = 120° (ZOOM IN) FIGURE 25. VGS AND VDS OF Q3 (NEED AN ISOLATION TRANSFORMER TO PROBE THE WAVEFORM); CH2: LINE CURRENT; CH3:VGS; CH4: VDS 17 September 21, 2010 AN1583.1 Application Note 1583 Reference [1] Fred Greenfeld, Intersil Application Note AN1387, “White LED Driver Circuits for Off-Line Applications using Standard PWM Controllers” 18 September 21, 2010 AN1583.1 Schematic [Patent Applications Pending] Inrush R23 DZ7 R24 Q3 - D4 C7 R26 DZ8 D7 2 1 R6 L1 1 T1 VOUT D2 R14 R15 11 10 6 C2 C15 R12 R13 13 12 4 5 R7 C1 14 2 3 C4 R3 R3' + Flyback D1 R2 R2' DZ5 FDU3N40 RV1 R27 C3 F1 J1 R29 9 R35 R25 19 EMC 12X VCC C23 C26 R9 R8 R19 R20 4 C37 C20 EL5420T C21 VDD Q2 U3D VDD R5 3 4 DZ3 C16 5 C17 U1 SS RTD VERR VDD VDDP OUTB CS OUTA CT GND 10 R50 15 R62 9 8 C35 R44 C5 1 U3A D3 2 C25 R48 EL5420T OTP R39 7 6 R49 R52 C6 C28 R53 C31 10k U6 7 U3C EL5420T R30 OVP LMV431 D Limit 2.5V VCC R54 DZ20 C38 U4 VOUT LM431 R46 C24 D8 + C29 - RP2 2.5V RT1 C10 2.5V C27 R43 i-Reg t 2 PWM R42 12 34 56 R63 C33 + 1 C9 EL5420T R41 J3 R61 VDD D5 U2 - D6 R59 R45 11 + R58 DZ2 14 VCC 12 - R4 8 9 C40 R47 2.5V R51 Vin=230V±10%;Io=0.35/0.5/0.7/1.05A;Po=33W(max) Title ISL6745AHEVAL,33W Triac Dimmable LED Driv er (9~12 LEDs) FIGURE 26. SCHEMATICS OF THE EVALUATION BOARD September 21, 2010 AN1583.1 Size Document Number Rev Application Note 1583 R60 R11 R17 R55 6 R40 Q1 STF8NK100Z R10 + U3B - 5 R37 R18 R21 R22 BIAS J2 * VCC R16 D9 1 2 C30 C11 Application Note 1583 TABLE 11. BILL OF MATERIALS REFERENCE QTY DESIGNATOR DESCRIPTION MANUFACTURER MANUFACTURER PART 1 C37 CAP, RADIAL DISK, 15.5mm, 4700pF, 250V, 20%, X1Y1 TDK CD16-E2GA472MYNS 1 C2 CAP, RADIAL, 17.5X17.5, 0.33µF, 250/275V, 20%, POLYFILM PANASONIC ECQ-U2A334ML 1 C31 CAP, SMD, 0402, 100pF, 25V, 10%, C0G AVX 04023A101KA72A 2 C27, C40 CAP, SMD, 0402, 1000pF, 25V, 10%, X7R MURATA GRP155R71E102K 1 C29 CAP, SMD, 0402, 0.1µF, 25V, 10%, X5R TDK C1005X5R1E104K 1 C20 CAP, SMD, 0402, 47pF, 50V, 5%, NPO MURATA GRM36COG470J050AQ 1 C17 CAP, SMD, 0402, 470pF, 25V, 10%, X7R MURATA GRP155R71E471K 1 C3 CAP, SMD, 0603, 0.01µF, 25V, 10%, X7R VENKEL C0603X7R250-103KNE 6 C23, C24, C25, C26, C28, C33 CAP, SMD, 0603, 0.1µF, 25V, 10%, X7R MURATA GRM39X7R104K025AD 1 C30 CAP, SMD, 0603, 0.1µF, 50V, 10%, X7R TDK C1608X7R1H104K 1 C21 CAP, SMD, 0603, 1µF, 25V, 10%, X5R MURATA GRM188R61E105KA12D 1 C9 CAP, SMD, 0603, 2.2µF, 6.3V, 10%, X7R MURATA GCM188R70J225KE22D 1 C15 CAP, SMD, 0603, 