LITTELFUSE V150CH8

Varistor Products
Surface Mount Varistors > CH Series
RoHS
CH Varistor Series
Description
CH Series varistors are available in a voltage range from
14V to 275V (VM(AC)RMS), and energy ratings up to 8J.
See the Littelfuse Multilayer Suppressor Series also.
Agency Approvals
Features
Recognized under the components program of
Underwriters Laboratories.
AGENCY
t -FBEoGSFF
t -FBEMFTTTVSGBDF
mount chip in 5
x 8mm Size
AGENCY FILE NUMBER
UL E320116
t 4VQQMJFEJOUBQFBOE
reel or bulk pack
t /PEFSBUJOHVQUP
125ºC ambient
t 7PMUBHFSBUJOHT
VM(AC)RMS 14V to 275V
Absolute Maximum Ratings
t'PSSBUJOHTPGJOEJWJEVBMNFNCFSTPGBTFSJFTTFF%FWJDF3BUJOHTBOE4QFDJmDBUJPOTDIBSU
Continuous
CH Series
Units
Steady State Applied Voltage:
AC Voltage Range (VM(AC)RMS)
14 to 275
V
DC Voltage Range (VM(DC))
18 to 369
V
100 to 250
A
Transient:
Peak Pulse Current (ITM)
For 8/20μs Current (See Figure 2)
Single Pulse Energy Range
1.0 to 8.0
J
Operating Ambient Temperature Range (TA)
For 10/1000μs Current Wave (WTM)
-55 to +125
ºC
Storage Temperature Range (TSTG)
-55 to +150
ºC
<0.01
%/ºC
Temperature Coefficient (DV) of Clamping Voltage (VC) at Specified Test Current
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of
the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
©2010 Littelfuse, Inc.
Specifications are subject to change without notice.
Please refer to www.littelfuse.com/series/CH.html for current information.
CH Varistor Series
Revision: August 30, 2010
CH Series
CH Series transient surge suppressors are small,
metal-oxide varistors (MOVs) manufactured in leadless
chip form. They are intended for use in a variety of
applications from low voltage DC to off-line board-level
protection. These devices, which have significantly
lower profiles than traditional radial lead varistors,
permit designers to reduce the size and weight and
increase the reliability of their equipment designs.
Varistor Products
Surface Mount Varistors > CH Series
Device Ratings and Specifications
Maximum Ratings (125ºC)
Continuous
Part
Number
Specifications (25ºC)
Varistor Voltage at 1 mA DC Max Clamping Volt VC at
Test Current (8/20μs)
Test Current
Transient
Typical
Capacitance
VRMS
VDC
VM(AC)
VM(DC)
Energy
(10/1000μ s)
WTM
Peak Current
(8/20μs)
ITM
(V)
(V)
(J)
MIN
VN(DC)
MAX
VC
IP
f=1MHz
(A)
(V)
(V)
(V)
(V)
(A)
(pF)
V22CH8
14
18 (Note 3)
1.0 (Note2)
100
18.7
22.0
26.0
47
5
1600
V27CH8
17
22
1.0
100
23.0
27.0
31.1
57
5
1300
V33CH8
20
26
1.0
100
29.5
33.0
36.5
68
5
750
V39CH8
25
31
1.0
100
35.0
39.0
43.0
79
5
700
V47CH8
30
38
1.2
100
42.0
47.0
52.0
92
5
650
V56CH8
35
45
1.4
100
50.0
56.0
62.0
107
5
600
V68CH8
40
56
1.5
100
61.0
68.0
75.0
127
10
500
V120CH8
75
102
2.0
250
108.0
120.0
132.0
200
10
300
V150CH8
95
127
3.0
250
135.0
150.0
165.0
250
10
250
V180CH8
115
153
4.0
250
162.0
180.0
198.0
295
10
120
V200CH8
130
175
4.0
250
184.0
200.0
228.0
340
10
110
V220CH8
140
180
5.0
250
198.0
220.0
242.0
360
10
105
V240CH8
150
200
5.0
250
212.0
240.0
268.0
395
10
100
V360CH8
230
300
6.0
250
324.0
360.0
396.0
595
10
70
V390CH8
250
330
7.0
250
354.0
390.0
429.0
650
10
60
V430CH8
275
369
8.0
250
389.0
430.0
473.0
710
10
50
NOTES:
