Intel ® 81348 I/O Processor Datasheet Product Features Two Integrated Intel XScale processors — 667 MHz, 800 MHz and 1.2 GHz — ARM* V5TE Compliant — Instruction/Data Cache: 32 KByte, 4-way Set Associative, NRU Replacement Algorithm, Lockable — Unified Level 2 Cache: 512 KByte Set Associative, NRU Replacement Algorithm — 128-Entry Branch Target Buffer — 8-Entry Write Buffer — 8-Entry Fill and Pend Buffer Internal Bus 128-bit wide at 333 MHz and 400 MHz depending on processor speed Can support either PCI-X or PCI Express* as an endpoint Can support both PCI-X Central Resource and PCI Express* Root Complex Support for PCI Express* Lane Widths of x1, x2, x4, x8 Eight Serial-Attached SCSI links — also capable of supporting direct-attached SATA targets Integrated SRAM Memory Controller (1 MB); dedicated to the SAS transport Address Translation Unit — 2 KB or 4 KB Outbound Read Queue — 4 KB Outbound Write Queue — 4 KB Inbound Read and Write Queue Application DMA Controller — Three Independent Channels Connected to the MCU and the South Internal Bus — 4 KByte Data Transfer Queue — CRC 32C Calculation — Performs Optional XOR on Read Data ® Multi-ported Memory Controller — Intel XScale processor inputs and north internal bus, south internal bus and ADMA input ports — PC3200 and PC4300 Double Data Rate (DDR2 400, DDR2 533) — Up to 4 GB of 64-bit DDR2 400, DDR2 533 — Optional Single-bit Error Correction, Multibit Detection ECC Support — Supports Registered and Unbuffered DDR2 Memory — 36-bit Addressable — 32-bit Memory Support Two Programmable 32-bit Timers and Watchdog Timer Sixteen General Purpose I/O Pins Eight ACTIVITY/STATUS pairs — one per SAS port Three I C Bus Interface Units Two UART (16550) Units — 64 Byte Receive and Transmit FIFOs — 4 pin Master/Slave Capable Peripheral Bus Interface — 8-, 16-bit Data Bus with Two Chip Selects — 25 Demultiplexed Address Lines Interrupt Controller Unit — Four Priority Levels — Interrupt Pending Register — Vector Generation — 16 External Interrupt Pins with High Priority Interrupt (HPI#) 1357-ball, Flip Chip Ball Grid Array (FCBGA), 37.5 mm x 37.5 mm and 1.0 mm ball pitch ® 2 Order Number: 315038-003US December 2007 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-5484725, or by visiting Intel’s Web Site. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details. Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by Intel that have not been made commercially available to the public, i.e., announced, launched or shipped. They are never to be used as “commercial” names for products. Also, they are not intended to function as trademarks. BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2007, Intel Corporation. All rights reserved. Legal Lines and Disclaimers Intel® 81348 I/O Processor Datasheet 2 December 2007 Order Number: 315038-003US Contents—Intel® 81348 Contents 1.0 Introduction ..............................................................................................................7 1.1 About This Document...........................................................................................7 1.1.1 Terminology ............................................................................................7 1.1.2 Other Relevant Documents ........................................................................7 2.0 Features ....................................................................................................................9 2.1 About the Intel® 81348 I/O Processor ...................................................................9 2.2 Intel® 81348 I/O Processor Features................................................................... 11 2.2.1 Host Interface........................................................................................ 11 2.2.2 Internal Busses...................................................................................... 12 2.2.3 Application DMA Controllers ..................................................................... 12 2.2.4 Address Translation Unit ......................................................................... 12 2.2.5 Messaging Unit ...................................................................................... 12 2.2.6 DDR2 Memory Controller......................................................................... 13 2.2.7 SRAM Memory Controller......................................................................... 13 2.2.8 Peripheral Bus Interface .......................................................................... 13 2.2.9 I C Bus Interface Units ........................................................................... 13 2.2.10 UART Units ............................................................................................ 13 2.2.11 Interrupt Controller Unit.......................................................................... 13 2.2.12 XSI System Controller............................................................................. 14 2.2.13 Inter-Processor Communication................................................................ 14 2.2.14 Timers .................................................................................................. 14 2.2.15 GPIO .................................................................................................... 14 3.0 Package Information ............................................................................................... 15 3.1 Package Introduction ......................................................................................... 15 3.2 Functional Signal Definitions ............................................................................... 15 3.2.1 Signal Pin Descriptions............................................................................ 15 4.0 Electrical Specifications ........................................................................................... 62 4.1 V Pin Requirements .................................................................................... 64 4.2 Targeted DC Specifications ................................................................................. 66 4.3 Targeted AC Specifications ................................................................................. 68 4.3.1 Clock Signal Timings............................................................................... 68 4.3.2 DDR2 SDRAM Interface Signal Timings...................................................... 71 4.3.3 Peripheral Bus Interface Signal Timings..................................................... 72 4.3.4 I C/SMBus Interface Signal Timings.......................................................... 73 4.3.5 PCI Bus Interface Signal Timings .............................................................. 74 4.3.6 PCI Express* Differential Transmitter (Tx) Output Specifications................... 75 4.3.7 PCI Express* Differential Receiver (Rx) Input Specifications ......................... 77 4.3.8 Boundary Scan Test Signal Timings .......................................................... 78 4.4 AC Timing Waveforms........................................................................................ 79 4.5 Storage Interface Electrical Specifications............................................................. 88 2 CCPLL 2 December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 3 Intel® 81348—Contents Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Intel® 81348 I/O Processor Functional Block Diagram...................................................10 1357-Lead FCBGA Package (Top and Bottom Views) .....................................................40 Intel 81348 I/O processor Ballout—Package Top (Left Side) .........................................42 Intel 81348 I/O processor Ballout—Package Top (Right Side) .......................................43 Intel 81348 I/O processor Ballout—Package Bottom (Left Side) ....................................44 Intel 81348 I/O processor Ballout—Package Bottom (Right Side) ..................................45 V Low-Pass Filter .........................................................................................64 ,V Low-Pass Filter......................................................................65 V V ,V Low-Pass Filter.........................................................................65 Clock Timing Measurement Waveforms........................................................................79 Output Timing Measurement Waveforms .....................................................................80 Input Timing Measurement Waveforms........................................................................81 I C Interface Signal Timings ......................................................................................81 DDR2 SDRAM Write Timings ......................................................................................82 DQS Falling Edge Output Access Time to/from M_CK Rising Edge ....................................82 DDR2 SDRAM Read Timings .......................................................................................83 AC Test Load for all Signals Except PCI, PCI-Express and DDR2 and Storage PHY ............................................................................................................83 AC Test Load for DDR2 SDRAM Signals........................................................................83 PCI/PCI-X TOV(max) Rising Edge AC Test Load ............................................................84 PCI/PCI-X TOV(max) Falling Edge AC Test Load............................................................84 PCI/PCI-X TOV(min) AC Test Load ..............................................................................84 Transmitter Test Load (100 Ω diff Load) ......................................................................84 Transmitter Eye Diagram...........................................................................................85 Receiver Eye Opening (Differential).............................................................................85 PBI Output Timings...................................................................................................86 PBI External Device Timings (Flash) ............................................................................87 Maximum Amplitude .................................................................................................89 Intel® 81348 I/O Processor Storage PHY 1.2 V/1.8 V Power Sequencing System Requirements ...............................................................................................90 ® ® ® ® CC3P3PLLX CC1P2PLLS0 CC1P2PLLD CC1P2PLLS1 CC1P2PLLP 2 Intel® 81348 I/O Processor Datasheet 4 December 2007 Order Number: 315038-003US Contents—Intel® 81348 Tables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Pin Description Nomenclature .................................................................................... 15 DDR2 SDRAM Signals ............................................................................................... 16 Peripheral Bus Interface Signals................................................................................. 18 Compact PCI Hot Swap Signals .................................................................................. 19 PCI Bus Signals ....................................................................................................... 20 PCI Express* Signals ................................................................................................ 23 Storage Interface Signals .......................................................................................... 24 Interrupt Signals...................................................................................................... 27 I C and SM Bus Signals ............................................................................................ 28 UART Signals........................................................................................................... 29 Miscellaneous Signals ............................................................................................... 31 Power and Ground Signals......................................................................................... 32 Reset Strap Signals .................................................................................................. 33 Functional Pin Mode Behavior .................................................................................... 36 Intel 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings ...................... 46 Intel 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings................... 54 Absolute Maximum Ratings ....................................................................................... 62 Operating Conditions ................................................................................................ 63 DC Characteristics.................................................................................................... 66 I Characteristics.................................................................................................... 67 PCI Clock Timings .................................................................................................... 68 PCI Express* Clock Timings....................................................................................... 69 DDR2 Output Clock Timings....................................................................................... 70 DDR2 SDRAM Signal Timings ..................................................................................... 71 Peripheral Bus Interface Signal Timings....................................................................... 72 I C/SMBus Signal Timings ......................................................................................... 73 PCI Signal Timings ................................................................................................... 74 PCI Express* Rx Input Specifications .......................................................................... 75 PCI Express* Tx Output Specifications ........................................................................ 76 PCI Express* Rx Input Specifications .......................................................................... 77 Boundary Scan Test Signal Timings ............................................................................ 78 AC Measurement Conditions ...................................................................................... 83 Storage Interface Reference Clock Electrical Characteristics [S_CLKP0/S_CLKN0] ............. 88 Storage Interface Transmitter Output Electrical Characteristics [S_TXP[7:0] S_TXN[7:0]... 89 Storage Interface Receiver Input Electrical Characteristics [S_RXP[7:0] S_RXN[7:0].......................................................................................... 90 2 ® ® CC 2 December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 5 Intel® 81348—Contents Revision History Date Revision Description December 2007 003 Revised for 4 GB memory support. Updated Legal page 2. Edited text in Section 2.2.2. Revise PCIXCAP description in Table 5. April 2007 002 Updated Table 19 for Cgp, Cpcix, Cddr2 and Lpin values. Revised Table 18 for Tcase (Tc) maximum value to 100C. Revised Figure 28. October 2006 001 Initial release. Intel® 81348 I/O Processor Datasheet 6 December 2007 Order Number: 315038-003US Introduction—Intel® 81348 1.0 Introduction 1.1 About This Document This document is a reference guide for the external architecture of the Intel 81348 I/O Processor (also known as the 81348). ® 1.1.1 Terminology To aid the discussion of the 81348 architecture, the following terminology is used: Downstream At or toward a PCI bus with a higher number (after configuration) Word 16 bits of data Dword 32 bits of data Qword 64 bits of data Host processor Processor located upstream from the 81348 Local processor Intel XScale processor within the 81348 Local bus 81348 internal bus Local memory Memory subsystem on the Intel XScale microarchitecture, DDR2 SDRAM or Peripheral Bus Interface busses Upstream At or toward a PCI bus with a lower number (after configuration) ® ® 1.1.2 Other Relevant Documents 1. Intel XScale® Microarchitecture Developer’s Manual (Order Number 273473)—Intel Corporation 2. PCI Local Bus Specification, Revision 2.3—PCI Special Interest Group 3. PCI-X Addendum to the PCI Local Bus Specification, Revision 2.0a—PCI Special Interest Group 4. PCI Hot-Plug Specification, Revision 1.0—PCI Special Interest Group 5. PCI Bus Power Management Interface Specification, Revision 1.1—PCI Special Interest Group 6. PCI Express Specification, Revision 1.0a—PCI Special Interest Group December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 7 Intel® 81348—Introduction Intel® 81348 I/O Processor Datasheet 8 December 2007 Order Number: 315038-003US Features—Intel® 81348 2.0 2.1 Features About the Intel® 81348 I/O Processor The 81348 is a single- or dual-function PCI device that integrates two Intel XScale processors with intelligent peripherals including a PCI bus interface and eight SerialAttached SCSI (SAS) engines. The 81348 also supports two internal busses: North XSI bus and South XSI bus. With the two internal busses, transactions can take place simultaneously on each bus. The north XSI bus provides the two Intel XScale processors with low-latency access to either the DDR2 SDRAM Memory Controller, the on-chip SRAM Memory Controller, or the SAS Engines control registers. Peripherals that generate large burst transactions are located on the south XSI bus, thus allowing the two Intel XScale processors exclusive access to the north XSI bus. The 81348 consolidates the following features into a single system: • Two Intel XScale processors running at speeds up to 1.2 GHz • Eight Serial Protocol Links capable of Serial-Attached SCSI (SAS) or Serial ATA (SATA) operation • PCI–Local Memory Bus Address Translation Unit, function 0 programming interface • Messaging Unit, function 0 programming interface • Application Direct Memory Access (DMA) Controller (including offload for up to a 16-source XOR operation) • Transport DMA Controllers • Peripheral Bus Interface Unit • Integrated DDR2 Memory Controller • Integrated SRAM Memory Controller • Two programmable timers per Intel XScale processor • Watchdog timer per Intel XScale processor • Three I C Bus Interface Units • Two Serial Port Units • Sixteen General-Purpose Input/Output (GPIO) ports • ACTIVITY/STATUS pin pairs—one per SAS Engine • Internal North Bus–South Bus Bridge It is an integrated processor that addresses the needs of intelligent I/O storage applications and helps reduce intelligent I/O system costs. The 81348 can support PCI-X 1.0b and/or PCI Express* as a reset option. The PCI bus is an industry standard, high-performance, low-latency system bus. The 81348 PCI bus is capable of 133 MHz operation in PCI-X 1.0b mode (as defined by the PCI-X Addendum to the Local Bus Specification, Revision 1.0b). Also, the processor supports a 66 MHz conventional PCI mode (as defined by the PCI Local Bus Specification, Revision 2.3). The addition of the Intel XScale processors brings intelligence to the PCI bus application bridge. 