47pF, 200V, 5%, C0G KEMET C0603C470J2GACTU 3 C5, C10, C35 CAP, SMD, 0603, 0.47µF, 25V, 10%, X7R MURATA GRM188R71E474KA12D 1 C6 CAP, SMD, 0603, 820pF, 50V, 5%, C0G KEMET C0603C821J5GACTU 1 C4 CAP, SMD, 1206, 2200pF, 630V, 10%, X7R PANASONIC ECJ-3FB2J222K 1 C7 CAP, RADIAL, DISK, 220pF, 300V, 10%, Y5S, X1/Y2, 7.5mmLS VISHAY/BC COMPONENTS VY2221K29Y5SS63V7 1 C11 CAP, RADIAL, 18X20, 1000µF, 50V,2 0%, ALUM.ELEC. UNITED CHEMI-CON EKY-500ELL102MM20S 2 C16, C38 CAP, RADIAL, 6.3X11, 100µF, 25V, 20%, ALUM.ELEC. UNITED CHEMI-CON EKZE250ELL101MF11D 1 J2 CONN-HEADER, 1X2,SOLID, 3.96mm, VERT, FRICTION LOCK TYCO ELECTRONICS 1-1318300-2 1 J1 CONN-HEADER, 1X2, 5.08mm, VERT, FRICTION LOCK MOLEX 10-32-1021 1 J3 CONN-HEADER, 2x3, BRKAWY 2X36, 2.54mm, VERTICAL BERG/FCI 67996-272HLF 2 D5, D6 DIODE-RECTIFIER, 2P, SMD, SOD-523, 100V, 250mA DIODES INC. 1N4148WT-7 1 D8 DIODE-SCHOTTKY, SMD, SOT23, 3P, 30V, 200mA, SINGLE DIODE FAIRCHILD BAT54 1 D3 DIODE-RECTIFIER, SMD, SOT23, 30V, 200mA FAIRCHILD BAT54A 1 DZ7 DIODE-ZENER, SMD, SOD-123, 15V, 500mW DIODES, INC. BZT52C15-7-F 1 DZ20 DIODE-ZENER, SMD, SOD-123, 16V, 500mW DIODES, INC. BZT52C16-7-F 1 DZ5 DIODE-ZENER, SMD, 2P, SOD-123, 24V, 500mW DIODES, INC. BZT52C24-7-F 1 DZ8 DIODE-ZENER, SMD, 2P, SOD-123F, 75V,3 75mW DIODES, INC. BZT52H-C75,115 1 DZ2 DIODE-ZENER, SMD, 3P, SOT23, 12V, 225mW, 5% ON SEMICONDUCTOR BZX84C12LT1G 1 DZ3 DIODE-ZENER, SMD, SOT-23, 3P, 18V, 0.250A ON SEMICONDUCTOR BZX84C18LT1G-T 20 September 21, 2010 AN1583.1 Application Note 1583 TABLE 11. BILL OF MATERIALS (Continued) REFERENCE QTY DESIGNATOR DESCRIPTION MANUFACTURER MANUFACTURER PART 1 D4 DIODE-RECTIFIER, 4P, SMD, DF-S(8.5X6.5), 1000V, 1A DIODES, INC. DF10S 1 D7 DIODE-RECTIFIER, SMD, 2P, SMA, 500V, 1A FAIRCHILD ES1H 1 D2 DIODE-RECTIFIER, SMD, DPAK(TO252), 200V, 6A FAIRCHILD FFD06UP20S 1 D9 DIODE-SWITCHING, SMD, SOT-23, 100V, 250mA INFINEON TECHNOLOGY MMBD914LT1 1 D1 DIODE-RECTIFIER, SMD, 2P, SMA, 1000V, 1A, 1.4W FAIRCHILD 1 L1 COIL-COMMON MODE CHOKE, TH, 6P, 100mH, CUSTOM MAIN POWER ELECTRIC CO.,LTD J11-016-001 1 U3 IC-12MHz R/R OP AMP, 16P, QFN INTERSIL EL5420TILZ 1 U1 IC-BRIDGE CONTROLLER, 10P, MSOP INTERSIL ISL6745AAUZ 1 U4 IC-ADJ.ZENER SHUNT REGULATOR, SOT23, 2.5V NATIONAL SEMICONDUCTOR LM431BIM3/NOPB 1 U6 IC-ADJ.SHUNT REGULATOR, SMD, SOT-23-3, 1.24V, 0.5% NATIONAL SEMICONDUCTOR LMV431BIMF/NOPB 1 U2 IC-HI ISO PHOTOCOUPLER, 4P, SSOP CALIFORNIA EASTERN LABORATORIES PS2801-1-A 1 