1. Power dissipation of transients not to exceed 0.25W.
2. Energy rating for impulse duration of 30ms minimum to one half of peak current value.
3. Also rated to withstand 24V for 5 minutes.
4. All Littelfuse CH Series Varistors are recognized under UL file #E320116 as a recognized component.
5. The Typical Capacitance is for reference only
Current, Energy and Power Derating Curve
100
PERCENT OF RATED VALUE
Continuous power dissipation capability is not an applicable
design requirement for a suppressor, unless transients
occur in rapid succession. Under this condition, the
average power dissipation required is simply the energy
(watt-seconds) per pulse times the number of pulses
per second. The power so developed must be within
the specifications shown on the Device Ratings and
Specifications Table for the specific device. Furthermore,
the operating values need to be derated at high tempera
tures as shown in this diagram. Because varistors can only
dissipate a relatively small amount of average power they
are, therefore, not suitable for repetitive applications that
involve substantial amounts of average power dissipation.
90
80
70
60
50
40
30
20
10
0
-55
Figure 1
CH Varistor Series
Revision: August 30, 2010
50
60
70
80
90
100
110
120
130
140
150
AMBIENT TEMPERATURE ( oC)
©2010 Littelfuse, Inc.
Specifications are subject to change without notice.
Please refer to www.littelfuse.com/series/CH.html for current information.
Varistor Products
Surface Mount Varistors > CH Series
PERCENT OF PEAK VALUE
Peak Pulse Current Test Waveform
01 = Virtual Origin of Wave
T = Time from 10% to 90% of Peak
T1 = Rise Time = 1.25 x T
T2 = Decay Time
Example:
For an 8/20 μs Current Waveform:
8μs = T1 = Rise Time
20μs = T2 = Decay Time
100
90
50
10
T
TIME
T1
Figure 2
T2
Clamping Voltage for V22CH8 – V68CH8
Clamping Voltage for V120CH8 – V430CH8
4,000
MAXIMUM CLAMPING VOLTAGE
MODEL SIZE 5 x 8mm
22 TO 56VN(DC) RATING
TA = -55oC TO 125 oC
200
100
90
80
70
60
50
40
V68CH8
V56CH8
V47CH8
V39CH8
V33CH8
V27CH8
V22CH8
30
20
10
10 -3
10 -2
10 -1
10 0
10 1
10 2
2,000
1,000
900
800
700
600
500
400
V240CH8
V220CH8
V200CH8
V430CH8
V390CH8
V360CH8
300
200 V180CH8
V150CH8
V120CH8
100
10 -3
10 3
PEAK AMPERES (A)
Figure 3
MAXIMUM CLAMPING VOLTAGE
MODEL SIZE 5 x 8mm
100 TO 430VN(DC) RATING
TA = -55oC TO 125 oC
3,000
MAXIMUM PEAK VOLTS (V)
MAXIMUM PEAK VOLTS (V)
500
400
300
CH Series
O1
10 -2
10 -1
Figure 4
10 0
10 1
10 2
PEAK AMPERES (A)
10 3
10 4
Pulse Rating Curves
Surge Current Rating Curves for V22CH8 - V56CH8
2,000
1
200
2
100
10
50
10 2
MODEL SIZE 5 x 8mm
V22CH8 - V56CH8
10
5
INDEFINITE
0.5
Figure 5
10 2
10 3
10 4
10 5
2
200
10
100
50
20
10
10 6
5
1
0.2
20
1
500
10 4
10 5
10 6
10 3
2
MODEL SIZE 5 x 8mm
V120CH8 - V430CH8
1,000
SURGE CURRENT (A)
SURGE CURRENT (A)
500
20
Surge Current Rating Curves for V120CH8 - V430CH8
INDEFINITE
2
1
100
1,000
IMPULSE DURATION (μs)
10,000
Figure 6
20
100
1,000
10,000
IMPULSE DURATION (μs)
NOTE: If pulse ratings are exceeded, a shift of VN(DC) (at specified current) of more than +/-10% could result. This type of shift, which normally results in a decrease of VN(DC), may result in
the device not meeting the original published specifications, but it does not prevent the device from continuing to function, and to provide ample protection.