81348 supports an x8 PCI Express* interface. ® ® ® ® ® ® 2 ® December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 9 Intel® 81348—Features The 81348 can be set up as a single- or dual-function PCI device at reset using external straps. Refer to the “Clocking and Reset” section in the Intel 81348 I/O Processor Developer’s Manual for a description of the reset options. When the 81348 is configured as a single-function device, the host programming interface is presented as the Address Translation Unit (ATU) and the Messaging Unit (MU). The MU provides the messaging interface between the host processor and the 81348. When the 81348 is configured as a dual-function device, PCI function 0 host programming interface is presented as the ATU with the MU. The reset strapping options determine how the controller’s SAS/SATA ports are assigned to function 1 and function 0. Both the address and data busses on the 81348 south XSI bus are byte-wise parity protected. All the peripherals connected to the south XSI bus can check and generate parity. Figure 1 is a block diagram of the 81348. Intel® 81348 I/O Processor Functional Block Diagram ® Figure 1. Intel XScale® Processor (Core ID = 1H) 512K L2 Cache Timers Timers Interrupt Controller Interrupt Controller Inter Core Interrupt Inter Core Interrupt 128- Intel XScale® Processor (Core ID = 0H) 512K L 2 Cache Bit North Internal Bus IMU Bridge PCI - X PCI - E Multi - Port SRAM Memory Controller Multi - Port DDR II SDRAM Memory Controller 72 - Bit I/F Three Application DMA Channels SAS Serial Bus SAS 0 PHY SAS 1 PHY SAS Serial Bus SAS 7 PHY Two Transport DMA Channels Host Interface ( ATU , CHAP) 128- Bit South Internal Bus Host Interface ( ATU , CHAP) PBI Unit (Flash) SMBus Unit APB Three I 2 C Bus Interface Two UARTs Intel® 81348 I/O Processor 16 -Bit I/F SMBus I 2 C Bus Serial Bus B 6140- 01 Intel® 81348 I/O Processor Datasheet 10 December 2007 Order Number: 315038-003US Features—Intel® 81348 2.2 Intel® 81348 I/O Processor Features The 81348 combines two Intel XScale processors with powerful new features to create an intelligent I/O storage processor. This single- or dual-function PCI device is fully compliant with the PCI-X Addendum to the PCI Local Bus Specification, Revision 2.0 and PCI Express Specification, Revision 1.0. Features specific to 81348 include the following: • Address Translation Unit • DDR2 SDRAM Memory Controller • Messaging Unit • Transport DMA Controllers • Flash Interface Unit • UART Units • Chip Architecture Performance Unit • Address and Data Bus Parity Protection • I C Bus Interface Units • Inter-Processor Communication • Multi-Port SRAM Memory Controller • Timers • Application DMA Controllers • Watchdog Timers • XSI System Controller (north and • Eight SAS Link Engines with south) integrated PHYs The 81348 is based upon two Intel XScale processors. The processor operates at a maximum frequency of 1.2 GHz. The instruction cache is 32 Kbytes in size and is 4-way set associative. Also, the processor includes a data cache that is 32 Kbytes and is 4way set associative. The Intel XScale processors also support a unified 512-Kbyte Level 2 (L2) cache that is 8-way set associative. The 81348 includes sixteen General Purpose I/O (GPIO) pins, and eight ACTIVITY/ STATUS pin pairs which are used for SAS links for activity and status indicators. Each SAS link uses one ACTIVITY/STATUS pin pair. The subsections that follow provide a brief overview of each feature. Refer to the appropriate chapter in the Intel® 81348 I/O Processor Developer’s Manual for full technical descriptions. ® 2 ® ® Note: 2.2.1 Host Interface The 81348 can be set up as either a single- or dual-function PCI device, providing PCIX or PCI Express* interface or both PCI-X and PCI Express* interfaces. The PCI interface is selected as a reset option. When set up as a single-function PCI device, the Address Translation Unit (ATU) and the Messaging Unit (MU) provide the programming interface between the host processor and the 81348. When set up as a dual-function device, the ATU and the MU provide the programming interface between the host processor and the 81348 for function 0, whereas the Third-Party Messaging Interface (TPMI) provides the programming interface between the host processor and the 81348 for function 1. The PCI interface is selected as a reset option. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 11 Intel® 81348—Features 2.2.2 Internal Busses The 81348 is built around two internal busses: north internal bus and south internal bus. The two busses use the same bus protocol. The north internal bus is 128 bits wide and operates at up to 400 MHz. The north bus connects the two Intel XScale processors, which have direct access to the DDR2 SDRAM and SRAM. The Intel XScale processors also have direct access to the SAS/SATAFibre Channel engine memorymapped registers. The north XSI bus is designed to provide the two Intel XScale processors with low-latency access. The south internal bus is 128 bits wide and operates at up to 400 MHz. The south XSI bus provides the data paths for burst transactions generated by the DMAs. The south XSI bus internal address and data busses are parity-protected on a byte-wise basis. Agents on the south XSI bus can generate and check address and data parity. The point-to-point interfaces between the agents and the DDR2 and SRAM Memory Controllers are also parity-protected on a byte-wise basis. Internal busses run at 333MHz for 667MHz core speed. Internal busses run at 400MHz for 800MHz and 1.2GHz core speeds. ® ® ® Note: 2.2.3 Application DMA Controllers There are three Application DMA Controllers. The Application DMA Controller is dualported—with one of its ports connected to the south XSI bus and the other port to the DDR2 SDRAM Memory Controller. This Application DMA Controller allows low-latency, high-throughput data transfers between PCI bus agents and the DDR2 memory. The DMA controller also allows data transfer between DDR2 Memory. The DMA Controller supports chaining and unaligned data transfers. It is programmable through the Intel XScale processor and the host processor. In addition to simple data transfers, the ADMA performs XOR operations with up to 16 sources. ® 2.2.4 Address Translation Unit The Address Translation Unit (ATU) allows PCI transactions direct access to the 81348 local memory. The ATU provides interface for the RAID Controller PCI function. The ATU supports transactions between PCI address space and the 81348 address space. Address translation is controlled through programmable registers accessible from both the PCI interface and the Intel XScale processor. Dual access to registers allows flexibility in mapping the two address spaces. The ATU also supports the following extended capability configuration headers: 1. Power Management header, as defined by PCI Bus Power Management Interface Specification, Revision 1.1. 2. Message Signaled Interrupt capability structure, as specified in PCI Local Bus Specification, Revision 2.3. 3. PCI-X Capabilities List Item, as specified in the PCI-X Addendum to the Local Bus Specification, Revision 1.0b. ® Intel® 81348 I/O Processor Datasheet 12 December 2007 Order Number: 315038-003US Features—Intel® 81348 2.2.5 Messaging Unit 2.2.6 DDR2 Memory Controller 2.2.7 SRAM Memory Controller 2.2.8 Peripheral Bus Interface 2.2.9 I2C Bus Interface Units The Messaging Unit (MU) provides data transfer between the PCI system and the 81348. It uses interrupts to notify each system when new data arrives. The MU has four messaging mechanisms: Message Registers, Doorbell Registers, Circular Queues, and Index Registers. Each allows a host processor or external PCI device and the 81348 to communicate through message passing and interrupt generation. The MU, in conjunction with the ATU, exists as the PCI interface for PCI function 0 when function 0 is set up as a RAID controller. The DDR2 Memory Controller allows direct control of the 400/533 MHz DDR2 SDRAM memory subsystem. It features programmable chip selects and support for errorcorrection codes (ECC). The DDR2 Memory Controller is multi-ported with the following interfaces: south internal bus, ADMA controllers, north internal bus. The memory controller interface configuration support includes unbuffered DIMMs, registered DIMMs, and discrete DDR2 SDRAM devices. The SRAM Memory Controller allows direct control of a 1.0 MByte SRAM memory subsystem. It supports error correction codes (ECC). The SRAM Memory Controller is ported with the following port: North internal bus. The Peripheral Bus Interface Unit is a data communication path to the flash memory components or other peripherals of a 81348 hardware system. The PBI includes support for either 8- or 16-bit devices. To perform these tasks at high bandwidth, the bus features a burst-transfer capability which allows successive 8/16-bit data transfers. There are three I C (Inter-Integrated Circuit) Bus Interface Units that allow the Intel XScale processor to serve as a master and slave device residing on the I C bus. The to interface to a storage enclosure processor, SEP. For I C0 allows the I/O processor more information, refer to I2C Peripherals for Microcontrollers (Philips Semiconductor) . 2 ® 2 2 1 2.2.10 UART Units The 81348 includes two UART units. The UART unit allow the two Intel XScale processors to serve as a master and slave device residing on the UART bus. The UART units use a serial bus consisting of a two-pin interface. UART0 allows the 81348 to interface to a console port for debugging. Also refer to the National Semiconductor* 16550 device specification . ® 2 1. http://www.semiconductors.philips.com/buses/i2c/ 2. http://www.national.com/pf/PC/PC16550D.html December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 13 Intel® 81348—Features 2.2.11 Interrupt Controller Unit Each Intel XScale processor supports an Interrupt Controller Unit (ICU). The ICU aggregates interrupt sources both external and internal sources of the 81348 to the Intel XScale processor. The ICU supports high-performance interrupt processing with direct interrupt service routine vector generation on a per-source basis. Each source has programmability for masking, processor interrupt input, and priority. ® ® 2.2.12 XSI System Controller 2.2.13 Inter-Processor Communication Each XSI bus (north and south) employs an XSI system controller. The XSI system controller observes all the address or data bus requests from requestors and completors connected to the XSI bus. The XSI system controller handles XSI address bus arbitration, XSI data bus arbitration, framing Address bus cycles, and framing Data bus cycles. The XSI system controller provides the shared address and shared data paths from/to units. Each Intel XScale processor can interrupt or issue a reset to the second Intel XScale processor. Each processor can generate up to 32 interrupts to the second processor. ® 2.2.14 Timers 2.2.15 GPIO ® The 81348 supports two programmable 32-bit timers per processor. The 81348 also supports one watchdog timer per processor. The 81348 includes sixteen General-Purpose I/O (GPIO) pins, and eight ACTIVITY/ STATUS pin pairs. Intel® 81348 I/O Processor Datasheet 14 December 2007 Order Number: 315038-003US Package Information—Intel® 81348 3.0 Package Information 3.1 Package Introduction 3.2 Functional Signal Definitions 3.2.1 Signal Pin Descriptions Table 1. Pin Description Nomenclature The 81348 is offered in a 1357-ball FCBGA5 package. This section defines the pins and signals. Symbol Description I O I/O OD PWR GND — Input pin only Output pin only Pin can be either an input or an output Open-drain pin Power pin Ground pin Pin must be connected as described Synchronous. Signal meets timings relative to a clock. • Sync(P): Synchronous to P_CLKIN • Sync(M): Synchronous to M_CK[2:0] / M_CK#[2:0] • Sync(T): Synchronous to TCK Asynchronous. Inputs can be asynchronous relative to all clocks. All asynchronous signals are level-sensitive. Indicates read or write capability. The pin is reset with WARM_RST# or P_RST#. The pin is reset with M_RST#. M_RST# is asserted when the memory subsystem is reset. The pin is reset with PB_RSTOUT#. PB_RSTOUT# is asserted when the Peripheral Bus Interface subsystem is reset. The pin is reset with TRST#. The pin is an active-low signal. The pin is a differential signal pair. • “P” at the end of a differential pin name indicates “positive”. • “N” at the end of a differential pin name indicates “negative”. Sync(...) Async R/W Rst(P) Rst(M) Rst(PB) Rst(T) ActLow Diff December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 15 Intel® 81348—Package Information Table 2. DDR2 SDRAM Signals (Sheet 1 of 2) Name Count Type Description M_CK[2:0], M_CK#[2:0] 6 O Diff Memory Clockout: is used to provide the three differential clock pairs to the unbuffered DIMM for the external SDRAM memory subsystem. Registered DIMMs use only the M_CK[0]/M_CK#[0] pair, which drives the input to the on-DIMM PLL. M_RST# 1 MA[14:0]a 14 BA[2:0] 3 RAS# 1 CAS# 1 WE# 1 CS[1:0]# 2 CKE[1:0] 2 DQ[63:0] 64 CB[7:0] 8 DQS[8:0], DQS#[8:0] 18 DM[8:0] 9 M_VREF 1 I ODT[1:0] 2 O Sync(M) Rst(M) Intel® 81348 I/O Processor Datasheet 16 O Async ActLow O Sync(M) Rst(M) O Sync(M) Rst(M) O Sync(M) Rst(M) ActLow O Sync(M) Rst(M) ActLow O Sync(M) Rst(M) ActLow O Sync(M) Rst(M) ActLow O Sync(M) Rst(M) I/O Sync(M) Rst(M) I/O Sync(M) Rst(M) I/O Sync(M) Rst(M) Diff O Sync(M) Rst(M) Memory Reset: indicates that the memory subsystem has been reset. It is used to re-initialize registered DIMMs. Memory Address Bus: carries the multiplexed row and column addresses to the SDRAM memory banks. Auto-precharge is not supported. SDRAM Bank Address: controls which of the internal banks to read or write. BA[1:0] are used for 512 Mbit technology memory. BA[2:0] are used for 1 Gbit technology memory. SDRAM Row Address Strobe: indicates the presence of a valid row address on the Multiplexed Address Bus MA[13:0]. SDRAM Column Address Strobe: indicates the presence of a valid column address on the Multiplexed Address Bus MA[13:0]. SDRAM Write Enable: indicates whether the current memory transaction is a read or write operation. SDRAM Chip Select: enables the SDRAM devices for a memory access. One for each physical bank. SDRAM Clock Enable enables: the clocks for the SDRAM memory. Deasserting places the SDRAM in self-refresh mode. One for each physical bank. SDRAM Data Bus: carries 64-bit data to and from memory. During the data cycle, read or write data is present on one or more contiguous bytes. During write operations, unused pins drive to determinate values. SDRAM ECC Check Bits: carry the 8-bit ECC code to and from memory during data cycles. SDRAM Data Strobes: carry differential or single-ended strobe signals, output in write mode, and input in read mode for source synchronous data transfer. SDRAM Data Mask: controls which bytes on the data bus are to be written. When DM[8:0] is asserted, the SDRAM devices do not accept valid data from the byte lanes. SDRAM Voltage Reference: is used to supply the input switching reference voltage for the memory input signals. On-Die Termination: is used to turn on SDRAM on-die termination during writes. December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 2. DDR2 SDRAM Signals (Sheet 2 of 2) Name Count Type M_CAL[0] 1 O M_CAL[1] 1 O Description Memory Calibration: Connected to an external calibration resistor. Memory output drivers reference the resistor to dynamically adjust drive strength to compensate for temperature and voltage variations. This pin connected through a 24.9 Ω 1% resistor to ground. Memory Calibration: Connected to an external calibration resistor. Memory output drivers reference the resistor to dynamically adjust ODT resistance to compensate for temperature and voltage variations. This pin connected through a 301 Ω 1% resistor to ground. Total 135 a. MA[14] is only needed for 4GB memory support. When 4GB memory is not used this pin is NC. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 17 Intel® 81348—Package Information Table 3. Peripheral Bus Interface Signals Name Count Type Description A[24:0] 25 O Rst(PB) D[15:0] 16 I/O Rst(PB) POE# 1 O Rst(PB) ActLow PWE# 1 O Rst(PB) ActLow PCE[1:0]# 2 O Rst(PB) ActLow PB_RSTOUT# 1 Total 46 O ActLow Peripheral Address Bus: carries the address bits for the current access. The PBI interface can address up to 32 MBytes. Peripheral Data Bus: carries read or write data to and from memory. During write operations to 8-bit wide memory regions, the PBI drives unused bus pins to determinate values. Peripheral Output Enable: indicates whether bus access is write or read with respect to I/O processor and is valid during entire bus access. This pin can be used to control output enable on a peripheral device. 0 = Read 1 = Write Peripheral Write Enable: indicates to the peripheral device whether or not to write data to the addressed space. This pin can be used to control the write enable on the peripheral device. 0 = Write 1 = Read Peripheral Chip Enable: Specifies which of the two memory address ranges are associated with the current bus access. The pin remains valid during the entire bus access. Note: These pins must be pulled up to VCC3P3 with external 8.2K Ω 5%, 1/16 Ω resistors for proper operation. Peripheral Bus Reset Out: can be used to reset the peripheral device. It has the same timing as the internal bus reset. Intel® 81348 I/O Processor Datasheet 18 December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 4. Compact PCI Hot Swap Signals Name Count HS_ENUM# 1 HS_LSTAT 1 HS_LED_OUT 1 HS_FREQ[1:0] / CR_FREQ[1:0] 2 Type Description Hot Swap Event: Conditionally asserted to notify system host that OD either a board has been freshly inserted or is about to be extracted. Rst(P) This signal informs the system host that the configuration of the ActLow system has changed. The system host then performs any necessary maintenance such as installing or quiesing a device driver. Hot Swap Latch Status: Input indicating state of the ejector switch. I 0 = Indicates the ejector switch is closed. Rst(P) 1 = Indicates the ejector switch is open. If Compact PCI Hot Swap not supported, tie this signal low. O Hot Swap LED Output: outputs a logic one to illuminate the Hot Rst(P) Swap blue LED. Hot Swap Frequency: In Hot Swap mode, these pins are inputs, determining the bus frequency and mode during a PCI-X hot swap event. These are valid only when PCIX_EP# = 0 and HS_SM# = 0. 