Q3 TRANSIST-MOS, N-CHANNEL, TH, I-PAK, 400V, 2A FAIRCHILD FDU3N40TU 1 Q2 TRANSISTOR-QFET, N-CHANNEL, SMD, DPAK, 600V, 1A FAIRCHILD FQD1N60CTM 1 Q1 TRANSIST-MOS, N-CHANNEL, TH, TO-220FP, 1000V, 6.5A STMICROELECTRONICS STF8NK100Z 1 RP2 POT-TRIM, 1/4 ROUND, TH, 3P, 10k, 0.5W, 10%, TOP ADJ BOURNS 3329H-1-103LF 4 R19, R20, R21, R22 RES, SMD, 1206,100Ω, 1/2W, 1%, TF VISHAY/DALE CRCW1206100RFKEAHP 1 R50 RES, SMD, 0402, 10Ω, 1/16W, 1%, TF PANASONIC ERJ-2RKF10R0X 2 R16, R17 RES, SMD, 0402, 100Ω, 1/16W, 1%, TF PANASONIC ERJ-2RKF1000X S1M 3 R48, R51, R53 RES, SMD, 0402, 1k, 1/16W, 1%, TF VENKEL CR0402-16W-102JT 3 R37, R58, R62 RES, SMD, 0402, 10k, 1/16W, 1%, TF PANASONIC ERJ-2RKF1002X 2 R45, R46 RES, SMD, 0402, 100k, 1/16W, 1%, TF PANASONIC ERJ2RKF1003 1 R40 RES, SMD, 0402, 110k, 1/16W, 1%, TF VISHAY CRCW0402110KFKED 1 R44 RES, SMD, 0402, 13k, 1/16W, 1%, TF ROHM MCR01MZPF1302 1 R63 RES, SMD, 0402, 20k, 1/16W, 1%, TF PANASONIC ERJ2RKF2001 1 R43 RES, SMD, 0402, 2.05k, 1/16W, 1%, TF VISHAY CRCW04022K05FKED 1 R42 RES, SMD, 0402, 26.1k, 1/16W, 1%, TF VENKEL CR0402-16W-2612FT 1 R49 RES, SMD, 0402, 27k, 1/16W, 1%, TF ROHM MCR01MZPF2702 1 R30 RES, SMD, 0402, 3.83k, 1/16W, 1%, TF VENKEL CR0402-16W-3831FT 1 R5 RES, SMD, 0402, 39.2k, 1/16W, 1%, TF PANASONIC ERJ-2RK3922X 1 R41 RES, SMD, 0402, 46.4k, 1/16W, 1%, TF PANASONIC ERJ2RKF4642 1 R52 RES, SMD, 0402,47kΩ, 1/16W, 1%, TF ROHM MCR01MZPF4702 1 R39 RES, SMD, 0402, 470k, 1/16W, 1%, TF ROHM MCR01MZPF4703 2 R54, R59 RES, SMD, 0402, 5.1k, 1/16W, 1%, TF MULTICOMP MC0402WGF5101TCETR 1 R47 RES, SMD, 0402, 5.11k, 1/16W, 1%, TF PANASONIC ERJ-2RKF5111X 21 September 21, 2010 AN1583.1 Application Note 1583 TABLE 11. BILL OF MATERIALS (Continued) REFERENCE QTY DESIGNATOR DESCRIPTION MANUFACTURER MANUFACTURER PART 0 R61 RES,SMD,0402, DNP, DNP, DNP, TF 1 R18 RES, SMD, 0603, 10Ω, 1/10W, 1%, TF KOA RK73H1JT10R0F 1 R60 RES, SMD, 0603, 10k, 1/10W, 1%, TF KOA RK73H1JT1002F 2 R23, R29 RES, SMD, 0603, 39k, 1/10W, 1%, TF PANASONIC ERJ-3EKF3902V 1 R11 RES, SMD, 0805, 10Ω, 1/8W, 1%, TF VENKEL CR0805-8W-10R0FT 1 R13 RES, SMD, 0805, 0Ω, 1/8W, TF YAGEO RC0805JR-070RL 0 R14, R15 RES, SMD, 0805, DNP-PLACE HOLDER 2 R12, R55 RES, SMD, 1206, 10Ω, 1/4W, 1%, TF VENKEL CR1206-4W-10R0FT 1 R8 RES, SMD, 1206, 0Ω, 1/4W, TF VISHAY CRCW1206-000Z 2 R9,R10 RES, SMD, 1206, 1M, 1/4W, 1%, TF VENKEL CR1206-4W-1004FT 4 R2', R2, R3', R3 RES, SMD, 1206, 300k, 1/4W, 1%, TF YAGEO RC1206FR-07300KL 