©2010 Littelfuse, Inc.
Specifications are subject to change without notice.
Please refer to www.littelfuse.com/series/CH.html for current information.
CH Varistor Series
Revision: August 30, 2010
Varistor Products
Surface Mount Varistors > CH Series
Lead (Pb) Soldering Recommendations
The principal techniques used for the soldering of
components in surface mount technology are IR Re-flow
and Wave soldering. Typical profiles are shown on the right.
Reflow Solder Profile
250
When using a reflow process, care should be taken to
ensure that the CH chip is not subjected to a thermal
gradient steeper than 4 degrees per second; the ideal
gradient being 2 degrees per second. During the soldering
process, preheating to within 100 degrees of the solder's
peak temperature is essential to minimize thermal shock.
Once the soldering process has been completed, it is
still necessary to ensure that any further thermal shocks
are avoided. One possible cause of thermal shock is hot
printed circuit boards being removed from the solder
process and subjected to cleaning solvents at room
temperature. The boards must be allowed to cool gradually
to less than 50ºC before cleaning.
TEMPERATURE °C
Wave soldering is the most strenuous of the processes.
To avoid the possibility of generating stresses due to
thermal shock, a preheat stage in the soldering process
is recommended, and the peak temperature of the solder
process should be rigidly controlled.
MAXIMUM TEMPERATURE
230°C
200
40-80
SECONDS
ABOVE 183°C
150
RAMP RATE
<2°C/s
100
PREHEAT DWELL
50
0
PREHEAT ZONE
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
TIME (MINUTES)
Figure 7
Wave Solder Profile
300
MAXIMUM WAVE 260°C
250
TEMPERATURE °C
CH series devices have silver-platinum terminals (Ag/Pt),
and the recommended solder is 62/36/2 (Sn/Pb/Ag), 60/40
(Sn/Pb) or 63/37 (Sn/Pb). Littelfuse also recommends an
RMA solder flux.
200
150
SECOND PREHEAT
100
FIRST PREHEAT
50
0
0.0
0.5
1.0
1.5
Figure 8
2.0
2.5
3.0
TIME (MINUTES)
3.5
4.0
4.5
Lead–free (Pb-free) Soldering Recommendations
The reflow profile must be constrained by the maximums
in the Lead–free Reflow Profile. For Lead–free Wave
soldering, the Wave Solder Profile still applies.
Note: the Lead–free paste, flux and profile were used for
evaluation purposes by Littelfuse, based upon industry
standards and practices. There are multiple choices of all
three available, it is advised that the customer explores the
optimum combination for their process as processes vary
considerably from site to site.
Lead–free Re-flow Solder Profile
300
MAXIMUM TEMPERATURE 260˚C,
TIME WITHIN 5˚C OF PEAK
20 SECONDS MAXIMUM
250
TEMPERATURE °C
CH series devices have silver-platinum terminals (Ag/Pt),
and the recommended Lead-free solder is 96.5/3.0/0.5
(SnAgCu) with an RMA flux, though there is a wide
selection of pastes and fluxes available that should be
compatible.
RAMP RATE
<3˚C/s
200
60 - 150 SEC
> 217˚C
150
100
PREHEAT ZONE
50
0
Figure 9
CH Varistor Series
Revision: August 30, 2010
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
TIME (MINUTES)
©2010 Littelfuse, Inc.
Specifications are subject to change without notice.