00 =133 MHz PCI-X 01 =100 MHz PCI-X 10 = 66 MHz PCI-X I/O 11 = 33 or 66 MHz. PCI (frequency depends on P_M66EN) Rst(P) Central Resource Frequency: While in Central Resource mode, these pins are outputs, which control the external PCI-X clock generator. These are valid only when PCIX_EP# = 1. 00 = 133 MHz Total December 2007 Order Number: 315038-003US 5 01 =100 MHz 10 =66 MHz 11 =33 MHz • These pins have internal pull-ups. Intel® 81348 I/O Processor Datasheet 19 Intel® 81348—Package Information Table 5. PCI Bus Signals (Sheet 1 of 3) Name Count Type Description P_AD[63:32] 32 I/O Sync(P) Rst(P) PCI Address/Data: is the upper 32 bits of the PCI data bus driven during the data phase. P_AD[31:0] 32 I/O Sync(P) Rst(P) PCI Address/Data: is the multiplexed PCI address and lower 32 bits of the data bus. P_CBE[7]# 1 I/O Sync(P) Rst(P) ActLow PCI Bus Command and Byte Enables: are multiplexed on the same PCI pins. During the address phase, they define the bus command. During the data phase, they are used as byte enables. 1 I/O Sync(P) Rst(P) ActLow PCI Bus Command and Byte Enables: are multiplexed on the same PCI pins. During the address phase, they define the bus command. During the data phase, they are used as byte enables. 1 I/O Sync(P) Rst(P) ActLow PCI Bus Command and Byte Enables: are multiplexed on the same PCI pins. During the address phase, they define the bus command. During the data phase, they are used as byte enables. P_CBE[4]# 1 I/O Sync(P) Rst(P) ActLow PCI Bus Command and Byte Enables: are multiplexed on the same PCI pins. During the address phase, they define the bus command. During the data phase, they are used as byte enables. P_CBE[3]# 1 I/O Sync(P) Rst(P) ActLow PCI Bus Command and Byte Enables: are multiplexed on the same PCI pins. During the address phase, they define the bus command. During the data phase, they are used as byte enables. 1 I/O Sync(P) Rst(P) ActLow PCI Bus Command and Byte Enables: are multiplexed on the same PCI pins. During the address phase, they define the bus command. During the data phase, they are used as byte enables. 1 I/O Sync(P) Rst(P) ActLow PCI Bus Command and Byte Enables: are multiplexed on the same PCI pins. During the address phase, they define the bus command. During the data phase, they are used as byte enables. P_CBE[0]# 1 I/O Sync(P) Rst(P) ActLow PCI Bus Command and Byte Enables: are multiplexed on the same PCI pins. During the address phase, they define the bus command. During the data phase, they are used as byte enables. P_PAR64 1 I/O Sync(P) Rst(P) PCI Bus Upper DWORD Parity is even parity across P_AD[63:32] and P_CBE_#[7:4]. P_REQ64# 1 I/O Sync(P) Rst(P) ActLow PCI Bus Request 64-Bit Transfer indicates the attempt of a 64-bit transaction on the PCI bus. When the target is 64-bit capable, the target acknowledges the attempt with the assertion of P_ACK64_#. P_ACK64# 1 I/O Sync(P) Rst(P) ActLow PCI Bus Acknowledge 64-Bit Transfer indicates that the device has positively decoded its address as the target of the current access and the target is willing to transfer data using the full 64bit data bus. P_CBE[6]# P_CBE[5]# P_CBE[2]# P_CBE[1]# Intel® 81348 I/O Processor Datasheet 20 December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 5. PCI Bus Signals (Sheet 2 of 3) Name Count Type 1 I/O Sync(P) Rst(P) PCI Bus Parity is even parity across P_AD[31:0] and P_CBE_#[3:0]. 1 I/O Sync(P) Rst(P) ActLow PCI Bus Cycle Frame is asserted to indicate the beginning and duration of an access. P_IRDY# 1 I/O Sync(P) Rst(P) ActLow P_TRDY# 1 I/O Sync(P) Rst(P) ActLow 1 I/O Sync(P) Rst(P) ActLow PCI Bus Stop indicates a request to stop the current transaction on the PCI bus. 1 I/O Sync(P) Rst(P) ActLow PCI Bus Device Select is driven by a target agent that has successfully decoded the address. As an input, it indicates whether or not an agent has been selected. 1 I/O OD Sync(P) Rst(P) ActLow PCI Bus System Error is driven for address parity errors on the PCI bus. P_PAR P_FRAME# P_STOP# P_DEVSEL# P_SERR# O Async ActLow P_RSTOUT# 1 P_PERR# 1 P_M66EN 1 P_IDSEL 1 December 2007 Order Number: 315038-003US I/O Sync(P) Rst(P) ActLow I I Sync(P) Description PCI Bus Initiator Ready indicates the initiating agent’s ability to complete the current data phase of the transaction. During a write, it indicates that valid data is present on the address/data bus. During a read, it indicates that the processor is ready to accept the data. PCI Bus Target Ready indicates the target agent’s ability to complete the current data phase of the transaction. During a read, it indicates that valid data is present on the address/data bus. During a write, it indicates that the target is ready to accept the data. PCI Reset Out is based on P_RST# and WARM_RST#. It brings PCI-specific registers, sequencers, and signals to a consistent state. When either P_RST# or WARM_RST# is asserted, it causes P_RSTOUT# to assert and: • PCI output signals are driven to a known consistent state. • PCI bus interface output signals are three-stated. • Open-drain signals such as P_SERR_# are floated. P_RSTOUT# can be asynchronous to P_CLK when asserted or deasserted. PCI Bus Parity Error is asserted when a data parity error occurs during a PCI bus transaction. PCI Bus 66 MHz Enable indicates the speed of the PCI bus. When this signal is sampled high, the PCI bus speed is 66 MHz; when low, the bus speed is 33 MHz. PCI Bus Initialization Device Select is used to select the 81348 during a configuration read or write. Note: In central resource mode this pin must be pulled down to VSS with an external 4.7K Ω 5%, 1/16 Ω resistor for proper operation. Intel® 81348 I/O Processor Datasheet 21 Intel® 81348—Package Information Table 5. PCI Bus Signals (Sheet 3 of 3) Name P_GNT[0]# / P_REQ# Count 1 Type O Sync(P) ActLow I Sync(P) Rst(P) ActLow P_REQ[0]# / P_GNT# 1 P_GNT[3:1]# 3 O Sync(P) ActLow P_REQ[3:1]# 3 I Sync(P) Rst(P) ActLow P_PCIXCAP 1 I P_BMI 1 O Sync(P) Rst(P) O P_CAL[0] 1 O P_CAL[1] 1 O P_CAL[2] 1 P_CLKIN 1 P_CLKOUT 1 P_CLKO[3:0] 4 Total Intel® 81348 I/O Processor Datasheet 22 I O O Description PCI Bus Grant: • Internal arbiter mode: This is one of four output grant signals from the internal arbiter. PCI Bus Request: • External arbiter mode: This is the output request signal for the ATU. PCI Bus Request: • Internal arbiter mode: This is one of four input request signals to the internal arbiter. PCI Bus Grant: • External arbiter mode: This is the input grant signal to the ATU. PCI Bus Grant: • External arbiter mode: Not used • Internal arbiter mode: These are three of four output grant signals from the internal arbiter. PCI Bus Request: • External arbiter mode: Not used • Internal arbiter mode: These are three of four input request signals to the internal arbiter. PCI-X Capability: Refer to the Intel® 81348 I/O Processor Specification Update for more details. PCI Bus Master Indicator indicates that the I/O processor is mastering a transaction on the PCI bus. PCI Calibration is connected to an external calibration resistor. The VCCVIO PCI output drivers reference the resistor to dynamically adjust the drive strength to compensate for voltage and temperature variations. This pin is connected through a 22.1 Ω 1% resistor to ground. PCI Calibration is connected to an external calibration resistor. The PCI output drivers reference the resistor to dynamically adjust the ODT resistance to compensate for voltage and temperature variations. This pin is connected through a 121 Ω 1% resistor to ground. PCI Calibration is connected to an external calibration resistor. The VCC3P3 PCI output drivers reference the resistor to dynamically adjust the drive strength to compensate for voltage and temperature variations. This pin is connected through a 22.1 Ω 1% resistor to ground. PCI Bus Input Clock provides the AC timing reference for all PCI transactions. PCI Bus Output Clock: When REFCLKN/REFCLKP are used, the I/O processor can generate the PCI output clocks. This pin is then connected to P_CLKIN and trace length matched to P_CLKO[3:0]. PCI Bus Output Clocks: When REFCLKN/REFCLKP are used, the I/O processor can generate the PCI output clocks. These pins then provide the PCI clocks to devices on the PCI bus. 105 December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 6. PCI Express Signals Name REFCLKP, REFCLKN PETP[7:0], PETN[7:0] PERP[7:0], PERN[7:0] Count Type Description 2 16 I Diff O Diff I Diff PE_CALP, PE_CALN 2 I/O Total 36 PCI Express* Clock is the 100 MHz differential input reference clock for the PCI Express* interface. PCI Express* Transmit carries the differential output serial data and embedded clock for the PCI Express* interface. PCI Express* Receive carries the differential input serial data and embedded clock for the PCI Express* interface. PCI Express* Calibration pins are connected to an external calibration resistor. The PCI Express* output drivers can reference the resistor to dynamically adjust their slew rate and drive strength to compensate for voltage and temperature variations. A 1.4K Ω 1% resistor is connected between these two pins. December 2007 Order Number: 315038-003US 16 Intel® 81348 I/O Processor Datasheet 23 Intel® 81348—Package Information Table 7. Storage Interface Signals (Sheet 1 of 3) Name Count Type Description S_CLKN0, S_CLKP0 2 I Diff S_TXP[7:0], S_TXN[7:0] 16 O Diff S_RXP[7:0], S_RXN[7:0] 16 I Diff RBIAS[1:0] 2 O RBIAS_SENSE[ 1:0] 2 I/O S_ACT0 / SCLOCK0 1 OD S_STAT0 / SLOAD0 1 OD S_ACT1 1 OD S_STAT1 1 OD S_ACT2 / SDATAIN0 1 OD S_STAT2 / SDATAOUT0 1 OD Storage Clock is the 125 MHz ±100 ppm differential input reference clock for the interface. Note: Should be AC coupled with a 100nF capacitor. Storage Transmit carries the differential output serial data and embedded clock for the interface. Note: Should be AC coupled with a 10nF capacitor. Storage Receive carries the differential input serial data and embedded clock for the interface. Note: Should be AC coupled with a 10nF capacitor. Resistor Bias: A 6.49K Ω 1% 1/8 Ω external resistor must be connected between this pin and ground for proper operation. This resistor generates internal bias currents. Resistor Bias Sense is used internally to sense ground. This ball must be connected to the same physical ground point as the RBIAS[1:0] resistor is connected to on the PCB. Storage Activity: When SGPIO[0] is disabled, this pin can be used to drive an LED to indicate activity on the link for storage engine[0]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Serial Clock: (default) When SGPIO[0] is enabled, this pin is the serial output clock running at 99.8 KHz. The falling edge of SCLOCK0 is used to latch SLOAD0, SDATAOUT0, and SDATAIN0. Storage Status: When SGPIO[0] is disabled this pin can be used to drive an LED to indicate status of the link for storage engine[0]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Serial Load: (default) When SGPIO[0] is enabled, this pin is the serial load clock. It is driven high to indicate the start of the bit stream. Storage Activity: When SGPIO[0] is disabled, this pin can be used to drive an LED to indicate activity on the link for storage engine[1]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Storage Status: When SGPIO[0] is disabled, this pin can be used to drive an LED to indicate status of the link for storage engine[1]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Storage Activity: When SGPIO[0] is disabled, this pin can be used to drive an LED to indicate activity on the link for storage engine[2]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Serial Data In: (default) When SGPIO[0] is enabled, this pin is the serial input data. There are three bits of data per device and up to eight devices are supported. Storage Status: When SGPIO[0] is disabled, this pin can be used to drive an LED to indicate status of the link for storage engine[2]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Serial Data Out: (default) When SGPIO[0] is enabled, this pin is the serial output data. There are three bits of data per device and up to eight devices are supported. Intel® 81348 I/O Processor Datasheet 24 December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 7. Storage Interface Signals (Sheet 2 of 3) Name Count Type S_ACT3 1 OD S_STAT3 1 OD S_ACT4 / SCLOCK1 1 OD S_STAT4 / SLOAD1 1 OD S_ACT5 1 OD S_STAT5 1 OD S_ACT6 / SDATAIN1 1 OD S_STAT6 / SDATAOUT1 1 OD December 2007 Order Number: 315038-003US Description Storage Activity: When SGPIO[0] is disabled, this pin can be used to drive an LED to indicate activity on the link for storage engine[3]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Storage Status: When SGPIO[0] is disabled, this pin can be used to drive an LED to indicate status of the link for storage engine[3]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Storage Activity: When SGPIO[1] is disabled, this pin can be used to drive an LED to indicate activity on the link for storage engine[4]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Serial Clock: (default) When SGPIO[1] is enabled this pin is the serial output clock running at 99.8 KHz. The falling edge of SCLOCK1 is used to latch SLOAD1, SDATAOUT1 and SDATAIN1. Storage Status: When SGPIO[1] is disabled, this pin can be used to drive an LED to indicate status of the link for storage engine[4]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Serial Load: (default) When SGPIO[1] is enabled, this pin is the serial load clock. It is driven high to indicate the start of the bit stream. Storage Activity: When SGPIO[1] is disabled, this pin can be used to drive an LED to indicate activity on the link for storage engine[5]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Storage Status: When SGPIO[1] is disabled, this pin can be used to drive an LED to indicate status of the link for storage engine[5]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Storage Activity: When SGPIO[1] is disabled, this pin can be used to drive an LED to indicate activity on the link for storage engine[6]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Serial Data In: (default) When SGPIO[1] is enabled, this pin is the serial input data. There are three bits of data per device and up to eight devices are supported. Storage Status: When SGPIO[1] is disabled, this pin can be used to drive an LED to indicate status of the link for storage engine[6]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Serial Data Out: (default) When SGPIO[1] is enabled, this pin is the serial output data. There are three bits of data per device and up to eight devices are supported. Intel® 81348 I/O Processor Datasheet 25 Intel® 81348—Package Information Table 7. Storage Interface Signals (Sheet 3 of 3) Name Count Type S_ACT7 1 OD S_STAT7 1 OD Total 54 Intel® 81348 I/O Processor Datasheet 26 Description Storage Activity: When SGPIO[1] is disabled, this pin can be used to drive an LED to indicate activity on the link for storage engine[7]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. Storage Status: When SGPIO[1] is disabled, this pin can be used to drive an LED to indicate status of the link for storage engine[7]. The pin can be direct driven by the storage engine or driven from an SGPIO. Note: Connect the LED to a series resistor pulled up to VCC. December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 8. Interrupt Signals Name Count Type 4 OD I I/O Async Rst(P) ActLow 4 I I/O Async ActLow GPIO[7:0] / XINT[15:8]# / PMONOUT 8 I/O I O Async Rst(p) HPI# 1 NMI0# 1 NMI1# 1 Total 19 P_INT[D:A]# / XINT[3:0]# / GPIO[11:8] XINT[7:4]# / GPIO[15:12] December 2007 Order Number: 315038-003US I Async ActLow I Async ActLow I Async ActLow Description When PCIX_EP# = 0: • PCI Interrupt requests an interrupt from the central resource. The assertion and deassertion is asynchronous. A device asserts its XINT[3:0]# / P_INT[D:A]# line when requesting attention from its device driver. As soon as the XINT[3:0]# / P_INT[D:A]# signal is asserted, it remains asserted until the device driver clears the pending request. When PCIX_EP# = 1: • External Interrupt requests are used by external devices to request interrupt service. These pins are level-detect inputs and are internally synchronized. These pins go to the XINT[3:0]# inputs of the interrupt controller. The interrupt controller can steer the interrupt to either ®the FIQ or the IRQ internal interrupt input of the Intel XScale processor. General Purpose I/O pins can be selected on a per-pin basis as general-purpose inputs or outputs. The default mode is a generalpurpose input. External Interrupt Requests are used by external devices to request interrupt service. These pins are level-detect and are internally synchronized. These pins go to the XINT[7:4]# inputs of the interrupt controller. The interrupt controller can steer the interrupt to either the FIQ or the IRQ internal interrupt input of the Intel XScale® processor. General Purpose I/O pins can be selected on a per-pin basis as general-purpose inputs or outputs. The default mode is a generalpurpose input. General Purpose I/O pins can be selected on a per-pin basis as general-purpose inputs or outputs. The default mode is a generalpurpose input. External Interrupts are used by external devices to request interrupt service. These pins are level-detect and are internally synchronized. These pins go to the XINT[15:8]# inputs of the interrupt controller. These interrupts are dedicated to the Intel XScale® processor. To enable a given pin as an interrupt, it needs to be unmasked in the INTCTL[3:0] register. Performance Monitor Out: The PMON unit output indicator generates a signal on the GPIO[7] pin when enabled in the PMONEN register. When enabled it will override the normal GPIO[7] function. High-Priority Interrupt causes a high-priority interrupt to the I/O processor. This pin is level-detect only and is internally synchronized. Non-Maskable Interrupt causes a non-maskable data abort to the Intel XScale® processor 0 in the I/O processor. This pin is falling edge-detect only and is internally synchronized. Non-Maskable Interrupt causes a non-maskable data abort to the Intel XScale® processor 1 in the I/O processor. This pin is falling edge-detect only and is internally synchronized. Intel® 81348 I/O Processor Datasheet 27 Intel® 81348—Package Information Table 9. I2C and SM Bus Signals Name Count Type SCL0 1 SDA0 1 SCL1 1 SDA1 1 SCL2 1 SDA2 1 SMBCLK 1 SMBDAT 1 Total 8 I/O OD I/O OD I/O OD I/O OD I/O OD I/O OD I/O OD I/O OD Description I2C 0 Clock provides synchronous operation of the I2C bus. I2C 0 Data is used for data transfer and arbitration of the I2C bus. I2C 