2 R26,R27 RES,SMD,1206, 49.9k,1/4W,1%,TF VENKEL CR1206-4W-4992FT 1 R35 RES, SMD, 2512, 0.18Ω, 1W, 1%, TF ROHM MCR100JZHFLR180 1 R4 RES, SMD, 2512, 0.36Ω,1W, 1%, TF VENKEL CR2512-1W-R360FT 2 R24,R25 RES, AXIAL, 27Ω, 2W, 5%, MOF YAGEO RSF200JB-27R 2 R6,R7 RES, AXIAL, 100Ω, 2W, 5%, MOF PANASONIC ERG-2SJ101A 1 F1 FUSE-TIME-LAG, TH, 8.5X8.0, 1.60A, 250V, 601mW LITTELFUSE 40011600440 1 C1 CAP-EMI, RADIAL, 10.5X18, 0.1µF, 305V, 20%, 15mmLS EPCOS, INC B32922C3104M 1 RT1 THERMISTOR-NTC, SMD, 0805, 22k, 5%, 210mW EPCOS, INC B57620C0223J062 1 RV1 TVS-VARISTOR, TYPE D, RADIAL, 14mm, 390V, 4500A PANASONIC ERZV14D391 1 T1 TRANSFORMER, TH, 23.5x20.3, 14P, 4 50µH, 5%, CUSTOM COILCRAFT CN7225-AL 22 September 21, 2010 AN1583.1 Application Note 1583 Configuration Tables TABLE 12. SELECT MAXIMUM OUTPUT VOLTAGE 16V 32V 48V NUMBER OF LEDS 3, 4 5, 6, 7, 8 9, 10, 11, 12 C11 3300µF/16V 1800µF/35V 1000µF/50V VENDOR Nichicon Panasonic-ECG United Chemi-Con PART # Nichicon UPW1C392MHD6 or Panasonic-ECG EEU-FC1C392S 1800µF/35V Panasonic-ECG EEU-FC1V182S United Chemi-Con EKY-500ELL102MM20S INTERNAL PART # (N/A) (N/A) (N/A) R47 15k(19.2V) 6.8k(39.3) 5.11k(51.4V) VENDOR Panasonic-ECG Panasonic-ECG Panasonic-ECG PART # ERJ-2RKF1502X ERJ-2RKF6801X ERJ-2RKF5111X INTERNAL PART # H2510-01502-1/16W1 H2510-06801-1/16W1 H2510-05111-1/16W1 R13 Open Open Shorted R14 Open Shorted Open R15 Shorted Open Open TABLE 13. PROGRAM THE OUTPUT CURRENT J3 350mA 500mA 700mA 1.05A 1, 3 2, 4 3, 5 4, 6 TABLE 14. ADJUST THE RP2 FOR DIFFERENT VO AND IO COMBINATION 350mA 500mA 700mA 1050mA 16V Depending on the VO and IO, Adjust RP2 so that the output current can not be greater than the set value 32V unless the input is equal to, or greater than, nominal 48V line voltage (220 or 230 V). Low Line Version TABLE 15. CHANGE FOR LOW LINE VERSION LOW LINE VERSION (THE PARAMETERS NEED MORE TEST FOR VERIFYING) HIGH LINE VERSION T1 For Pin 1~4: Pin 1, 2 connected; Pin 3, 4 connected. For Pin 1~4: Pin 2, 3 connected. R29 100k 30k DZ8 0V (shorted) 75V R6, R7 43Ω/2W, 100Ω/2W R24, R25 5.6Ω/3W for Rev.D 16Ω/2W for Rev.B 27Ω/2W for Rev.D 36Ω/1W for Rev.B R4 0.18Ω 0.36Ω C1 220nF for Rev.D 100nF for Rev.B 100nF C2 680nF for Rev.D 220nF for Rev.B 100nF for Rev.D 330nF for Rev.B Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding. For information regarding Intersil Corporation and its products, see www.intersil.com 23 September 21, 2010 AN1583.1