Please refer to www.littelfuse.com/series/CH.html for current information.
Varistor Products
Surface Mount Varistors > CH Series
Part Numbering System
V 220 CH 8 X
PACKAGING OPTIONS
No Letter: Standard 13 Inch Reel
T: 7 Inch Reel
S: Bulk Pack
RELATIVE SIZE INDICATOR
LITTELFUSE VARISTOR
NOMINAL VARISTOR
VOLTAGE
SERIES DESIGNATOR
Dimensions
Symbol
C
NOTE 1
Min
Max
Millimeters
Min
Max
0.402
10.210
B
0.216
5.500
C
0.087
2.210
A
B
A
Inches
CH Series
PAD LAYOUT DIMENSIONS
D
-
0.080
-
2.03
E
0.016
0.050
0.41
1.27
L
0.311
0.335
7.90
8.51
W
0.185
0.207
4.70
5.26
NOTE: Avoid metal runs in this area. Soldering recommendations: Material - 62/36/2 Sn/Pb/
Ag or equivalent.Temperature – 230ºC Max., 5s. Max. Flux - R.M.A.
CHIP LAYOUT DIMENSIONS
E
L
D
W
©2010 Littelfuse, Inc.
Specifications are subject to change without notice.
Please refer to www.littelfuse.com/series/CH.html for current information.
CH Varistor Series
Revision: August 30, 2010
Varistor Products
Surface Mount Varistors > CH Series
Tape and Reel Specifications
Symbol
P0
E
W
P
P2
F
K0
D
SECTION
THRU
CAVITY
B0
A0
D1
PLAN VIEW OF STRIP
T1
T
H0 B0
R1
R2
K0
R3
A0
8.5 -/+ 0.1
A0
Cavity Width
5.5 -/+ 0.1
K0
Cavity Depth
2.0 Min.
H0
Ref. Plane for A0 and B0
R1, R2, R3
K
R4
MINIMUM
BENDING
RADIUS
REELED RADIUS DETAILS
Size (mm)
Cavity Length
T
CROSS SECTION
(REF. PLANE FOR A 0 & B0)
Parameter
B0
Tape Cavity Radii
+ 0.10
0.3
- 0.05
0.5 Max.
T
Carrier Tape Thickness
1.0 Max.
T1
Cover Tape Thickness
0.1 Max.
E
Sprocket Hole from Edge
1.75 -/+ 0.1
P0
Sprocket Hole Pitch
4.0 -/+ 0.1
D
Sprocket Hole Diameter
P2
Hole Centre to Component Centre
+ 0.1
1.5
- 0.0
2.0 -/+ 0.15
R4
Min. Bending Radius
D1
Ejection Hole Diameter
1.5 Min.
K
Overall Thickness
3.0 Min.
P
Pitch Of Component
8.0 -/+ 0.1
F
Sprocket Hole to Ejection Hole
7.5 -/+ 0.1
W
Carrier Tape Width
CAVITY DETAILS
30.5 Min.
16.0 -/+ 0.3
Notes :
t$POGPSNTUP&*"3FWJTJPO"
t$BOCFTVQQMJFEUP*&$1VCMJDBUJPO
Standard Packaging*
Special Packaging
CH Series varistors are always shipped in tape and reel.
The standard 13-inch reel utilized contains 4000 pieces.
Option 1
Note also that the CH Series receives no branding on the
chip itself.
Option 2
*NOTE: It is recommended that parts be kept in the sealed
bag provided and that parts be used as soon as possible
when removed from bags.
CH Varistor Series
Revision: August 30, 2010
7-inch reels containing 1000 pieces are
available. To order 7-inch reels add a 'T' suffix to
the part number; e.g., V47CH8T.
For small quantities (less than 100 pieces) the
units are shipped bulk pack. To order, add a 'S'
suffix to the part number; e.g., V47CH8S.
©2010 Littelfuse, Inc.
Specifications are subject to change without notice.
Please refer to www.littelfuse.com/series/CH.html for current information.