1 Clock provides synchronous operation of the I2C bus. I2C 1 Data is used for data transfer and arbitration of the I2C bus. I2C 2 Clock provides synchronous operation of the I2C bus. I2C 2 Data is used for data transfer and arbitration of the I2C bus. SM Bus Clock provides synchronous operation of the SM bus. SM Bus Data is used for data transfer and arbitration of the bus. Note: Open drain outputs require an external pull-up resistor to pull up the signal to 3.3 V. The value of the pull-up resistor depends on the bus loading. Intel® 81348 I/O Processor Datasheet 28 December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 10. UART Signals (Sheet 1 of 2) Name Count Type Description U0_RXD 1 I Async U0_TXD 1 O Async UART 0 Serial Input: Serial data input from device pin to the receive shift register. UART 0 Serial Output: Composite serial data output to the communications link-peripheral, modem, or data set. The TXD signal is set to the MARKING (logic 1) state upon a reset operation. I ActLow Async U0_CTS# 1 O ActLow Async U0_RTS# 1 U1_RXD 1 December 2007 Order Number: 315038-003US I Async UART 0 Clear to Send: When low, this pin indicates that the receiving UART is ready to receive data. When the receiving UART deasserts high, the transmitting UART must stop transmission to prevent overflow of the receiving UART buffer. The signal is a modem-status input whose condition can be tested by the host processor or by the UART when in Autoflow Mode as described below: CTS# CTS# Non-Autoflow Mode: When not in Autoflow Mode, bit[4] (CTS) of the Modem Status Register (MSR) indicates the state of CTS#. Bit[4] is the complement of the CTS# signal. Bit[0] (DCTS) of the Modem Status Register indicates whether the CTS# input has changed state since the previous reading of the Modem Status Register. CTS# has no effect on the transmitter. The user can program the UART to interrupt the processor when DCTS changes state. The programmer can then stall the outgoing data stream by starving the transmit FIFO or disabling the UART with the IER register. Note: When UART transmission is stalled by disabling the UART, the user does not receive an MSR interrupt when CTS# reasserts. This is because disabling the UART also disables interrupts. To work around this, the user can use Auto CTS in Autoflow Mode, or program the CTS# pin to interrupt. Autoflow Mode: In Autoflow Mode, the UART transmit circuity checks the state of CTS# before transmitting each byte. When CTS# is high, no data is transmitted. UART 0 Request to Send: This bit indicates to the remote device whether the UART is ready to receive data. When this bit is low, the UART is ready to receive data. A reset operation sets this signal to its inactive (high) state. LOOP Mode operation holds this signal in its inactive state. Non-Autoflow Mode: The RTS# output signal can be asserted by setting bit[1] (RTS) of the Modem Control Register to 1. The RTS bit is the complement of the RTS# signal. Autoflow Mode: RTS# is automatically asserted by the autoflow circuitry when the receive buffer exceeds its programmed threshold. It is deasserted when enough bytes are removed from the buffer to lower the data level back to the threshold. UART 1 Serial Input: Serial data input from the device pin to the receive shift register. Intel® 81348 I/O Processor Datasheet 29 Intel® 81348—Package Information Table 10. UART Signals (Sheet 2 of 2) Name U1_TXD Count Type Description 1 O Async UART 1 Serial Output: Composite serial data output to the communications link-peripheral, modem, or data set. The TXD signal is set to the MARKING (logic 1) state upon a reset operation. I ActLow Async U1_CTS# 1 O ActLow Async U1_RTS# 1 Total 8 Intel® 81348 I/O Processor Datasheet 30 UART 1 Clear to Send: When low, this pin indicates that the receiving UART is ready to receive data. When the receiving UART deasserts high, the transmitting UART must stop transmission to prevent overflow of the receiving UART buffer. The signal is a modem-status input whose condition can be tested by the host processor or by the UART when in Autoflow Mode as described below: CTS# CTS# Non-Autoflow Mode: When not in Autoflow Mode, bit[4] (CTS) of the Modem Status Register (MSR) indicates the state of CTS#. Bit[4] is the complement of the CTS# signal. Bit[0] (DCTS) of the Modem Status Register indicates whether the CTS# input has changed state since the previous reading of the Modem Status Register. CTS# has no effect on the transmitter. The user can program the UART to interrupt the processor when DCTS changes state. The programmer can then stall the outgoing datastream by starving the transmit FIFO or disabling the UART with the IER register. Note: When UART transmission is stalled by disabling the UART, the user does not receive an MSR interrupt when CTS# reasserts. This is because disabling the UART also disables interrupts. To get around this, the user can use Auto CTS in Autoflow Mode, or program the CTS# pin to interrupt. Autoflow Mode: Note: In Autoflow Mode, the UART transmit circuity checks the state of CTS# before transmitting each byte. When CTS# is high, no data is transmitted. UART 1 Request to Send: This bit indicates to the remote device whether the UART is ready to receive data. When low, the UART is ready to receive data. A reset operation sets this signal to its inactive (high) state. LOOP Mode operation holds this signal in its inactive state. Non-Autoflow Mode: The RTS# output signal can be asserted by setting bit[1] (RTS) of the Modem Control Register to 1. The RTS bit is the complement of the RTS# signal. Autoflow Mode: RTS# is automatically asserted by the autoflow circuitry when the receive buffer exceeds its programmed threshold. It is deasserted when enough bytes are removed from the buffer to lower the data level back to the threshold. December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 11. Miscellaneous Signals Name Count Type TCK 1 I TDI 1 I Sync(T) TDO 1 O Sync(T) Rst(T) TRST# 1 I Async ActLow TMS 1 I Sync(T) NC 54 I/O P_RST# 1 I Async ActLow 1 I Async ActLow THERMDA THERMDC PUR1 1 1 I O 1 I Total 64 WARM_RST# December 2007 Order Number: 315038-003US Description Test Clock provides clock input for IEEE 1149.1 Boundary Scan Testing (JTAG). State information and data are clocked into the device on the rising clock edge, and data is clocked out on the falling clock edge. Test Data Input is the JTAG serial input pin. TDI is sampled on the rising edge of TCK, during the SHIFT-IR and SHIFT-DR states of the Test Access Port. This signal has a weak internal pull-up to ensure proper operation when this pin is not being driven. Test Data Output is the serial output pin for the JTAG feature. TDO is driven on the falling edge of TCK during the SHIFT-IR and SHIFTDR states of the Test Access Port. At other times, TDO floats. The behavior of TDO is independent of other resets. Test Reset asynchronously resets the Test Access Port controller function of IEEE 1149 Boundary Scan Testing (JTAG). This pin has a weak internal pull-up. Note: This pin must be tied low when not used. Test Mode Select is sampled on the rising edge of TCK to select the operation of the test logic for IEEE 1149 Boundary Scan testing. This pin has a weak internal pull-up. No Connect: Pins have no usable function and must not be connected to any signal, power, or ground. Cold Reset is used to asynchronously reset the I/O processor when it is low. This signal must be asserted whenever the power supplies are outside of the specified ranges. • Registers are reset to default values. • Pins are driven to known states. • Sticky configuration bits are reset. Warm Reset is the same as a cold reset, except sticky configuration bits are not reset. This pin should only be used when the sticky bit functionality is required. In this scenario, the WARM_RST# pin must be tied to the system reset PCI_RST# signal while the P_RST# pin can be tied to the system power good signal. If the sticky bit functionality is not required, the WARM_RST# pin should not be used and must be tied to Vcc. When the PCI Express interface is used as an endpoint, the PCI Express inband Hot Reset Mechanism can also be used to provide the sticky bit functionality. Note: Driving WARM_RST# using any other methods than suggested above may result in unpredictable behavior of the device. Thermal Diode Anode is the anode of the thermal diode. Thermal Diode Cathode is the cathode of the thermal diode. Pull-Up Required 1: This pin must be pulled up to VCC3P3 with an external 8.2K Ω 5%, 1/16 Ω resistor for proper operation. Intel® 81348 I/O Processor Datasheet 31 Intel® 81348—Package Information Table 12. Power and Ground Signals Name Count Type Description VCC1P2PLLS0 1 PWR VCC1P2PLLS1 1 PWR VCC1P2PLLP 1 PWR VCC1P2PLLD 1 PWR VCC3P3PLLX 1 PWR VSSPLLS0 1 GND VSSPLLS1 VSSPLLP VSSPLLD VSSPLLX VCC1P2 1 187 GND GND GND GND PWR VCC1P2AE 8 PWR VCC1P2E 6 PWR VCC1P2DS 6 PWR VCC1P2AS 9 PWR VCC1P2X 119 PWR VCCVIO 21 PWR VCC1P8 30 PWR VCC1P8E 14 PWR VCC1P8S 6 PWR VCC3P3 42 PWR VSS VSSE VSSAS VSSDS 373 20 20 6 877 GND GND GND GND VCC PLL Storage: Ball connected to a 1.2 V filtered board supply. Provides power to one of two PLLs that control Storage interface. VCC PLL Storage: Ball connected to a 1.2 V filtered board supply. Provides power to one of two PLLs that control Storage interface. VCC PLL PCI-X: Ball connected to a 1.2 V filtered board supply. Provides power to PLL that controls the PCI-X logic and interface. VCC PLL DDR: Ball connected to a 1.2 V filtered board supply. Provides power to the PLL that controls the DDR2 SDRAM interface and processor digital logic. VCC PLL X: Ball to be connected to a 3.3 V filtered board supply. This pin provides power to a voltage regulator,®which supplies power to the PLL that controls the Intel XScale processor and XSI processor logic. VSS PLL Storage: Ball to be connected to a board ground plane at the location of the VCC1P2PLLS0 filter. VSS PLL Storage: Ball to be connected to a board ground plane at the location of the VCC1P2PLLS1 filter. VSS PLL PCI-X: Ball connected to capacitor of the VCC1P2PLLP filter. VSS PLL DDR2 SDRAM: Ball connected to capacitor of VCC1P2PLLD filter. VSS PLL X: Ball connected to capacitor of VCC3P3PLLX filter. 1.2 V Power: Balls to be connected to a 1.2 V board power plane. These pins provide power to the processor logic. 1.2 V Power: Balls to be connected to a 1.2 V board power plane. These pins provide power to the PCI Express* analog logic. 1.2 V Power: Balls to be connected to a 1.2 V board power plane. These pins provide power to the PCI Express* digital logic. 1.2 V Power: Balls to be connected to a 1.2 V board power plane. These pins provide power to the storage interface digital logic. 1.2 V Power: Balls to be connected to a 1.2 V board power plane. These pins provide power to the storage interface analog logic. 1.2 V Power: Balls to be connected to a 1.2 V®board power plane. These pins provide power to the Intel XScale processors. VIO Power: Balls to be connected to a 3.3V board power plane. These pins provide 3.3 V power to the PCI-X I/Os. 1.8 V Power: Balls to be connected to a 1.8 V board power plane. These pins provide power to the DDR2 SDRAM interface I/Os. 1.8 V Power: Balls to be connected to a 1.8 V board power plane. These pins provide power to the PCI Express* interface I/Os. 1.8 V Power: Balls to be connected to a 1.8 V board power plane. These pins provide power to the storage interface I/Os. 3.3 V Power: Balls to be connected to a 3.3 V board power plane. These pins provide power to the PBI, miscellaneous pins, and PCI-X I/Os in Mode 1. Ground: Balls to be connected to a board ground plane. PCI Express* Ground: Balls connected to a board ground plane. Analog Storage Ground: Balls connected to a board ground plane. Digital Storage Ground: Balls connected to a board ground plane. Total Intel® 81348 I/O Processor Datasheet 32 1 1 1 December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 13. Reset Strap Signals (Sheet 1 of 3) Name Count Type BOOT_WIDTH_8# 1 Reset Strap DF_SEL[2:0] 3 Reset Strap CFG_CYCLE_EN# 1 Reset Strap HOLD_X0_IN_RST# 1 Reset Strap HOLD_X1_IN_RST# 1 Reset Strap MEM_FREQ[1:0] 2 Reset Strap EXT_ARB# 1 Reset Strap INTERFACE_SEL_PCIX# 1 Reset Strap PCIX_EP# 1 Reset Strap December 2007 Order Number: 315038-003US Description PBI Boot Bus Width: Sets the default bus width for the PBI Memory Boot window. 0 = 8 bits wide 1 = 16 bits wide (default mode) Note: Muxed onto signal A[0]. Device Function Select: These straps select the number of storage ports assigned to each function within 81348. Note: DF_SEL[2] muxed onto signal A[9] Note: DF_SEL[1] muxed onto signal A[8] Note: DF_SEL[0] muxed onto signal A[7] See the “Device Function Select” of the Intel® 81348 I/O Processor Developer's Manual for additional details. Configuration Cycle Enable: Determines whether PCI interface retries configuration cycles until Configuration Cycle Retry bit is cleared in ATU (PCSR[2] and Host Lockout Bit is cleared. 0 = Configuration cycles enabled 1 = Configuration retry enabled (default mode) • PCI-X Interface: Configuration cycles are claimed and terminated with a retry status. • PCI Express* Interface: Configuration requests result in a completion TLP with Configuration Retry Status (CRS). Note: Muxed onto signal A[1] Hold Intel XScale® Microprocessor 0 in Reset: Determines whether the Intel XScale® microprocessor number 0 is held in reset until the reset bit is cleared in the PCI Configuration and Status Register. 0 = Hold in reset 1 = Do not hold in reset (default mode) Note: Muxed onto signal A[2] Hold Intel XScale® Microprocessor 1 in Reset: Determines whether the Intel XScale® microprocessor number 1 is held in reset until the reset bit is cleared in the PCI Configuration and Status Register. 0 = Hold in reset 1 = Do not hold in reset (default mode) Note: Muxed onto signal A[3] Memory Frequency: Determines frequency at which DDR2 memory subsystem runs. 00 = Reserved 01 =Reserved 10 =533 MHz 11 =400 MHz (Default mode) Note: MEM_FREQ[1] muxed onto signal A[5] Note: MEM_FREQ[0] muxed onto signal A[4] External Arbiter: Determines whether the PCI interface enables the integrated arbiter, or use an external arbiter. 0 = External arbiter 1 = Internal arbiter (default mode) Note: Muxed onto signal A[6] 0 = PCI-X is active 1 = PCI Express is active (default mode) When both interfaces are active, this strap selects the ATU that is function 0 in the internal address map. Note: Muxed onto signal A[10] PCI-X End Point: Determines whether the PCI-X interface operates as an endpoint or a central resource. 0 = Endpoint 1 = Central resource (default mode) Note: Muxed onto signal A[11] Note: Setting both PCIX_EP# and PCIE_RC# to endpoint is unsupported. Intel® 81348 I/O Processor Datasheet 33 Intel® 81348—Package Information Table 13. Reset Strap Signals (Sheet 2 of 3) Name Count Type PCIE_RC# 1 Reset Strap SMB_A5, SMB_A3, SMB_A2, SMB_A1 4 Reset Strap PCIX_PULLUP# 1 Reset Strap PCIX_32BIT# 1 Reset Strap PCIXM1_100# 1 Reset Strap HS_SM# 1 Reset Strap FW_TIMER_OFF# 1 Reset Strap CONTROLLER_ONLY# 1 Reset Strap LK_DN_RST_BYPASS# 1 Reset Strap Intel® 81348 I/O Processor Datasheet 34 Description PCI-E Root Complex: Determines whether PCI Express* interface operates as an endpoint or a root complex. 0 = Root complex 1 = Endpoint (default mode) Note: Muxed onto signal A[12] Setting both PCIX_EP# and PCIE_RC# to endpoint is unsupported. SM Bus Address: Maps to address bit[5], bit[3], bit[2], and bit[1] where bits[7:0] represent address SMBus slave port responds to when access is attempted. 0 = Address bit is low 1 = Address bit is high (default mode) Note: SMB_A5 muxed onto signal A[16] Note: SMB_A3 muxed onto signal A[15] Note: SMB_A2 muxed onto signal A[14] Note: SMB_A1 muxed onto signal A[13] PCI-X Pull Up: Determines whether PCI interface has on-die pull-ups enabled. These may be used for the central resource bus keepers. 0 = Enable PCI pull-up resistors 1 = Disable PCI pull-up resistors (default mode) Note: Muxed onto signal A[17] 32-Bit PCI-X Bus: Indicates width of the PCI-X bus to PCI-X Status Register. Enables pull-ups for upper half of bus when in 32-bit mode. 0 = 32-bit wide PCI-X bus 1 = 64-bit wide PCI-X bus (default mode) Note: Muxed onto signal A[18] PCI-X Mode 1 100 MHz Enable: In Central Resource Mode, this bit limits PCI-X bus to 100 MHz while in mode 1: 0 = Limit PCI-X mode 1 to 100 MHz 1 = 133 MHz enabled (default mode) Note: Muxed onto signal A[19] Hot Swap Startup Mode: In End Point Mode, this bit determines whether Hot Swap mode is enabled. 0 = Hot Swap Mode enabled 1 = Hot Swap Mode disabled (default mode) Note: Muxed onto signal A[21] Firmware Timer Off: Disables 400 mS firmware timer for development and debug. When enabled, timer automatically clears Configuration Cycle Retry (CCR) bit in PCSR after 400 mS regardless of processor state. When disabled, CCR bit functions as normal based on state of CFG_CYCLE_EN# pin at rising edge of P_RST#. 0 = Firmware timer disabled 1 = Firmware timer enabled (default mode) Note: Muxed onto signal A[22] Controller-Only Enable: 0 = Controller only, RAID disabled 1 = RAID enabled (default mode) Note: Muxed onto signal A[23] Link Down Reset Bypass: Disables the full chip reset that would normally be caused by a Link Down or hot reset. 0 = Do not reset on Link Down 1 = Reset on Link Down (default mode) Note: Muxed onto signal A[24] December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 13. Reset Strap Signals (Sheet 3 of 3) Name Count Type CLK_SRC_PCIE# 1 Reset Strap Description Clock Source PCI-E: Selects PCI Express* Refclk pair as the input clock to the PLLs that control most internal logic. 0 = Source clock is REFCLKP/REFCLKN 1 = Source clock is P_CLKIN (default mode) Note: When P_CLKO[3:0] are used this pin must be pulled low. Note: Muxed onto signal PWE# Total 25 Reset strap signals are latched on the rising edge of P_RST#. All reset strap signals are internally pulled to logic 1 by default. An external 4.7K ohm 5%, 1/16 ohm pull-down resistor is required to force a logic 0 on these pins. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 35 Intel® 81348—Package Information Table 14. Functional Pin Mode Behavior (Sheet 1 of 4) Pin M_CK[2:0], M_CK#[2:0] M_RST# MA[14:0]a BA[2:0] RAS# CAS# WE# CS[1:0]# CKE[1:0] DQ[63:32] DQ[31:0] CB[7:0] DQS[8], DQS#[8] DQS[7:4], DQS#[7:4] DQS[3:0], DQS#[3:0] DM[8] DM[7:4] DM[3:0] M_VREF ODT[1:0] M_CAL[1:0] A[24:0] D[15:0] POE# PWE# PB_RSTOUT# PCE[1:0]# HS_ENUM# HS_LSTAT HS_LED_OUT HS_FREQ[1:0] / CR_FREQ[1:0] Notes: na cS yr Zh ad gi nu H oB )t te nio se P R dn E( la trn )e eC cru (t o es seR eR Z Z Z Z Z Z Z Z Z Z Z Z Z VO 0* VO VO VO VO VO VO 0* Z* Z* Z* Z* VO 0* VO VO VO VO VO VO 0* Z* Z* Z* Z* Z Z* Z Z Z Z – Z Z Z Z Z Z Z Z Z – Z Z Z* VO* VO* VO* AI 0* Z* H H H H 0 H Z VI 1 H M AR DS itB -2 3 #T IB 23 _X IC P #P UL LU P_ XI CP VO VO VO VO VO VO VO VO VO VB VB VB VB – – – – – – – – – Z – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – Z* VB Z – – – – Z* VO* VO* VO* AI 0* Z* H H H H 0 H Z VI 1 H VB VO VO VO AI VO AO VO VB VO VO VO VO VO VI VO H – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – la m ro N y nol X eca ev ne -IC rfe itc h P tnI A W yl *ss e no er ca ev ne px rfe itc h EI tnI A WCP EA = External Arbiter mode IA = Internal Arbiter mode Z = output, pull-up/down disabled VB = acts like a Valid Bidirectional pin VO = a Valid Output level is driven. VI = need to drive a Valid Input level. AO = Analog Output level AI = Analog Input level * = after power fail sequence completes “-” = unaffected by this mode a. MA[14] is only needed for 4GB memory support. When 4GB memory is not used this pin is NC. 1 = driven to VCC 0 = driven to VSS X = driven to unknown state ID = The input is disabled. H = pulled up to VCC PD = pull-up disabled L = pulled down to VSS ODT = On Die Termination GND = Tie to Ground. Intel® 81348 I/O Processor Datasheet 36 December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 14. Functional Pin Mode Behavior (Sheet 2 of 4) Pin P_AD[63:32] P_AD[31:0] P_CBE[7:4]# P_CBE[3:0]# P_PAR64 P_REQ64# P_ACK64# P_PAR P_FRAME# P_IRDY# P_TRDY# P_STOP# P_DEVSEL# P_SERR# P_RSTOUT# P_PERR# P_M66EN P_IDSEL P_GNT[0]# / P_REQ# P_REQ[0]# / P_GNT# P_GNT[3:1]# P_REQ[3:1]# P_CLKIN P_CLKOUT P_CLKO[3:0] P_PCIXCAP P_BMI P_CAL[2:0] S_CLKP0, S_CLKN0 S_TXP[7:0], S_TXN[7:0] S_RXP[7:0], S_RXN[7:0] Notes: na cS yr Zh ad gi nu H oB Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z – – )t te nio se P R dn E( – Z(EA) H(IA) VI(EA) Z – – Z Z – Z Z – – H H VI Z Z AI VO AO VI 1 Z 0 Z 0 Z 0 Z 0 VO VO VO VO VO Z 0 VO VI VI Z(EA) H(IA) VI(EA) H(IA) H H VI VO VO AI VO AO VI 1 – ID ID Z Z Z Z Z Z VI Z Z VI VI VI VI VI Z 0 VI VI VI la trn )e eC cru (t o es seR eR la m ro N M AR DS itB -2 3 #T IB 23 _X IC P #P UL LU P_ XI CP y nol X eca ev ne -IC rfe itc h P tnI A W yl *ss e no er ca ev ne px rfe itc h EI tnI A WCP VB VB VB VB VB VB VB VB VB VB VB VB VB VB VO VB VI VI – – – – – – – – – – – – – – – – – – H – H – H – – – – – – – – – – – – – H – H – H H H – H H H H H H – H – – – – – – – – – – – – – – – – – – – – H H H H H H H H H H H H H H VO H H H VO – – – – H VI(EA) H(IA) VO H VI VO VO AI VO AO VI VO – – – – H – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – H H GND Z Z GND VO VO – – VI – – – – – EA = External Arbiter mode IA = Internal Arbiter mode Z = output, pull-up/down disabled VB = acts like a Valid Bidirectional pin VO = a Valid Output level is driven. VI = need to drive a Valid Input level. AO = Analog Output level AI = Analog Input level * = after power fail sequence completes “-” = unaffected by this mode a. MA[14] is only needed for 4GB memory support. When 4GB memory is not used this pin is NC. 1 = driven to VCC 0 = driven to VSS X = driven to unknown state ID = The input is disabled. H = pulled up to VCC PD = pull-up disabled L = pulled down to VSS ODT = On Die Termination GND = Tie to Ground. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 37 Intel® 81348—Package Information Table 14. Functional Pin Mode Behavior (Sheet 3 of 4) Pin RBIAS[1:0] RBIAS_SENSE[1:0] S_ACT0 / SCLOCK0 S_STAT0 / SLOAD0 S_ACT1 S_STAT1 S_ACT2 / SDATAIN0 S_STAT2 / SDATAOUT0 S_ACT3 S_STAT3 S_ACT4 / SCLOCK1 S_STAT4 / SLOAD1 S_ACT5 S_STAT5 S_ACT6 / SDATAIN1 S_STAT6 / SDATAOUT1 S_ACT7 S_STAT7 REFCLKP, REFCLKN PETP[7:0], PETN[7:0] PERP[7:0], PERN[7:0] PE_CALP PE_CALN P_INT[D:A]# / XINT[3:0]# XINT[7:4]# GPIO[7:0] / XINT[15:8]# / PMONOUT HPI# NMI0# NMI1# SCL0 Notes: na cS yr Zh ad gi nu H oB )t te nio se P R dn E( la trn )e eC cru (t o es seR eR la m ro N M AR DS itB -2 3 #T IB 23 _X IC P #P UL LU P_ XI CP – – Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z – AO AI Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z VI AO AI Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z VI AO AI VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VO VI – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – Z Z VO – – – – – Z – ID AO AO Z/VI VI ID AO AO Z/VI VI VI AO AO VB VI – – – – – Z VI VI VB – – – – Z VI VI VI Z VI VI VI Z y nol X eca ev ne -IC rfe itc h P tnI A W – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – GND/ VI Z – – – – – – – – H – Z Z Z – – – – – – – – – – – – – – – – – – – VI – – – VI – – – VI – – – VB – – – EA = External Arbiter mode 1 = driven to VCC IA = Internal Arbiter mode 0 = driven to VSS Z = output, pull-up/down disabled X = driven to unknown state VB = acts like a Valid Bidirectional pin ID = The input is disabled. VO = a Valid Output level is driven. H = pulled up to VCC VI = need to drive a Valid Input level. PD = pull-up disabled AO = Analog Output level L = pulled down to VSS AI = Analog Input level ODT = On Die Termination * = after power fail sequence completes GND = Tie to Ground. “-” = unaffected by this mode a. MA[14] is only needed for 4GB memory support. When 4GB memory is not used this pin is NC. Intel® 81348 I/O Processor Datasheet 38 yl *ss e no er ca ev ne px rfe itc h EI tnI A WCP – December 2007 Order Number: 315038-003US Package Information—Intel® 81348 Table 14. Functional Pin Mode Behavior (Sheet 4 of 4) Pin SDA0 SCL1 SDA1 SCL2 SDA2 SMBCLK SMBDAT U0_RXD U0_TXD U0_CTS# U0_RTS# U1_RXD U1_TXD U1_CTS# U1_RTS# TCK TDI TDO TRST# TMS P_RST# WARM_RST# NC THERMDA THERMDC Notes: na cS yr Zh ad gi nu H oB Z Z Z Z Z Z Z VI 1 VI 1 VI 1 VI 1 VI H Z H H VI VI Z/H AI AO la trn )e eC cru (t o es seR eR Z Z Z Z Z Z Z VI 1 VI 1 VI 1 VI 1 VI H Z H H VI VI Z/H AI AO la m ro N M AR DS itB -2 3 #T IB 23 _X IC P #P UL LU P_ XI CP VB – – – VB – – – VB – – – VB – – – VB – – – VB – – – VB – – – VI – – – VO – – – VI – – – VO – – – VI – – – VO – – – VI – – – VO – – – VI – – – H – – – VO – – – H – – – H – – – VI – – – VI – – – Z/H – – – AI – – – AO – – – EA = External Arbiter mode 1 = driven to VCC IA = Internal Arbiter mode 0 = driven to VSS Z = output, pull-up/down disabled X = driven to unknown state VB = acts like a Valid Bidirectional pin ID = The input is disabled. VO = a Valid Output level is driven. H = pulled up to VCC VI = need to drive a Valid Input level. PD = pull-up disabled AO = Analog Output level L = pulled down to VSS AI = Analog Input level ODT = On Die Termination * = after power fail sequence completes GND = Tie to Ground. “-” = unaffected by this mode a. MA[14] is only needed for 4GB memory support. When 4GB memory is not used this pin is NC. December 2007 Order Number: 315038-003US Z Z Z Z Z Z Z – Z – Z – Z – Z – – – – – – – -/Z – – )t te nio se P R dn E( y nol X eca ev ne -IC rfe itc h P tnI A W – – – – – – – – – – – – – – – – – – – – – – – – – yl *ss e no er ca ev ne px rfe itc h EI tnI A WCP – – – – – – – – – – – – – – – – – – – – – – – – – Intel® 81348 I/O Processor Datasheet 39 Intel® 81348—Package Information Figure 2. 1357-Lead FCBGA Package (Top and Bottom Views) Intel® 81348 I/O Processor Datasheet 40 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 The following figures show the Intel 81348 ballout diagrams: • Figure 3, “Intel 81348 I/O processor Ballout—Package Top (Left Side)” on page 42 • Figure 4, “Intel 81348 I/O processor Ballout—Package Top (Right Side)” on page 43 • Figure 5, “Intel 81348 I/O processor Ballout—Package Bottom (Left Side)” on page 44 • Figure 6, “Intel 81348 I/O processor Ballout—Package Bottom (Right Side)” on page 45 The following tables show the Intel 81348 ball and signal listings: • Table 15, “Intel 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings” on page 46 • Table 16, “Intel 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings” on page 54 ® ® ® ® ® ® ® ® December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 41 Intel® 81348—Datasheet Figure 3. Intel® 81348 I/O processor Ballout—Package Top (Left Side) A B C D E F G H J K L M N P R T U V W 37 vss dq [63] dqs [7] dqs# [7] dq [57] dq [56] dq [60] dq [43] dq [47] dqs [5] dqs# [5] dq [41] dq [40] dq [44] 36 vss dq [59] dq [58] dq [62] vss dm [7] dq [61] vss vss dq [42] dq [46] vss dm [5] dq [45] cb [2] cb [6] dqs# [8] vss cb [3] cb [7] dqs [8] 35 vss nc dq [51] dq [50] dqs [6] dqs# [6] dm [6] dq [53] dq [52] dq [35] dq [34] dqs [4] dqs# [4] dm [4] dq [37] dq [36] m_ck# [2] vss dm [8] 34 nc nc vss dq [55] dq [54] vss dq[ 49] dq [48] vss vss dq [39] dq [38] vss dq [33] dq [32] vss m_ck [2] m_ck# [0] m_ck [0] 33 nc nc ma[14] a nc vss odt [1] cs# [1] ma [13] odt [0] cas# we# vss cs# [0] ras# ba [0] ma [10] ba [1] ma [0] vss vcc3 p3 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 32 nc nc nc nc nc vcc3 p3 31 nc nc nc nc nc nc vcc3 p3 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss 30 nc vss nc vss nc nc vcc3 p3 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x 29 nc nc nc nc nc nc vcc3 p3 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vsspllx therm da nc vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x therm dc vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x 28 nc nc nc nc nc nc vcc3 p3 27 s_ act1 vss s_ stat5 vss s_ act4 s_ stat3 vcc3 p3 vcc1 p2x vss vcc1 p2x 26 s_ act5 s_ stat2 s_ act0 s_ stat7 s_ stat6 s_ stat4 vcc3 p3 vss vcc1 p2x vss 25 s_ stat0 s_ act2 s_ act3 s_ act7 s_ stat1 s_ act6 vcc3 p3 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2as vcc1 p2as vss vcc1 p2 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x 24 vssas vssas vssas vssas vcc1 p2as 23 s_ rxp[3] s_ rxn[3] s_ txp[3] s_ txn [3] vcc1 p2as vcc1 p2as vcc1 p2as vcc1 p2 vss vcc1 p2x 22 s_ rxp[1] s_ rxn[1] s_ txp[1] s_ txn [1] vcc1 p2as vcc1 p2as vcc1 p2as vss vcc1 p2 vss 21 vssas vssas vssas vssas rbias_ sense [0] nc nc s_ clkp0 vssplls0 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 20 s_ rxp[0] s_ rxn[0] s_ txp[0] s_ txn [0] rbias [0] nc nc s_ clkn0 vcc1 p2plls0 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 19 s_ rxp[2] s_ rxn[2] s_ txp[2] s_ txn [2] vcc1 p8s vcc1 p8s vcc1 p8s vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 18 vssas vssas vssas vssas vcc1 p8s vcc1 p8s vcc1 p8s vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 17 s_ rxp[7] s_ rxn[7] s_ txp[7] s_ txn [7] vcc1 p2ds vssds vssds vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 16 s_ rxp[5] s_ rxn[5] s_ txp[5] s_ txn [5] rbias_ sense [1] vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 nc nc vss vssplls1 vss vcc1 p2 vss vcc1 p2 vcc1 p2 vss 15 vssas vssas vssas vssas rbias [1] nc nc vss vcc1 p2plls1 14 s_ rxp[4] s_ rxn[4] s_ txp[4] s_ txn [4] vssds vcc1 p2ds vssds vss vcc1 p2 vss 13 s_ rxp[6] s_ rxn[6] s_ txp[6] s_ txn [6] vcc1 p2ds vssds vcc1 p2ds vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2ds vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vsspllp vcc1 p2pllp vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 12 vssas vssas vssas vssas vssds vcc1 p2ds 11 gpio [1] gpio [3] gpio [7] gpio [5] gpio [6] vcc3 p3 vss vcc1 p2 10 gpio [0] vss gpio [2] vss gpio [4] vcc3 p3 vcc1 p2 vss 9 xint# [1] xint# [3] xint# [5] xint# [4] xint# [7] vcc3 p3 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 8 xint# [2] xint# [0] xint# [6] vcc3 p3 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 7 hs_ enum# vss hpi# vss nmi1# vcc3 p3 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 6 u0_ rts# u0_ rx d hs_ lstat hs_ freq [1] hs_ freq [0] vcc3 p3 vcc3 p3 vccvio vcc3 p3 vcc3 p3 vccvio vccvio vcc3 p3 vccvio vcc3 p3 vcc3 p3 vccvio vcc3 p3 vcc3 p3 5 u0_ cts# u0_ tx d u1_ rx d nc vcc3 p3 p_ cal [0] p_ gnt# [3] vccvio p_ gnt# [0] p_ ad [31] vccvio p_ ad [26] p_ idsel vccvio p_ ad [16] p_ trdy# vccvio p_ ad [13] p_ ad [9] 4 u1_ cts# u1_ tx d u1_ rts# vss warm_rs t# p_ bmi vss p_ req# [3] p_ gnt# [1] vss p_ ad [30] p_ ad [24] vss p_ ad [20] p_ frame# vss p_ par p_ ad [11] vss vss p_ clko [3] p_ clko [2] p_ cal [2] nc p_ cal [1] p_ req# [2] p_ gnt# [2] nc p_ ad [27] p_ ad [28] p_ ad [23] p_ ad [22] p_ ad [18] p_ p_ devsel# stop# p_ ad [15] p_ ad [12] p_ cbe# [0] vss p_ clko [0] p_ ad [21] vss p_ cbe# [2] p_ pcixcap vss p_ cbe# [1] p_ ad [10] vss p_ ad [19] p_ ad [17] p_ serr# p_ ad [14] p_ m66en vss 3 2 1 vss hs_ nmi0# led_out p_ clkout vss p_ clkin p_ clko [1] p_ rst# p_ rstout# vss nc nc vss p_ ad [25] nc p_ req# [1] p_ req# [0] p_ ad [29] p_ cbe# [3] p_ irdy# p_ perr# a. MA[14] only needed for 4GB memory support, otherwise this pin is NC. Intel® 81348 I/O Processor Datasheet 42 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Figure 4. Intel® 81348 I/O processor Ballout—Package Top (Right Side) Y AA AB AC AD AE AF AG AH AJ AK AL AM AN AP AR AT AU cb [1] cb [0] dq [27] dq [31] dqs [3] dqs# [3] dq [25] dq [24] dq [28] dq [11] dq [15] dqs [1] dqs# [1] dq [9] dm [1] vss cb [5] cb [4] vss dq [26] dq [30] vss dm [3] dq [29] vss vss dq [10] dq [14] vss dq [8] dq [13] dq [12] vss vss 35 37 36 dq [3] dq [2] dqs [0] dqs# [0] dm [0] dq [5] dq [4] m_ cal [0] vss vss dq [7] dq [6] vss dq [1] dq [0] vss m_ cal [1] vss 34 ma [9] ma [11] ma [12] vss ba [2] cke [0] cke [1] m_ rst# m_ vref vss 33 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 32 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc3 p3 vcc3 p3 vss tck vss trst# 31 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vcc3 p3 vcc3 p3 vcc3 p3 tdo tms tdi 30 vcc1 p2plld vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc3 p3 scl1 sda2 sda1 scl0 smbclk 29 vss m_ck [1] dq [19] dq [18] dqs [2] dqs# [2] dm [2] dq [21] ma [2] m_ck# [1] vss dq [23] dq [22] vss dq [17] dq [16] ma [1] ma [3] ma [4] ma [6] vss ma [5] ma [8] ma [7] vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vss vcc1 p2x vss vcc1 p2x vss vcc3 p3pllx vss vcc1 p2x vssplld vss dq [20] vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vcc3 p3 scl2 vss sda0 vss smbdat 28 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x 27 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vcc1 p8e vcc1 p8e vcc1 p8e vcc1 p8e vcc1 p8e vcc1 p8e 26 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p8e vcc1 p8e vsse vsse vsse vsse 25 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vcc1 p2ae vcc1 p8e petn [7] petp [7] pern [7] perp [7] 24 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2 vss vcc1 p2ae vcc1 p8e petn [6] petp [6] pern [6] perp [6] 23 vss vcc1 p2 vcc1 p2ae vcc1 p8e vsse vsse vsse vsse 22 vss vcc1 p2ae vcc1 p8e petn [5] petp [5] pern [5] perp [5] 21 nc pe_cal p petn [4] petp [4] pern [4] perp [4] 20 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss refclkn nc nc pe_cal n vsse vsse vsse vsse 19 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p2ae vcc1 p8e petn [3] petp [3] pern [3] perp [3] 18 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2ae vcc1 p8e petn [2] petp [2] pern [2] perp [2] 17 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p2ae vcc1 p2e vsse vsse vsse vsse 16 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2ae vcc1 p2e petn [1] petp [1] pern [1] perp [1] 15 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p2e vcc1 p2e petn [0] petp [0] pern [0] perp [0] 14 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2e vcc1 p2e vsse vsse vsse vsse 13 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p2 vcc1 p2 vcc1 p2 vcc1 p2 vcc1 p2 vcc1 p2 12 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc3 p3 pce# [1] a [21] a [19] a [18] a [22] 11 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc3 p3 a [20] vss pce# [0] vss a [13] 10 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc3 p3 nc a [9] a [12] a [8] a [14] 9 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc3 p3 PUR1 a [10] pb_rsto ut# a [1] a [6] 8 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc3 p3 a [11] vss a [15] vss a [2] 7 vccvio vccvio vccvio vcc3 p3 d [15] a [16] a [17] a [3] a [7] 6 vcc1 p2 refclkp nc vccvio vcc3 p3 vccvio vcc3 p3 vccvio vcc3 p3 vccvio vcc3 p3 p_ ad [4] vccvio p_ cbe# [7] p_ par64 vccvio p_ ad [56] p_ ad [52] vccvio p_ ad [44] p_ ad [40] vccvio p_ ad [32] d [10] vcc3 p3 d [9] d [4] a [4] a [5] 5 p_ ad [6] p_ ad [0] vss p_ cbe# [5] p_ ad [60] vss p_ ad [54] p_ ad [48] vss p_ ad [42] p_ ad [36] vss poe# d [2] vss d [3] d [8] d [1] 4 p_ ad [5] p_ ad [2] p_ req64# p_ ad [63] p_ ad [62] p_ ad [58] p_ ad [51] p_ ad [50] p_ ad [46] p_ ad [39] p_ ad [38] p_ ad [34] pwe# d [12] d [11] a [23] d [0] vss 3 p_ ad [7] p_ ad [1] vss p_ cbe# [4] p_ ad [59] vss p_ ad [53] p_ ad [47] vss p_ ad [41] p_ ad [35] vss d [14] d [6] d [5] a [0] vss p_ ad [8] p_ ad [3] p_ ack64# p_ cbe# [6] p_ ad [61] p_ ad [57] p_ ad [55] p_ ad [49] p_ ad [45] p_ ad [43] p_ ad [37] p_ ad [33] a [24] d [7] d [13] vss vccvio December 2007 Order Number: 315038-003US 2 1 Intel® 81348 I/O Processor Datasheet 43 Intel® 81348—Datasheet Figure 5. Intel® 81348 I/O processor Ballout—Package Bottom (Left Side) AU AT 37 AR AP AN AM AL AK AJ AH AG AF AE AD AC AB AA Y W vss dm [1] dq [9] dqs# [1] dqs [1] dq [15] dq [11] dq [28] dq [24] dq [25] dqs# [3] dqs [3] dq [31] dq [27] cb [0] cb [1] dqs# [8] 36 vss dq [12] dq [13] dq [8] vss dq [14] dq [10] vss vss dq [29] dm [3] vss dq [30] dq [26] vss cb [4] cb [5] dqs [8] 35 vss m_ cal [0] dq [4] dq [5] dm [0] dqs# [0] dqs [0] dq [2] dq [3] dq [20] dq [21] dm [2] dqs# [2] dqs [2] dq [18] dq [19] m_ck [1] vss dm [8] 34 vss m_ cal [1] vss dq [0] dq [1] vss dq [6] dq [7] vss vss dq [16] dq [17] vss dq [22] dq [23] vss m_ck# [1] ma [2] m_ck [0] 33 vss m_ vref m_ rst# cke [1] cke [0] ba [2] vss ma [12] ma [11] ma [9] ma [7] ma [8] ma [5] vss ma [6] ma [4] ma [3] ma [1] vss 32 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 31 trst# vss tck vss vcc3 p3 vcc3 p3 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss tdo vcc3 p3 vcc3 p3 vcc3 p3 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x scl1 vcc3 p3 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2plld vssplld vcc1 p2x vss vcc3 p3pllx nc vcc1 p2x 30 29 tdi smbclk tms scl0 sda1 sda2 28 smbdat vss sda0 vss scl2 vcc3 p3 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x 27 vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss 26 vcc1 p8e vcc1 p8e vcc1 p8e vcc1 p8e vcc1 p8e vcc1 p8e vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x 25 vsse vsse vsse vsse vcc1 p8e vcc1 p8e vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss 24 perp [7] pern [7] petp [7] petn [7] vcc1 p8e vcc1 p2ae vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x 23 perp [6] pern [6] petp [6] petn [6] vcc1 p8e vcc1 p2ae vss vcc1 p2 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss 22 vsse vsse vsse vsse vcc1 p8e vcc1 p2ae vcc1 p2 vss vcc1 p2 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x 21 perp [5] pern [5] petp [5] petn [5] vcc1 p8e vcc1 p2ae vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 20 perp [4] pern [4] petp [4] petn [4] pe_cal p nc nc refclkp vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 19 vsse vsse vsse vsse pe_cal n nc nc refclkn vss 18 perp [3] pern [3] petp [3] petn [3] vcc1 p8e vcc1 p2ae vcc1 p2 vss vcc1 p2 vss 17 perp [2] pern [2] petp [2] petn [2] vcc1 p8e vcc1 p2ae vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 16 vsse vsse vsse vsse vcc1 p2e vcc1 p2ae vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 15 perp [1] pern [1] petp [1] petn [1] vcc1 p2e vcc1 p2ae vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 14 perp [0] pern [0] petp [0] petn [0] vcc1 p2e vcc1 p2e vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p2e vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 13 vsse vsse vsse vsse vcc1 p2e 12 vcc1 p2 vcc1 p2 vcc1 p2 vcc1 p2 vcc1 p2 vcc1 p2 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 11 a [22] a [18] a [19] a [21] pce# [1] vcc3 p3 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 10 a [13] vss pce# [0] vss a [20] vcc3 p3 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 9 a [14] a [8] a [12] a [9] nc vcc3 p3 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 8 a [6] a [1] pb_rst out# a [10] PUR1 vcc3 p3 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 7 a [2] vss a [15] vss a [11] vcc3 p3 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss 6 a [7] a [3] a [17] a [16] d [15] vcc3 p3 vcc3 p3 vccvio vccvio vcc3 p3 vccvio vccvio vcc3 p3 vccvio vccvio vcc3 p3 vccvio vccvio vcc3 p3 5 a [5] a [4] d [4] d [9] vcc3 p3 d [10] p_ ad [32] vccvio p_ ad [40] p_ ad [44] vccvio p_ ad [52] p_ ad [56] vccvio p_ par64 p_ cbe# [7] vccvio p_ ad [4] p_ ad [9] 4 d [1] d [8] d [3] vss d [2] poe# vss p_ ad [36] p_ ad [42] vss p_ ad [48] p_ ad [54] vss p_ ad [60] p_ cbe# [5] vss p_ ad [0] p_ ad [6] vss vss d [0] a [23] d [11] d [12] pwe# p_ ad [34] p_ ad [38] p_ ad [39] p_ ad [46] p_ ad [50] p_ ad [51] p_ ad [58] p_ ad [62] p_ ad [63] p_ req64# p_ ad [2] p_ ad [5] p_ cbe# [0] vss a [0] d [5] d [6] d [14] vss p_ ad [35] p_ ad [41] vss p_ ad [47] p_ ad [53] vss p_ ad [59] p_ cbe# [4] vss p_ ad [1] p_ ad [7] vss vss d [13] d [7] a [24] p_ ad [33] p_ ad [37] p_ ad [43] p_ ad [45] p_ ad [49] p_ ad [55] p_ ad [57] p_ ad [61] p_ cbe# [6] p_ ack64# p_ ad [3] p_ ad [8] vss 3 2 1 Intel® 81348 I/O Processor Datasheet 44 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Figure 6. Intel® 81348 I/O processor Ballout—Package Bottom (Right Side) V U T R P N M L K J H G F E D C dq [43] dq [60] dq [56] dq [57] dqs# [7] dqs [7] dq [63] vss dm [7] dq [58] dq [59] B A cb [6] cb [2] dq [44] dq [40] dq [41] dqs# [5] dqs [5] dq [47] cb [7] cb [3] vss dq [45] dm [5] vss dq [46] dq [42] vss vss dq [61] vss dq [62] vss m_ck# [2] dq [36] dq [37] dm [4] dqs# [4] dqs [4] dq [34] dq [35] dq [52] dq [53] dm [6] dqs# [6] dqs [6] dq [50] dq [51] nc vss 35 m_ck# [0] m_ck [2] vss dq [32] dq [33] vss dq [38] dq [39] vss vss dq [48] dq [49] vss dq [54] dq [55] vss nc nc 34 37 vss 36 ma [0] ba [1] ma [10] ba [0] ras# cs# [0] vss we# cas# odt [0] ma [13] cs# [1] odt [1] vss nc ma [14] a nc nc 33 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc1 p8 vcc3 p3 vcc3 p3 nc nc nc nc nc 32 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vcc3 p3 nc nc nc nc nc nc 31 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc3 p3 nc nc vss nc vss nc 30 therm da vsspllx vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vcc3 p3 nc nc nc nc nc nc 29 therm dc vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc3 p3 nc nc nc nc nc nc 28 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vcc3 p3 s_ stat3 s_ act4 vss s_ stat5 vss s_ act1 27 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc3 p3 s_ stat4 s_ stat6 s_ stat7 s_ act0 s_ stat2 s_ act5 26 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vcc3 p3 s_ act6 s_ stat1 s_ act7 s_ act3 s_ act2 s_ stat0 25 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2 vss vcc1 p2as vcc1 p2as vcc1 p2as vssas vssas vssas vssas 24 vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2 vcc1 p2as vcc1 p2as vcc1 p2as s_ txn [3] s_ txp[3] s_ rxn[3] s_ rxp[3] 23 vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2x vss vcc1 p2 vss vcc1 p2as vcc1 p2as vcc1 p2as s_ txn [1] s_ txp[1] s_ rxn[1] s_ rxp[1] 22 nc rbias_ sense [0] vssas vssas vssas vssas 21 s_ txn [0] s_ txp[0] s_ rxn[0] s_ rxp[0] 20 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vssplls 0 s_ clkp vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2plls0 s_ clkn nc nc rbias [0] vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p8s vcc1 p8s vcc1 p8s s_ txn [2] s_ txp[2] s_ rxn[2] s_ rxp[2] 19 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p8s vcc1 p8s vcc1 p8s vssas vssas vssas vssas 18 vssds vcc1 p2ds s_ txn [7] s_ txp[7] s_ rxn[7] s_ rxp[7] 17 nc rbias_ sense [1] s_ txn [5] s_ txp[5] s_ rxn[5] s_ rxp[5] 16 vcc1 p2 nc vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vssplls 1 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p2plls1 vss nc nc rbias [1] vssas vssas vssas vssas 15 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vssds vcc1 p2ds vssds s_ txn [4] s_ txp[4] s_ rxn[4] s_ rxp[4] 14 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc1 p2ds vssds vcc1 p2ds s_ txn [6] s_ txp[6] s_ rxn[6] s_ rxp[6] 13 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2ds vcc1 p2ds vssds vssas vssas vssas vssas 12 vcc1 p2 vss vcc1 p2 vss vcc1 p2pllp vsspllp vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc3 p3 gpio [6] gpio [5] gpio [7] gpio [3] gpio [1] 11 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc3 p3 gpio [4] vss gpio [2] vss gpio [0] 10 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc3 p3 xint# [7] xint# [4] xint# [5] xint# [3] xint# [1] 9 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vcc3 p3 xint# [6] xint# [0] xint# [2] 8 vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc1 p2 vss vcc3 p3 nmi1# vss hpi# vss hs_ enum# 7 vcc3 p3 vccvio vcc3 p3 vcc3 p3 vccvio vcc3 p3 vccvio vccvio vcc3 p3 vcc3 p3 vccvio vcc3 p3 vcc3 p3 hs_ freq [0] hs_ freq [1] hs_ lstat u0_ rx d u0_ rts# 6 vccvio vccvio p_ ad [31] p_ gnt# [0] vccvio p_ gnt# [3] p_ cal [0] vcc3 p3 nc u1_ rx d u0_ tx d u0_ cts# 5 p_ gnt# [1] p_ req# [3] vss p_ bmi warm_ rst# vss u1_ rts# u1_ tx d u1_ cts# 4 p_ req# [2] p_ cal [1] p_ clko [2] p_ clko [3] vss vss vss vssds nc hs_ led_out nmi0# p_ ad [13] vccvio p_ trdy# p_ ad [16] p_ idsel p_ ad [26] p_ ad [11] p_ par vss p_ frame# p_ ad [20] vss p_ ad [24] p_ ad [30] vss p_ ad [12] p_ ad [15] p_ stop# p_ devsel # p_ ad [18] p_ ad [22] p_ ad [23] p_ ad [28] p_ ad [27] nc p_ gnt# [2] nc p_ cal [2] p_ ad [10] p_ cbe# [1] vss p_ pcixca p p_ cbe# [2] vss p_ ad [21] p_ ad [25] vss nc nc vss p_ rst# vss p_ clkout p_ clko [0] p_ m66en p_ ad [14] p_ serr# p_ perr# p_ irdy# p_ ad [17] p_ ad [19] p_ cbe# [3] p_ ad [29] p_ req# [0] p_ req# [1] nc p_ rstout# p_ clko [1] p_ clkin vss 3 2 1 a. MA[14] is only needed for 4GB memory support, otherwise this pin remains NC. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 45 Intel® 81348—Datasheet Table 15. Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings (Sheet 1 of 8) Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 – – vss u1_cts# u0_cts# u0_rts# hs_enum# xint#[2] xint#[1] gpio[0] gpio[1] vssas s_rxp[6] s_rxp[4] vssas s_rxp[5] s_rxp[7] vssas s_rxp[2] s_rxp[0] vssas s_rxp[1] s_rxp[3] vssas s_stat0 s_act5 s_act1 nc nc nc nc nc nc nc vss – – B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 – vss p_clko[3] u1_txd u0_txd u0_rxd vss xint#[0] xint#[3] vss gpio[3] vssas s_rxn[6] s_rxn[4] vssas s_rxn[5] s_rxn[7] vssas s_rxn[2] s_rxn[0] vssas s_rxn[1] s_rxn[3] vssas s_act2 s_stat2 vss nc nc vss nc nc nc nc nc vss – C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 vss p_clko[0] p_clko[2] u1_rts# u1_rxd hs_lstat hpi# xint#[6] xint#[5] gpio[2] gpio[7] vssas s_txp[6] s_txp[4] vssas s_txp[5] s_txp[7] vssas s_txp[2] s_txp[0] vssas s_txp[1] s_txp[3] vssas s_act3 s_act0 s_stat5 nc nc nc nc nc ma[14]a vss dq[51] dq[59] vss D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D35 D36 D37 p_clkin p_clkout p_cal[2] vss nc hs_freq[1] vss nmi0# xint#[4] vss gpio[5] vssas s_txn[6] s_txn[4] vssas s_txn[5] s_txn[7] vssas s_txn[2] s_txn[0] vssas s_txn[1] s_txn[3] vssas s_act7 s_stat7 vss nc nc vss nc nc nc dq[55] dq[50] dq[58] dq[63] E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25 E26 E27 E28 E29 E30 E31 E32 E33 E34 E35 E36 E37 p_clko[1] vss nc warm_rst# vcc3p3 hs_freq[0] nmi1# hs_led_out xint#[7] gpio[4] gpio[6] vssds vcc1p2ds vssds rbias[1] rbias_sense[1] vcc1p2ds vcc1p8s vcc1p8s rbias[0] rbias_sense[0] vcc1p2as vcc1p2as vcc1p2as s_stat1 s_stat6 s_act4 nc nc nc nc nc vss dq[54] dqs[6] dq[62] dqs[7] Intel® 81348 I/O Processor Datasheet 46 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Table 15. Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings (Sheet 2 of 8) Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 G1 p_rstout# p_rst# p_cal[1] p_bmi p_cal[0] vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc1p2ds vssds vcc1p2ds nc nc vssds vcc1p8s vcc1p8s nc nc vcc1p2as vcc1p2as vcc1p2as s_act6 s_stat4 s_stat3 nc nc nc nc vcc3p3 odt[1] vss dqs#[6] vss dqs#[7] nc G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 G32 G33 G34 G35 G36 G37 H1 H2 vss p_req#[2] vss p_gnt#[3] vcc3p3 vss vcc1p2 vss vcc1p2 vss vcc1p2ds vcc1p2ds vssds nc nc vssds vcc1p8s vcc1p8s nc nc vcc1p2as vcc1p2as vcc1p2as vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 cs#[1] dq[49] dm[6] dm[7] dq[57] p_req#[1] nc H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31 H32 H33 H34 H35 H36 H37 J1 J2 J3 p_gnt#[2] p_req#[3] vccvio vccvio vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vss vss vcc1p2 vss vcc1p2 s_clkn0 s_clkp0 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vcc1p8 ma[13] dq[48] dq[53] dq[61] dq[56] p_req#[0] nc nc J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20 J21 J22 J23 J24 J25 J26 J27 J28 J29 J30 J31 J32 J33 J34 J35 J36 J37 K1 K2 K3 K4 p_gnt#[1] p_gnt#[0] vcc3p3 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vcc1p2plls1 vssplls1 vss vcc1p2 vss vcc1p2plls0 vssplls0 vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p8 odt[0] vss dq[52] vss dq[60] p_ad[29] vss p_ad[27] vss K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21 K22 K23 K24 K25 K26 K27 K28 K29 K30 K31 K32 K33 K34 K35 K36 K37 L1 L2 L3 L4 L5 p_ad[31] vcc3p3 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vcc1p8 cas# vss dq[35] vss dq[43] p_cbe#[3] p_ad[25] p_ad[28] p_ad[30] vccvio December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 47 Intel® 81348—Datasheet Table 15. Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings (Sheet 3 of 8) Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34 L35 L36 L37 M1 M2 M3 M4 M5 M6 vccvio vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p8 we# dq[39] dq[34] dq[42] dq[47] p_ad[19] p_ad[21] p_ad[23] p_ad[24] p_ad[26] vccvio M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M36 M37 N1 N2 N3 N4 N5 N6 N7 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vcc1p8 vss dq[38] dqs[4] dq[46] dqs[5] p_ad[17] vss p_ad[22] vss p_idsel vcc3p3 vss N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 N27 N28 N29 N30 N31 N32 N33 N34 N35 N36 N37 P1 P2 P3 P4 P5 P6 P7 P8 vcc1p2 vss vcc1p2 vsspllp vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p8 cs#[0] vss dqs#[4] vss dqs#[5] p_irdy# p_cbe#[2] p_ad[18] p_ad[20] vccvio vccvio vcc1p2 vss P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 R1 R2 R3 R4 R5 R6 R7 R8 R9 vcc1p2 vss vcc1p2pllp vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vcc1p8 ras# dq[33] dm[4] dm[5] dq[41] p_perr# p_pcixcap p_devsel# p_frame# p_ad[16] vcc3p3 vss vcc1p2 vss R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p8 ba[0] dq[32] dq[37] dq[45] dq[40] p_serr# vss p_stop# vss p_trdy# vcc3p3 vcc1p2 vss vcc1p2 vss Intel® 81348 I/O Processor Datasheet 48 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Table 15. Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings (Sheet 4 of 8) Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vcc1p8 ma[10] vss dq[36] vss dq[44] p_ad[14] p_cbe#[1] p_ad[15] p_par vccvio vccvio vss vcc1p2 vss vcc1p2 vss U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vsspllx vcc1p2x vss vcc1p8 ba[1] m_ck[2] m_ck#[2] cb[3] cb[2] p_m66en p_ad[10] p_ad[12] p_ad[11] p_ad[13] vcc3p3 vcc1p2 vss vcc1p2 vss vcc1p2 vss V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x thermdc thermda vss vcc1p2x vcc1p8 ma[0] m_ck#[0] vss cb[7] cb[6] vss vss p_cbe#[0] vss p_ad[9] vcc3p3 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss W14 W15 W16 W17 W18 W19 W20 W21 W22 W23 W24 W25 W26 W27 W28 W29 W30 W31 W32 W33 W34 W35 W36 W37 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x nc vcc1p2x vss vcc1p8 vss m_ck[0] dm[8] dqs[8] dqs#[8] p_ad[8] p_ad[7] p_ad[5] p_ad[6] p_ad[4] vccvio vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32 Y33 Y34 Y35 Y36 Y37 AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8 AA9 AA10 AA11 AA12 AA13 AA14 AA15 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc3p3pllx vss vcc1p2x vcc1p8 ma[1] ma[2] vss cb[5] cb[1] p_ad[3] p_ad[1] p_ad[2] p_ad[0] vccvio vccvio vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 49 Intel® 81348—Datasheet Table 15. Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings (Sheet 5 of 8) Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal AA16 AA17 AA18 AA19 AA20 AA21 AA22 AA23 AA24 AA25 AA26 AA27 AA28 AA29 AA30 AA31 AA32 AA33 AA34 AA35 AA36 AA37 AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p8 ma[3] m_ck#[1] m_ck[1] cb[4] cb[0] p_ack64# vss p_req64# vss p_cbe#[7] vcc3p3 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss AB17 AB18 AB19 AB20 AB21 AB22 AB23 AB24 AB25 AB26 AB27 AB28 AB29 AB30 AB31 AB32 AB33 AB34 AB35 AB36 AB37 AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12 AC13 AC14 AC15 AC16 AC17 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vcc1p8 ma[4] vss dq[19] vss dq[27] p_cbe#[6] p_cbe#[4] p_ad[63] p_cbe#[5] p_par64 vccvio vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss AC18 AC19 AC20 AC21 AC22 AC23 AC24 AC25 AC26 AC27 AC28 AC29 AC30 AC31 AC32 AC33 AC34 AC35 AC36 AC37 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AD17 AD18 vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vssplld vcc1p2x vss vcc1p8 ma[6] dq[23] dq[18] dq[26] dq[31] p_ad[61] p_ad[59] p_ad[62] p_ad[60] vccvio vccvio vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss AD19 AD20 AD21 AD22 AD23 AD24 AD25 AD26 AD27 AD28 AD29 AD30 AD31 AD32 AD33 AD34 AD35 AD36 AD37 AE1 AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE13 AE14 AE15 AE16 AE17 AE18 AE19 vcc1p2 vss vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2plld vss vcc1p2x vcc1p8 vss dq[22] dqs[2] dq[30] dqs[3] p_ad[57] vss p_ad[58] vss p_ad[56] vcc3p3 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss AE20 AE21 AE22 AE23 AE24 AE25 AE26 AE27 AE28 AE29 AE30 AE31 AE32 AE33 AE34 AE35 AE36 AE37 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 AF16 AF17 AF18 AF19 AF20 vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p8 ma[5] vss dqs#[2] vss dqs#[3] p_ad[55] p_ad[53] p_ad[51] p_ad[54] p_ad[52] vccvio vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss Intel® 81348 I/O Processor Datasheet 50 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Table 15. Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings (Sheet 6 of 8) Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal AF21 AF22 AF23 AF24 AF25 AF26 AF27 AF28 AF29 AF30 AF31 AF32 AF33 AF34 AF35 AF36 AF37 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8 AG9 AG10 AG11 AG12 AG13 AG14 AG15 AG16 AG17 AG18 AG19 AG20 AG21 vcc1p2 vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vcc1p8 ma[8] dq[17] dm[2] dm[3] dq[25] p_ad[49] p_ad[47] p_ad[50] p_ad[48] vccvio vccvio vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss AG22 AG23 AG24 AG25 AG26 AG27 AG28 AG29 AG30 AG31 AG32 AG33 AG34 AG35 AG36 AG37 AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8 AH9 AH10 AH11 AH12 AH13 AH14 AH15 AH16 AH17 AH18 AH19 AH20 AH21 AH22 vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p8 ma[7] dq[16] dq[21] dq[29] dq[24] p_ad[45] vss p_ad[46] vss p_ad[44] vcc3p3 vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss AH23 AH24 AH25 AH26 AH27 AH28 AH29 AH30 AH31 AH32 AH33 AH34 AH35 AH36 AH37 AJ1 AJ2 AJ3 AJ4 AJ5 AJ6 AJ7 AJ8 AJ9 AJ10 AJ11 AJ12 AJ13 AJ14 AJ15 AJ16 AJ17 AJ18 AJ19 AJ20 AJ21 AJ22 AJ23 vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vcc1p8 ma[9] vss dq[20] vss dq[28] p_ad[43] p_ad[41] p_ad[39] p_ad[42] p_ad[40] vccvio vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss AJ24 AJ25 AJ26 AJ27 AJ28 AJ29 AJ30 AJ31 AJ32 AJ33 AJ34 AJ35 AJ36 AJ37 AK1 AK2 AK3 AK4 AK5 AK6 AK7 AK8 AK9 AK10 AK11 AK12 AK13 AK14 AK15 AK16 AK17 AK18 AK19 AK20 AK21 AK22 AK23 AK24 vcc1p2x vss vcc1p2x vcc1p2x vcc1p2x vss vcc1p2x vss vcc1p8 ma[11] vss dq[3] vss dq[11] p_ad[37] p_ad[35] p_ad[38] p_ad[36] vccvio vccvio vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss refclkn refclkp vcc1p2 vss vcc1p2 vss AK25 AK26 AK27 AK28 AK29 AK30 AK31 AK32 AK33 AK34 AK35 AK36 AK37 AL1 AL2 AL3 AL4 AL5 AL6 AL7 AL8 AL9 AL10 AL11 AL12 AL13 AL14 AL15 AL16 AL17 AL18 AL19 AL20 AL21 AL22 AL23 AL24 AL25 vcc1p2x vss vcc1p2x vss vcc1p2x vss vcc1p2x vcc1p8 ma[12] dq[7] dq[2] dq[10] dq[15] p_ad[33] vss p_ad[34] vss p_ad[32] vcc3p3 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 vss vcc1p2 nc nc vss vcc1p2 vss vcc1p2x vss December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 51 Intel® 81348—Datasheet Table 15. Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings (Sheet 7 of 8) Ball Signal Ball Signal Ball Signal Ball Signal Ball Signal AL26 AL27 AL28 AL29 AL30 AL31 AL32 AL33 AL34 AL35 AL36 AL37 AM1 AM2 AM3 AM4 AM5 AM6 AM7 AM8 AM9 AM10 AM11 AM12 AM13 AM14 AM15 AM16 AM17 AM18 AM19 AM20 AM21 AM22 AM23 AM24 AM25 AM26 vcc1p2x vcc1p2x vcc1p2x vss vcc1p2x vss vcc1p8 vss dq[6] dqs[0] dq[14] dqs[1] a[24] d[14] pwe# poe# d[10] vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc1p2 vcc1p2e vcc1p2e vcc1p2ae vcc1p2ae vcc1p2ae vcc1p2ae nc nc vcc1p2ae vcc1p2ae vcc1p2ae vcc1p2ae vcc1p8e vcc1p8e AM27 AM28 AM29 AM30 AM31 AM32 AM33 AM34 AM35 AM36 AM37 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 AN24 AN25 AN26 AN27 vcc1p2x vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc1p8 ba[2] vss dqs#[0] vss dqs#[1] d[7] d[6] d[12] d[2] vcc3p3 d[15] a[11] PUR1 nc a[20] pce#[1] vcc1p2 vcc1p2e vcc1p2e vcc1p2e vcc1p2e vcc1p8e vcc1p8e pe_caln pe_calp vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p2x AN28 AN29 AN30 AN31 AN32 AN33 AN34 AN35 AN36 AN37 AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11 AP12 AP13 AP14 AP15 AP16 AP17 AP18 AP19 AP20 AP21 AP22 AP23 AP24 AP25 AP26 AP27 AP28 scl2 scl1 vcc3p3 vcc3p3 vcc1p8 cke[0] dq[1] dm[0] dq[8] dq[9] d[13] d[5] d[11] vss d[9] a[16] vss a[10] a[9] vss a[21] vcc1p2 vsse petn[0] petn[1] vsse petn[2] petn[3] vsse petn[4] petn[5] vsse petn[6] petn[7] vsse vcc1p8e vcc1p2x vss AP29 AP30 AP31 AP32 AP33 AP34 AP35 AP36 AP37 AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 AR9 AR10 AR11 AR12 AR13 AR14 AR15 AR16 AR17 AR18 AR19 AR20 AR21 AR22 AR23 AR24 AR25 AR26 AR27 AR28 AR29 sda2 vcc3p3 vss vcc1p8 cke[1] dq[0] dq[5] dq[13] dm[1] vss a[0] a[23] d[3] d[4] a[17] a[15] pb_rstout# a[12] pce#[0] a[19] vcc1p2 vsse petp[0] petp[1] vsse petp[2] petp[3] vsse petp[4] petp[5] vsse petp[6] petp[7] vsse vcc1p8e vcc1p2x sda0 sda1 AR30 AR31 AR32 AR33 AR34 AR35 AR36 AR37 AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9 AT10 AT11 AT12 AT13 AT14 AT15 AT16 AT17 AT18 AT19 AT20 AT21 AT22 AT23 AT24 AT25 AT26 AT27 AT28 AT29 AT30 tdo tck vcc1p8 m_rst# vss dq[4] dq[12] vss – vss d[0] d[8] a[4] a[3] vss a[1] a[8] vss a[18] vcc1p2 vsse pern[0] pern[1] vsse pern[2] pern[3] vsse pern[4] pern[5] vsse pern[6] pern[7] vsse vcc1p8e vcc1p2x vss scl0 tms Intel® 81348 I/O Processor Datasheet 52 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Table 15. Ball Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Ball Listings (Sheet 8 of 8) Signal Ball Signal AT31 vss AU3 vss AT32 vcc1p8 AU4 d[1] AT33 m_vref AU5 a[5] AT34 m_cal[1] AU6 a[7] AT35 m_cal[0] AU7 a[2] AT36 vss AU8 a[6] AT37 – AU9 a[14] AU1 – AU10 a[13] AU2 – AU11 a[22] a. MA[14] is only needed for 4GB memory support. December 2007 Order Number: 315038-003US Ball Signal Ball Signal Ball Signal AU12 vcc1p2 AU21 perp[5] AU13 vsse AU22 vsse AU14 perp[0] AU23 perp[6] AU15 perp[1] AU24 perp[7] AU16 vsse AU25 vsse AU17 perp[2] AU26 vcc1p8e AU18 perp[3] AU27 vcc1p2x AU19 vsse AU28 smbdat AU20 perp[4] AU29 smbclk When 4GB memory is not used this pin is NC. AU30 AU31 AU32 AU33 AU34 AU35 AU36 AU37 tdi trst# vcc1p8 vss vss vss – – Intel® 81348 I/O Processor Datasheet 53 Intel® 81348—Datasheet Table 16. Signal – – – – – – – – – – – – a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19] a[20] a[21] a[22] a[23] a[24] Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings (Sheet 1 of 8) Ball A1 A2 A36 A37 B1 B37 AT1 AT37 AU1 AU2 AU36 AU37 AR2 AT8 AU7 AT6 AT5 AU5 AU8 AU6 AT9 AP9 AP8 AN7 AR9 AU10 AU9 AR7 AP6 AR6 AT11 AR11 AN10 AP11 AU11 AR3 AM1 Intel® 81348 I/O Processor Datasheet 54 Signal ba[0] ba[1] ba[2] cas# cb[0] cb[1] cb[2] cb[3] cb[4] cb[5] cb[6] cb[7] cke[0] cke[1] cs#[0] cs#[1] d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7] d[8] d[9] d[10] d[11] d[12] d[13] d[14] d[15] dm[0] dm[1] dm[2] dm[3] dm[4] Ball R33 U33 AM33 K33 AA37 Y37 U37 U36 AA36 Y36 V37 V36 AN33 AP33 N33 G33 AT3 AU4 AN4 AR4 AR5 AP2 AN2 AN1 AT4 AP5 AM5 AP3 AN3 AP1 AM2 AN6 AN35 AP37 AF35 AF36 P35 Signal dm[5] dm[6] dm[7] dm[8] dq[0] dq[1] dq[2] dq[3] dq[4] dq[5] dq[6] dq[7] dq[8] dq[9] dq[10] dq[11] dq[12] dq[13] dq[14] dq[15] dq[16] dq[17] dq[18] dq[19] dq[20] dq[21] dq[22] dq[23] dq[24] dq[25] dq[26] dq[27] dq[28] dq[29] dq[30] dq[31] dq[32] Ball P36 G35 G36 W35 AP34 AN34 AK35 AJ35 AR35 AP35 AL34 AK34 AN36 AN37 AK36 AJ37 AR36 AP36 AL36 AK37 AG34 AF34 AC35 AB35 AH35 AG35 AD34 AC34 AG37 AF37 AC36 AB37 AH37 AG36 AD36 AC37 R34 Signal dq[33] dq[34] dq[35] dq[36] dq[37] dq[38] dq[39] dq[40] dq[41] dq[42] dq[43] dq[44] dq[45] dq[46] dq[47] dq[48] dq[49] dq[50] dq[51] dq[52] dq[53] dq[54] dq[55] dq[56] dq[57] dq[58] dq[59] dq[60] dq[61] dq[62] dq[63] dqs#[0] dqs#[1] dqs#[2] dqs#[3] dqs#[4] dqs#[5] Ball P34 L35 K35 T35 R35 M34 L34 R37 P37 L36 K37 T37 R36 M36 L37 H34 G34 D35 C35 J35 H35 E34 D34 H37 G37 D36 C36 J37 H36 E36 D37 AM35 AM37 AE35 AE37 N35 N37 Signal dqs#[6] dqs#[7] dqs#[8] dqs[0] dqs[1] dqs[2] dqs[3] dqs[4] dqs[5] dqs[6] dqs[7] dqs[8] gpio[0] gpio[1] gpio[2] gpio[3] gpio[4] gpio[5] gpio[6] gpio[7] hpi# hs_enum# hs_freq[0] hs_freq[1] hs_led_out hs_lstat m_cal[0] m_cal[1] m_ck#[0] m_ck#[1] m_ck#[2] m_ck[0] m_ck[1] m_ck[2] m_rst# m_vref ma[0] Ball F35 F37 W37 AL35 AL37 AD35 AD37 M35 M37 E35 E37 W36 A10 A11 C10 B11 E10 D11 E11 C11 C7 A7 E6 D6 E8 C6 AT35 AT34 V34 AA34 U35 W34 AA35 U34 AR33 AT33 V33 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Table 16. Signal ma[1] ma[2] ma[3] ma[4] ma[5] ma[6] ma[7] ma[8] ma[9] ma[10] ma[11] ma[12] ma[13] nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc ma[14]a nc nc nc nc nc Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings (Sheet 2 of 8) Ball Y33 Y34 AA33 AB33 AE33 AC33 AG33 AF33 AH33 T33 AJ33 AK33 H33 A28 A29 A30 A31 A32 A33 A34 B28 B29 B31 B32 B33 B34 B35 C28 C29 C30 C31 C32 C33 D5 D28 D29 D31 D32 Signal nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nmi0# nmi1# odt[0] odt[1] p_ack64# p_ad[0] p_ad[1] p_ad[2] p_ad[3] December 2007 Order Number: 315038-003US Ball D33 E3 E28 E29 E30 E31 E32 F15 F16 F20 F21 F28 F29 F30 F31 G1 G15 G16 G20 G21 H2 J2 J3 W29 AL19 AL20 AM19 AM20 AN9 D8 E7 J33 F33 AB1 AA4 AA2 AA3 AA1 Signal p_ad[4] p_ad[5] p_ad[6] p_ad[7] p_ad[8] p_ad[9] p_ad[10] p_ad[11] p_ad[12] p_ad[13] p_ad[14] p_ad[15] p_ad[16] p_ad[17] p_ad[18] p_ad[19] p_ad[20] p_ad[21] p_ad[22] p_ad[23] p_ad[24] p_ad[25] p_ad[26] p_ad[27] p_ad[28] p_ad[29] p_ad[30] p_ad[31] p_ad[32] p_ad[33] p_ad[34] p_ad[35] p_ad[36] p_ad[37] p_ad[38] p_ad[39] p_ad[40] p_ad[41] Ball Y5 Y3 Y4 Y2 Y1 W5 V2 V4 V3 V5 U1 U3 R5 N1 P3 M1 P4 M2 N3 M3 M4 L2 M5 K3 L3 K1 L4 K5 AL5 AL1 AL3 AK2 AK4 AK1 AK3 AJ3 AJ5 AJ2 Signal p_ad[42] p_ad[43] p_ad[44] p_ad[45] p_ad[46] p_ad[47] p_ad[48] p_ad[49] p_ad[50] p_ad[51] p_ad[52] p_ad[53] p_ad[54] p_ad[55] p_ad[56] p_ad[57] p_ad[58] p_ad[59] p_ad[60] p_ad[61] p_ad[62] p_ad[63] p_bmi p_cal[0] p_cal[1] p_cal[2] p_cbe#[0] p_cbe#[1] p_cbe#[2] p_cbe#[3] p_cbe#[4] p_cbe#[5] p_cbe#[6] p_cbe#[7] p_clkin p_clko[0] p_clko[1] p_clko[2] Ball AJ4 AJ1 AH5 AH1 AH3 AG2 AG4 AG1 AG3 AF3 AF5 AF2 AF4 AF1 AE5 AE1 AE3 AD2 AD4 AD1 AD3 AC3 F4 F5 F3 D3 W3 U2 P2 L1 AC2 AC4 AC1 AB5 D1 C2 E1 C3 Signal p_clko[3] p_clkout p_devsel# p_frame# p_gnt#[0] p_gnt#[1] p_gnt#[2] p_gnt#[3] p_idsel p_irdy# p_m66en p_par p_par64 p_pcixcap p_perr# p_req#[0] p_req#[1] p_req#[2] p_req#[3] p_req64# p_rst# p_rstout# p_serr# p_stop# p_trdy# pb_rstout# pce#[0] pce#[1] pe_caln pe_calp pern[0] pern[1] pern[2] pern[3] pern[4] pern[5] pern[6] pern[7] Ball B3 D2 R3 R4 J5 J4 H3 G5 N5 P1 V1 U4 AC5 R2 R1 J1 H1 G3 H4 AB3 F2 F1 T1 T3 T5 AR8 AR10 AN11 AN19 AN20 AT14 AT15 AT17 AT18 AT20 AT21 AT23 AT24 Intel® 81348 I/O Processor Datasheet 55 Intel® 81348—Datasheet Table 16. Signal perp[0] perp[1] perp[2] perp[3] perp[4] perp[5] perp[6] perp[7] petn[0] petn[1] petn[2] petn[3] petn[4] petn[5] petn[6] petn[7] petp[0] petp[1] petp[2] petp[3] petp[4] petp[5] petp[6] petp[7] poe# pwe# ras# rbias[0] rbias[1] rbias_sense[0] rbias_sense[1] refclkn refclkp s_act0 s_act1 s_act2 s_act3 s_act4 Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings (Sheet 3 of 8) Ball AU14 AU15 AU17 AU18 AU20 AU21 AU23 AU24 AP14 AP15 AP17 AP18 AP20 AP21 AP23 AP24 AR14 AR15 AR17 AR18 AR20 AR21 AR23 AR24 AM4 AM3 P33 E20 E15 E21 E16 AK19 AK20 C26 A27 B25 C25 E27 Intel® 81348 I/O Processor Datasheet 56 Signal s_act5 s_act6 s_act7 s_clkn0 s_clkp0 s_rxn[0] s_rxn[1] s_rxn[2] s_rxn[3] s_rxn[4] s_rxn[5] s_rxn[6] s_rxn[7] s_rxp[0] s_rxp[1] s_rxp[2] s_rxp[3] s_rxp[4] s_rxp[5] s_rxp[6] s_rxp[7] s_stat0 s_stat1 s_stat2 s_stat3 s_stat4 s_stat5 s_stat6 s_stat7 s_txn[0] s_txn[1] s_txn[2] s_txn[3] s_txn[4] s_txn[5] s_txn[6] s_txn[7] s_txp[0] Ball A26 F25 D25 H20 H21 B20 B22 B19 B23 B14 B16 B13 B17 A20 A22 A19 A23 A14 A16 A13 A17 A25 E25 B26 F27 F26 C27 E26 D26 D20 D22 D19 D23 D14 D16 D13 D17 C20 Signal s_txp[1] s_txp[2] s_txp[3] s_txp[4] s_txp[5] s_txp[6] s_txp[7] scl0 scl1 scl2 sda0 sda1 sda2 smbclk smbdat tck tdi tdo thermda thermdc tms trst# u0_cts# u0_rts# u0_rxd u0_txd u1_cts# u1_rts# u1_rxd u1_txd vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 Ball C22 C19 C23 C14 C16 C13 C17 AT29 AN29 AN28 AR28 AR29 AP29 AU29 AU28 AR31 AU30 AR30 V29 V28 AT30 AU31 A5 A6 B6 B5 A4 C4 C5 B4 G8 G10 H7 H9 H11 H13 H17 H19 Signal vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 Ball H23 J8 J10 J12 J14 J18 J22 J24 K7 K9 K11 K13 K15 K17 K19 K21 L8 L10 L12 L14 L16 L18 L20 M7 M9 M11 M13 M15 M17 M19 M21 N8 N10 N12 N14 N16 N18 N20 Signal vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 Ball P7 P9 P13 P15 P17 P19 P21 R8 R10 R12 R14 R16 R18 R20 T7 T9 T11 T13 T15 T17 T19 T21 U8 U10 U12 U14 U16 U18 U20 V7 V9 V11 V13 V15 V17 V19 V21 W8 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Table 16. Signal vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings (Sheet 4 of 8) Ball W10 W12 W14 W16 W18 W20 Y7 Y9 Y11 Y13 Y15 Y17 Y19 Y21 AA8 AA10 AA12 AA14 AA16 AA18 AA20 AB7 AB9 AB11 AB13 AB15 AB17 AB19 AB21 AC8 AC10 AC12 AC14 AC16 AC18 AC20 AD7 AD9 December 2007 Order Number: 315038-003US Signal vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 Ball AD11 AD13 AD15 AD17 AD19 AD21 AE8 AE10 AE12 AE14 AE16 AE18 AE20 AF7 AF9 AF11 AF13 AF15 AF17 AF19 AF21 AG8 AG10 AG12 AG14 AG16 AG18 AG20 AH7 AH9 AH11 AH13 AH15 AH17 AH19 AH21 AJ8 AJ10 Signal vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2 vcc1p2ae vcc1p2ae vcc1p2ae vcc1p2ae vcc1p2ae vcc1p2ae vcc1p2ae vcc1p2ae vcc1p2as vcc1p2as vcc1p2as Ball AJ12 AJ14 AJ16 AJ18 AJ20 AJ22 AK7 AK9 AK11 AK13 AK15 AK17 AK21 AK23 AL8 AL10 AL12 AL14 AL16 AL18 AL22 AM12 AN12 AP12 AR12 AT12 AU12 AM15 AM16 AM17 AM18 AM21 AM22 AM23 AM24 E22 E23 E24 Signal vcc1p2as vcc1p2as vcc1p2as vcc1p2as vcc1p2as vcc1p2as vcc1p2ds vcc1p2ds vcc1p2ds vcc1p2ds vcc1p2ds vcc1p2ds vcc1p2e vcc1p2e vcc1p2e vcc1p2e vcc1p2e vcc1p2e vcc1p2plld vcc1p2pllp vcc1p2plls0 vcc1p2plls1 vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x Ball F22 F23 F24 G22 G23 G24 E13 E17 F12 F14 G12 G13 AM13 AM14 AN13 AN14 AN15 AN16 AD29 P11 J20 J15 H25 H27 H29 H31 J26 J28 J30 K23 K25 K27 K29 K31 L22 L24 L26 L28 Signal vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x Ball L30 M23 M25 M27 M29 M31 N22 N24 N26 N28 N30 P23 P25 P27 P29 P31 R22 R24 R26 R28 R30 T23 T25 T27 T29 T31 U22 U24 U26 U28 U30 V23 V25 V27 V31 W22 W24 W26 Intel® 81348 I/O Processor Datasheet 57 Intel® 81348—Datasheet Table 16. Signal vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings (Sheet 5 of 8) Ball W28 W30 Y23 Y25 Y27 Y31 AA22 AA24 AA26 AA28 AA30 AB23 AB25 AB27 AB29 AB31 AC22 AC24 AC26 AC28 AC30 AD23 AD25 AD27 AD31 AE22 AE24 AE26 AE28 AE30 AF23 AF25 AF27 AF29 AF31 AG22 AG24 AG26 Intel® 81348 I/O Processor Datasheet 58 Signal vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p2x vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 Ball AG28 AG30 AH23 AH25 AH27 AH29 AH31 AJ24 AJ26 AJ27 AJ28 AJ30 AK25 AK27 AK29 AK31 AL24 AL26 AL27 AL28 AL30 AM27 AN27 AP27 AR27 AT27 AU27 H32 J32 K32 L32 M32 N32 P32 R32 T32 U32 V32 Signal vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8 vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8e vcc1p8s vcc1p8s vcc1p8s vcc1p8s vcc1p8s Ball W32 Y32 AA32 AB32 AC32 AD32 AE32 AF32 AG32 AH32 AJ32 AK32 AL32 AM32 AN32 AP32 AR32 AT32 AU32 AM25 AM26 AN17 AN18 AN21 AN22 AN23 AN24 AN25 AN26 AP26 AR26 AT26 AU26 E18 E19 F18 F19 G18 Signal vcc1p8s vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 vcc3p3 Ball G19 E5 F6 F7 F8 F9 F10 F11 F32 G6 G25 G26 G27 G28 G29 G30 G31 G32 J6 K6 N6 R6 T6 V6 W6 AB6 AE6 AH6 AL6 AM6 AM7 AM8 AM9 AM10 AM11 AM28 AM29 AM30 Signal vcc3p3 vcc3p3 PUR1 vcc3p3 vcc3p3 vcc3p3 vcc3p3pllx vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vccvio vss vss vss vss vss vss vss vss vss vss Ball AM31 AN5 AN8 AN30 AN31 AP30 Y29 H5 H6 L5 L6 M6 P5 P6 U5 U6 Y6 AA5 AA6 AC6 AD5 AD6 AF6 AG5 AG6 AJ6 AK5 AK6 A3 A35 B2 B7 B10 B27 B30 B36 C1 C34 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Table 16. Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings (Sheet 6 of 8) Ball C37 D4 D7 D10 D27 D30 E2 E33 F34 F36 G2 G4 G7 G9 G11 H8 H10 H12 H14 H15 H16 H18 H22 H24 H26 H28 H30 J7 J9 J11 J13 J17 J19 J23 J25 J27 J29 J31 December 2007 Order Number: 315038-003US Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss Ball J34 J36 K2 K4 K8 K10 K12 K14 K16 K18 K20 K22 K24 K26 K28 K30 K34 K36 L7 L9 L11 L13 L15 L17 L19 L21 L23 L25 L27 L29 L31 M8 M10 M12 M14 M16 M18 M20 Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss Ball M22 M24 M26 M28 M30 M33 N2 N4 N7 N9 N13 N15 N17 N19 N21 N23 N25 N27 N29 N31 N34 N36 P8 P10 P12 P14 P16 P18 P20 P22 P24 P26 P28 P30 R7 R9 R11 R13 Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss Ball R15 R17 R19 R21 R23 R25 R27 R29 R31 T2 T4 T8 T10 T12 T14 T16 T18 T20 T22 T24 T26 T28 T30 T34 T36 U7 U9 U11 U13 U15 U17 U19 U21 U23 U25 U27 U31 V8 Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss Ball V10 V12 V14 V16 V18 V20 V22 V24 V26 V30 V35 W1 W2 W4 W7 W9 W11 W13 W15 W17 W19 W21 W23 W25 W27 W31 W33 Y8 Y10 Y12 Y14 Y16 Y18 Y20 Y22 Y24 Y26 Y28 Intel® 81348 I/O Processor Datasheet 59 Intel® 81348—Datasheet Table 16. Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings (Sheet 7 of 8) Ball Y30 Y35 AA7 AA9 AA11 AA13 AA15 AA17 AA19 AA21 AA23 AA25 AA27 AA29 AA31 AB2 AB4 AB8 AB10 AB12 AB14 AB16 AB18 AB20 AB22 AB24 AB26 AB28 AB30 AB34 AB36 AC7 AC9 AC11 AC13 AC15 AC17 AC19 Intel® 81348 I/O Processor Datasheet 60 Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss Ball AC21 AC23 AC25 AC27 AC31 AD8 AD10 AD12 AD14 AD16 AD18 AD20 AD22 AD24 AD26 AD28 AD30 AD33 AE2 AE4 AE7 AE9 AE11 AE13 AE15 AE17 AE19 AE21 AE23 AE25 AE27 AE29 AE31 AE34 AE36 AF8 AF10 AF12 Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss Ball AF14 AF16 AF18 AF20 AF22 AF24 AF26 AF28 AF30 AG7 AG9 AG11 AG13 AG15 AG17 AG19 AG21 AG23 AG25 AG27 AG29 AG31 AH2 AH4 AH8 AH10 AH12 AH14 AH16 AH18 AH20 AH22 AH24 AH26 AH28 AH30 AH34 AH36 Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss Ball AJ7 AJ9 AJ11 AJ13 AJ15 AJ17 AJ19 AJ21 AJ23 AJ25 AJ29 AJ31 AJ34 AJ36 AK8 AK10 AK12 AK14 AK16 AK18 AK22 AK24 AK26 AK28 AK30 AL2 AL4 AL7 AL9 AL11 AL13 AL15 AL17 AL21 AL23 AL25 AL29 AL31 Signal vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vss vssas vssas vssas vssas vssas vssas vssas vssas vssas vssas vssas vssas vssas vssas vssas vssas vssas Ball AL33 AM34 AM36 AP4 AP7 AP10 AP28 AP31 AR1 AR34 AR37 AT2 AT7 AT10 AT28 AT31 AT36 AU3 AU33 AU34 AU35 A12 A15 A18 A21 A24 B12 B15 B18 B21 B24 C12 C15 C18 C21 C24 D12 D15 December 2007 Order Number: 315038-003US Datasheet—Intel® 81348 Table 16. Signal Intel® 81348 I/O processor 1357-Lead Package—Alphabetical Signal Listings (Sheet 8 of 8) Ball Signal Ball Signal Ball Signal Ball vssas D18 vsse AP13 vsse AR25 vsse AU22 vssas D21 vsse AP16 vsse AT13 vsse AU25 vssas D24 vsse AP19 vsse AT16 vssplld AC29 vssds E12 vsse AP22 vsse AT19 vsspllp N11 vssds E14 vsse AP25 vsse AT22 vssplls0 J21 vssds F13 vsse AR13 vsse AT25 vssplls1 J16 vssds F17 vsse AR16 vsse AU13 vsspllx U29 vssds G14 vsse AR19 vsse AU16 warm_rst# E4 vssds G17 vsse AR22 vsse AU19 we# L33 a. MA[14] is only needed for 4GB memory support. When 4GB memory is not used this pin is NC. December 2007 Order Number: 315038-003US Signal xint#[0] xint#[1] xint#[2] xint#[3] xint#[4] xint#[5] xint#[6] xint#[7] Ball B8 A9 A8 B9 D9 C9 C8 E9 Intel® 81348 I/O Processor Datasheet 61 Intel® 81348—Electrical Specifications 4.0 Electrical Specifications Table 17. Absolute Maximum Ratings Parameter Maximum Rating Notice: This data sheet contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product becomes available. The specifications are subject to change without notice. Contact your local Intel representative before finalizing a design. Storage temperature –10°C to +45°C Supply voltage VCC3P3 wrt. VSS –0.5 V to +4.1 V Supply voltage VCC1P8S wrt. VSSAS –0.5 V to +2.5 V Supply voltage VCC1P8E wrt. VSSE –0.5 V to +2.5 V Supply voltage VCC1P8 wrt. VSS –0.5 V to +2.5 V Supply voltage VCCVIO wrt. VSS –0.5 V to +4.1 V Supply voltage VCC1P2X wrt. VSS –0.5 V to +1.8 V Supply voltage VCC1P2 wrt. VSS –0.5 V to +1.8 V Supply voltage VCC1P2AE wrt. VSSE –0.5 V to +1.8 V Supply voltage VCC1P2E wrt. VSSE –0.5 V to +1.8 V Supply voltage VCC1P2AS wrt. VSSAS –0.5 V to +1.8 V Supply voltage VCC1P2DS wrt. VSSDS –0.5 V to +1.8 V Voltage on any ball wrt. VSS –0.5 V to VCCP +0.5 V †WARNING: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage. These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability. Intel® 81348 I/O Processor Datasheet 62 December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 Table 18. Operating Conditions Symbol VCC3P3 VCC1P8S VCC1P8E VCC1P8 VCCVIO VCC1P2X VCC1P2 VCC1P2E VCC1P2AE VCC1P2AS VCC1P2DS VCC1P2PLLS0 VCC1P2PLLS1 VCC1P2PLLP VCC1P2PLLD VCC3P3PLLX M_VREF TC December 2007 Order Number: 315038-003US Parameter 3.3 V supply voltage for PCI-X category 2 signals and general purpose I/Os 1.8 V supply voltage for storage interface 1.8 V supply voltage for PCI Express* interface 1.8 V supply voltage for DDR2 SDRAM memory interface I/Os 3.3 V supply voltage for PCI-X category 1 signals 1.2 V supply voltage for Intel XScale® processors 1.2 V supply voltage for most digital logic 1.2 V supply voltage for PCI Express* interface digital logic 1.2 V supply voltage for PCI Express* interface analog logic 1.2 V supply voltage for storage interface analog logic 1.2 V supply voltage for storage interface digital logic 1.2 V supply voltage for storage PLL 0 1.2 V supply voltage for storage PLL 1 1.2 V supply voltage for PCI-X PLL 1.2 V supply voltage for DDR2 SDRAM PLL processor logic PLL. 3.3 V supply voltage for processor logic PLL Memory I/O reference voltage Case temperature under bias Minimum Maximum Units 3.0 3.6 V 1.71 1.89 V 1.71 1.89 V 1.71 1.89 V 3.0 3.6 V 1.164 1.236 V 1.164 1.236 V 1.164 1.236 V 1.164 1.236 V 1.164 1.236 V 1.164 1.236 V 1.164 1.236 V 1.164 1.236 V 1.164 1.236 V 1.164 1.236 V 3.0 3.6 V 0.49VCC1P8 0.51VCC1P8 V 0 100 °C Notes Intel® 81348 I/O Processor Datasheet 63 Intel® 81348—Electrical Specifications 4.1 Figure 7. VCCPLL Pin Requirements To reduce clock jitter, the VCC1P2PLLD, VCC1P2PLLP, and VCC3P3PLLX, VCC1P2PLLS0 and VCC1P2PLLS1 balls for the phase-lock loop (PLL) circuits are isolated on the package. The low-pass filters, as shown in the following figures, reduce noise-induced clock jitter and its effects on timing relationships in system design. This paragraph pertains to the VCC1P2PLLD, VCC1P2PLLP, VCC3P3PLLX filters. The filter components must be able to handle a DC current of 30 mA. Use a shielded type inductor to minimize magnetic pickup. The total series resistance from the board VCC plane (before the filter) to the VCCPLL ball must be less than 1.5 ohm (including component and trace resistance). The total series resistance from the board VCC plane (before the filter) to the top plate of the capacitor must be greater than 0.35 ohm (including component and trace resistance). The nodes connecting VCCPLL and VSSPLL to the capacitor must be as short as possible (less than 0.1 W). VCCPLL and VSSPLL must be routed close to each other to minimize loop area. The VSSPLL balls must be connected to the filter only and not to any other ground, as shown in Figure 7 and Figure 9. The inductor and capacitor must be placed close to each other. Any discrete resistor must be placed between the VCC board plane and the inductor. If the trace and component resistance is high enough, a discrete resistor might not be required. This paragraph pertains to the VCC1P2PLLS0, VCC1P2PLLS1 filters. The recommended filter for the PLL supplies is shown in Figure 8. The purpose of this filter is to achieve at least 10 dB rejection of frequencies between 1 and 20 MHz. The current draw for the IC is less than 85 mA. The board’s supply distribution system must ensure that the minimum voltage into the filter is equal to or greater than 1.14 V. The filter components are selected to achieve a corner frequency of 100 KHz. The series resistance keeps the Q of this resonant circuit safely below unity for all component variations. The bypass capacitor must be placed as close to the supply pins as possible. The series impedances to both the supply pin and the PCB analog ground plane must be an order of magnitude lower than the ESR and ESL specified for the capacitor. The S0/S1 PLLs have dedicated internal supplies, so the VSSPLLS0/S1 pins must be soldered directly to the analog ground plane of the PCB. VCC3P3PLLX Low-Pass Filter 4.7 uH, ±25% VCC3P3PLLX 3.3V (Board Plane) 22 µF ±20%, ESR < 0.3, 6.3 V, ESL < 2.5nH (Not connected to board ground) Intel® 81348 I/O Processor Datasheet 64 VSSPLLX December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 Figure 8. VCC1P2PLLS0, VCC1P2PLLS1 Low-Pass Filter 0.1 Ω, ±5% 120 nH, ±20% RDCMAX < 0.3 45 mA 1.2V VCC1P2PLLS0/1 22 µF, ±20%, ESR < 0.3, 6.3 V, ESL < 2.5nH (Board Plane) VSSPLLS0/1 (Board ground) Figure 9. VCC1P2PLLD, VCC1P2PLLP Low-Pass Filter VCC1P2PLLD/ VCC1P2PLLP 4.7 uH, ±25% 1.2V (Board Plane) 22 µF, ±20%, ESR < 0.3, 6.3 V, ESL < 2.5nH (Not connected to board ground) December 2007 Order Number: 315038-003US VSSPLLD/ VSSPLLP Intel® 81348 I/O Processor Datasheet 65 Intel® 81348—Electrical Specifications 4.2 Targeted DC Specifications Table 19. DC Characteristics Symbol Parameter Minimum VIL1 VIH1 VIL2 VIL3 VIH3 VIL4 Input Low Voltage (General Purpose). Input High Voltage (General Purpose). Input Low Voltage (PCI). Input Low Voltage (PCI-X). Input High Voltage (PCI-X/PCI). Input Low Voltage (DDR2 SDRAM). VIH4 Input High Voltage (DDR2 SDRAM). VOL1 Output Low Voltage (General Purpose). – 0.4 V VOH1 Output High Voltage (General Purpose). 2.6 – V – 0.9VCC3P3 0.1VCC3P3 – VOL2 VOH2 Output Low Voltage (PCI-X). Output High Voltage (PCI-X). -0.3 2.0 -0.5 -0.5 Maximum Units 0.3VCC3P3 2 V VCC3P3 + 0.3 2 V 0.3VCC3P3 V 0.35VCC3P3 V VCC3P3 + 0.5 V M_VREF - 0.125 V V VCC1P8 + 0.3 0.5VCC3P3 -0.3 M_VREF + 0.125 V V IOL = 11 mA V IOH = -11 mA V IOL = 5 mA V IOH = -5 mA Output Low Voltage (DDR2 SDRAM driver set to 21Ω). VOH3 Output High Voltage (DDR2 SDRAM driver set to 21Ω). VOL4 Output Low Voltage (DDR2 SDRAM driver set to 50Ω). VOH4 Output High Voltage (DDR2 SDRAM driver set to 50Ω). ILI1 Input Leakage Current for General Purpose pins when internal pull up resistors are not enabled. ILI2 Input Leakage Current for PCI-X pins when internal pull up resistors are not enabled. ±10 µ A ILI3 Input Leakage Current for DDR2 pins when internal pull up resistors are not enabled. Internal pull up resistor value for General Purpose pins. Internal pull up resistor value for PCI-X pins. ±2 µ A RGP RPCIX CGP CPCIX CDDR2 LPIN Notes: 1. 2. 3. 1.42 0.28 1.42 ±5 IOL = 10 mA 2 IOH = -10 mA 2 IOL = 1.50 mA IOH = -0.50 mA V VOL3 0.28 Notes µ A 28.5 38.7 ΚΩ 5.9 8.1 ΚΩ General Purpose pin Capacitance. 1 4.5 pF PCI-X pin Capacitance. 1 4.5 pF DDR2 pin Capacitance. 1 4.5 pF Ball Inductance. 1 12 nH 0 ≤ VIN ≤ VCC3P3 3 0 ≤ VIN ≤ VCC3P3 (Cat . 0 ≤ VIN ≤ VCCVIO (Cat. 1) 3 0 ≤ VIN ≤ VCC1P8 3 2) 1 1 1 1 1 1 Not tested, guaranteed by design. General Purpose signals include all signals that are not part of the DDR2, PCI-X and PCI-Express interfaces or the Storage Tx/Rx pairs and analog pins. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs. Intel® 81348 I/O Processor Datasheet 66 December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 Table 20. ICC Characteristics Symbol Icc12 Active (Power Supply) Icc18 Active (Power Supply) Icc33 Active (Power Supply) Icc12 Active (Thermal) Icc18 Active (Thermal) Icc33 Active (Thermal) Notes: 1. 2. 3. 4. Parameter Power Supply Current:® Storage PHY, PCI Express, Intel XScale michroarchitecture: • 800MHz • 1200MHz Power Supply Current: Storage PHY I/Os, PCI Express I/Os, DDR-II (533) Power Supply Current: PCI, PBI, GPIO, PCI-X I/Os Thermal Current: Storage PHY, PCI Express, Intel XScale® microarchitecture: • 800MHz • 1200MHz Thermal Current: Storage PHY I/Os, PCI Express I/Os, DDR-II (533) Thermal Current: PCI, PBI, GPIO, PCI-X I/Os Typ Max Units Notes 7.83 8.39 A 1, 2, 4 1.71 A 1, 2, 4 0.69 A 1, 2 5.55 6.81 A 1, 3, 4 1.40 A 1, 3, 4 0.60 A 1, 3 Measured with the device operating and outputs loaded to the test condition in Figure 17, “AC Test Load for all Signals Except PCI, PCI-Express and DDR2 and Storage PHY” on page 82. Icc Active (Power Supply) value is provided for selecting the system power supply. This is based on the worst case data patterns and skew material at the following worst case voltages: Vcc33 = 3.63 V, Vcc18 = 1.89 V, Vcc12 = 1.24 V and ambient temperature = 55C. Icc Active (Thermal) value is provided for selecting the system thermal design power (TDP). This is based on the following typical voltages: Vcc33 = 3.3 V, Vcc18 = 1.8V, Vcc12 = 1.2 V and ambient temperature = 55C. The Customer Reference Boards use a 1.2 V switching regulator for all the 1.2 V supplies (Vcc1p2, Vcc1p2x, Vcc1p2e, Vcc1p2ds, Vcc1p2ae, Vcc1p2as) and a 1.8 V switching regulator for all 1.8 V supplies: (Vcc1p8, Vcc1p8e, Vcc1p8s). December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 67 Intel® 81348—Electrical Specifications 4.3 Targeted AC Specifications 4.3.1 Clock Signal Timings Table 21. PCI Clock Timings Symbol TC1 TC2 TCH1 TCL1 TSR1 fmod fspread Parameter PCI Clock Cycle Time Jitter Class 1 PCI Clock Cycle Time Jitter Class 2 PCI clock High Time PCI clock Low Time PCI clock Period Jitter PCI clock Slew Rate PCI-X 133 PCI-X 100 PCI-X 66 PCI 66 PCI 33 Units Notes Min. Max Min. Max Min. Max Min. Max Min. Max 7.5 11 10 15 15 22 15 25 30 50 7.375 11 9.875 15 14.8 22 14.8 25 29.7 50 -125 4 3 3 125 1.5 2.5 2.5 125 1.5 -125 4 ns 1 1 5.5 5.5 10 ns 5.5 5.5 10 ns 200 -200 200 -200 300 -300 ps 1.5 4 1.5 4 1 4 V/ns 3 2 PCI Spread Spectrum Requirements PCI clock modulation frequency PCI clock frequency spread 30 33 30 33 30 33 30 33 KHz -1 0 -1 0 -1 0 -1 0 % PCI Output Clocks Notes: 1. 2. 3. 4. 5. PCI output clock skew PCI output clock period jitter 250 100 -100 350 150 -150 350 350 350 ps 150 -150 150 -150 150 -150 ps 4, 5 The clock frequency may not change beyond the spread-spectrum limits except while P_RST# or WARM_RST# is asserted. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform. Period jitter is the deviation between any single period of the clock and the average period of the clock. If a jitter class 2 input clock is used, output clocks can not support jitter class 1. The deviation between any single period of the clock and the average period of the clock. Intel® 81348 I/O Processor Datasheet 68 December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 Table 22. PCI Express Clock Timings Symbol Parameter TF2 TC2 DF0 TCCJ TPPJ Dc Trise Tfall Tvrise Tvfall Vca Vcr Tvc Vhi Vli Vrb Vovs Vuds Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. PCI Express* Clock Frequency PCI Express* Clock Cycle Time Frequency Variation Cycle to Cycle Jitter Peak to Peak Jitter (5–50 MHz) Clock Duty Cycle REFCLK Rise Time REFCLK Fall Time REFCLK Rise Time Variation REFCLK Fall Time Variation Rise-Fall Matching Absolute Cross Point Relative Cross Point Total Variation of Vc over all edges Rising Edge Ringback Falling Edge Ringback High Level Voltage Low Level Voltage Ringback Voltage Maximum Overshoot Minimum Undershoot Min. 9.872 -300 Nom. 100 300 125 50 55 350 350 125 125 20 0.55 Calc 0.14 45 175 175 0.25 Calc 0.56 0.66 -0.15 Max. 0.71 0 0.25 0.85 0.15 0.10 Vhi+0.3 -0.30 Units MHz ns ppm ps ps % ps ps ps ps % V V V V V V V V V Notes 4 1, 2, 6 1, 2, 6 1, 3, 7, 13 5, 12 13 Absolute Min. Absolute Max. 7, 8 7, 9 7 7, 10 7, 11 Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK equals the falling edge of REFCLK#. Measured from VOL = 0.175 V to VOH = 0.525 V. Valid only for rising REFCLK and falling REFCLK#. Signal must be monotonic through the VOL to VOH region for TRISE and TFALL. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. The average period over any 1 µs period of time must be greater than the minimum specified period. VCROSS(rel) Min and Max are derived using the following: VCROSS(rel) Min = 0.5 (Vhavg - 0.710) + 0.250 VCROSS(rel) Max = 0.5 (Vhavg - 0.710) + 0.550 Measurement taken from single-ended waveform. Measurement taken from differential waveform. VHIGH is defined as the statistical average High value as obtained by using the Oscilloscope VHIGH Math function. VLOW is defined as the statistical average Low value as obtained by using the Oscilloscope VLOW Math function. Overshoot is defined as the absolute value of the maximum voltage. Undershoot is defined as the absolute value of the minimum voltage. The crossing point must meet the absolute and relative crossing point specifications simultaneously. ∆VCROSS is defined as the total variation of all crossing voltages of Rising REFCLK and Falling REFCLK#. This is the maximum allowed variance in VCROSS for any particular system. Refer to Section 4.3.2.1 in the PCI Express Base Specification for information regarding PPM considerations. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 69 Intel® 81348—Electrical Specifications Table 23. DDR2 Output Clock Timings Symbol TC2 TCH2 TCL2 TCS2 Tskew2 Tskew3 Notes: 1. Intel® 81348 I/O Processor Datasheet 70 Parameter DDR2 SDRAM clock Cycle Time Average DDR2 SDRAM clock High Time DDR2 SDRAM clock LowTime DDR2 SDRAM clock Period Jitter DDR2 SDRAM clock skew for any differential clock pair to any other clock pair DDR2 SDRAM clock skew for any clock pair to any system memory strobe DDR2-400 Min. Max DDR2-533 Min. Max 5.00 3.75 ns 2.25 2.25 100 1.69 1.69 100 -100 ns ns ps 250 250 ps 250 250 ps -100 Unit Note s s Not tested December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 4.3.2 DDR2 SDRAM Interface Signal Timings Table 24. DDR2 SDRAM Signal Timings Symbol Tvb1 Tva1 Tvb2 Tva2 Tvb3 Tva3 Tvb4 Tva4 Tvb5 Tva5 Tis6 Tih6 Tov7 Notes: 1. 2. 3. Parameter Min. DQ, CB and DM write output valid time before DQS DQ, CB and DM write output valid time after DQS DQS write output valid time before M_CK (DQS early) DQS write output valid time after M_CK (DQS late) MA, BA, RAS#, CAS#, WE# write output valid before M_CK rising edge. MA, BA, RAS#, CAS#, WE# write output valid after M_CK rising edge. CS#, CKE, ODT write output valid before M_CK rising edge. Unbuffered mode CS#, CKE, ODT write output valid after M_CK rising edge. Unbuffered mode CS#, CKE, ODT write output valid before M_CK rising edge. Registered mode CS#, CKE, ODT write output valid after M_CK rising edge. Registered mode DQ, CB read input setup time before DQS rising or falling edges. DQ, CB read input hold time after DQS rising or falling edges. M_CK[2:0] output valid from P_CLKIN or REFCLK 0.530 0.530 Max Units Notes ns ns ns ns 1, 3 1, 3 1, 3 1, 3 4.900 ns 1, 3 1.530 ns 1, 3 2.090 ns 1, 3 0.590 ns 1, 3 1.150 ns 1, 3 1.530 ns 1, 3 -0.670 ns 2 1.250 0.460 1.930 ns ns 2 0.200 0.530 See Figure 14, “DDR2 SDRAM Write Timings” on page 81. See Figure 16, “DDR2 SDRAM Read Timings” on page 82. Timings valid when the DQS delay is programmed for the default 90 degree phase shift. See Figure 18, “AC Test Load for DDR2 SDRAM Signals” on page 82. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 71 Intel® 81348—Electrical Specifications 4.3.3 Peripheral Bus Interface Signal Timings Table 25. Peripheral Bus Interface Signal Timings Symbol Parameter Min. Nom. Max. Units 20 20 20 4 - clks clks clks phases ns ns ns ns ns - ns - ns 20 Nom 11 Nom 11 Nom 11 Nom 11 Nom - 5 ns ns ns A2D D2D REC N Tasc Taso Tasw Tah Tahw Address to Data wait-states Data to Data wait-states Recovery wait-states Number of Data phases Address setup to CE# Address setup to OE# Address setup to WE# Address hold from CE#,OE# Address hold from WE# 4 4 1 1 25 10 25 Nom - 5 Nom - 5 Twce CE# pulse width Nom - 5 Twoe OE# pulse width Nom - 5 Twwe Tdsw Tdhw WE# pulse width Write Data setup to WE# Write Data hold from WE# Nom - 5 Nom - 5 10 30 15 30 REC × 15 (REC+1) × 15 (A2D + 2 + ((N 1)(D2D + 2))) × 15 (A2D + 3 + ((N 1)(D2D + 2))) × 15 (A2D + 1) × 15 (A2D + 1) × 15 15 Tad1 1st Read Data access time from Address - (A2D + 4) × 15 TadN Nth Read Data access time from Address - (D2D + 2) × 15 Tcd Read Data access time from CE# - (A2D + 2) × 15 Toe Read Data access time from OE# 0 (A2D + 3) × 15 Tdh Read Data hold time from Address, CE#, OE# 0 (REC + 2) × 15 Notes: 1. ns ns ns ns ns See Figure 25, “PBI Output Timings” on page 85 and Figure 26, “PBI External Device Timings (Flash)” on page 86. Intel® 81348 I/O Processor Datasheet 72 December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 4.3.4 I2C/SMBus Interface Signal Timings Table 26. I2C/SMBus Signal Timings Symbol FSCL Parameter SCL Clock Frequency Std. Mode Min. Max 0 100 TSUDAT Bus Free Time Between STOP and START Condition Hold Time (repeated) START Condition SCL Clock Low Time SCL Clock High Time Setup Time for a Repeated START Condition Data Hold Time Data Setup Time TSR SCL and SDA Rise Time 1000 TSF SCL and SDA Fall Time 300 TSUSTO Setup Time for STOP Condition TBUF THDSTA TLOW THIGH TSUSTA THDDAT Notes: 1. 2. 3. 4. 5. Fast Mode Units Note s Min. Max 0 4.7 1.3 4 4.7 4 4.7 0 250 0.6 1.3 0.6 0.6 0 100 20 + 0.1Cb 20 + 0.1Cb 0.6 3.45 4 400 KHz µ s (1) s s µs µs µs ns (1,3) (1,2) (1,2) (1) (1) (1) 300 ns (1,4) 300 ns (1,4) µ µ 0.9 s µ (1) See Figure 13, “I2C Interface Signal Timings” on page 80. Not tested. After this period, the first clock pulse is generated. Cb = the total capacitance of one bus line, in pF. Std Mode I2C signal timings apply for SMBus timing. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 73 Intel® 81348—Electrical Specifications 4.3.5 PCI Bus Interface Signal Timings Table 27. PCI Signal Timings Symbol TOV1 TOF TIS1 TIH1 TRST TRF TIS3 TIH2 TIS4 TIH3 Notes: 1. 2. 3. 4. Parameter Clock to Output Valid Delay Clock to Output Float Delay Input Setup to clock Input Hold time from clock Reset Active Time Reset Active to output float delay REQ64# to Reset setup time Reset to REQ64# hold time PCI-X initialization pattern to Reset setup time Reset to PCI-X initialization pattern hold time PCI-X 133 PCI-X 66 PCI 66 PCI 33 PCI-X 100 Min. Max Min. Max Min. Max Min. Max 0.7 1.2 0.5 1 3.7 7 0.7 1.7 0.5 1 40 3.7 7 1 3 0 1 40 10 0 10 50 10 0 10 50 0 50 0 50 6 14 2 7 0 1 40 10 0 50 11 28 40 10 0 50 Units ns ns ns ns ms ns clocks ns clocks Notes 1, 3 1, 4 2 2 ns See the timing measurement conditions in; Figure 11, “Output Timing Measurement Waveforms” on page 79. See the timing measurement conditions in: Figure 12, “Input Timing Measurement Waveforms” on page 80. See Figure 19, “PCI/PCI-X TOV(max) Rising Edge AC Test Load” on page 83,Figure 20, “PCI/PCI-X TOV(max) Falling Edge AC Test Load” on page 83, Figure 21, “PCI/PCI-X TOV(min) AC Test Load” on page 83. For purposes of Active/Float timing measurements, the Hi-Z or “off” state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification. Intel® 81348 I/O Processor Datasheet 74 December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 4.3.6 PCI Express Differential Transmitter (Tx) Output Specifications Table 28. PCI Express* Rx Input Specifications Symbol VDIFFp-p JTOTAL VCM-AC TReye RL-DiffRX RL-CMTX ZRX-OUT-DC ZRX-Match-DC VRX-SQUELCH CinRX LSKEW-RX Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Parameter Differential input voltage Total output jitter AC common mode Receiver eye opening Differential return loss Common mode return loss DC differential output impedance D+/D- impedance matching Squelch detect threshold AC coupled Lane to lane skew at Rx Min. Nom 0.175 0.35 12 6 90 -5 75 75 100 Max Units Notes 1.200 0.65 100 V UI mV UI dB dB Ohm % mV nf UI 110 +5 175 20 1 2 3 4 5 5 6 7 8 9 10 Peak-Peak differential voltage. VDIFFp-p = 2 × VRMAx. Measured at the package pins of the receiver. See Figure 12. Max Jitter tolerated by Rx. This is the nominal value tolerated at the package pin of the receiver device. A receiver must therefore tolerate any additional jitter generated by the package to the die. Peak common mode value. |VD+ + VD-|/2 - VCM-DC(avg) See Figure 24, “Receiver Eye Opening (Differential)” on page 84. 50 MHz to 1.6 GHz. The driver output impedance shall result in a differential return loss greater than or equal to 15 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.8 GHz. This output impedance requirement applies to all valid output levels. The reference impedance for return loss measurements is 100 Ω for differential return loss and 25 Ω for common mode (i.e. as measured by a Vector Network Analyzer with 100 Ω differential probes). Note this is based on a nominal PCI Express* interconnect differential characteristic impedance of 100 Ω. Applicable during active (L0) and Align states only. DC Differential Mode Impedance 100 Ω ±10% tolerance. DC impedance matching between two lanes of a port. Peak-to-Peak value. Measured at the pin of the receiver. Differential signal below this level will indicate a squelch condition. All receivers shall be AC coupled to the media. Lane skew at the Receiver that must be tolerated. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 75 Intel® 81348—Electrical Specifications Table 29. PCI Express* Tx Output Specifications Symbol UI VDIFFp-p Trise, Tfall VTX-CM-AC VTX-CM-DC delta RL-DiffTX RL-CMTX ZTX-OUT-DC ZTX-Match-DC LSKEW-TX JTOTAL TDeye ITX-SHORT VTX-IDLE Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Intel® 81348 I/O Processor Datasheet 76 Parameter Unit Interval Differential output voltage Driver Rise/Fall Time AC Common Mode Common Mode Active to Sleep mode delta Differential Return Loss Common Mode Return Loss DC Differential Output Impedance D+/D- impedance matching Lane to Lane Skew at Tx Total Output Jitter. Minimum Transmitter eye opening. Short circuit Current Sleep mode Voltage Output Min. 0.800 0.2 -50 15 6 90 -5 0.65 -100 0 Nom 400 100 0 Max 1.200 0.4 20 +50 110 +5 500 0.35 100 20 Units Notes ps V UI mV mV dB dB Ω % ps UI UI mA mV 1 2 3 4 5 5 6 7 8 9 10 11 12 ±300 ppm. UI does not account for SSC dictated variations. No test load is necessarily associated with this value. This UI specification is a “before transmission” specification and represents the nominal time of each bit transmission or width. Peak-Peak differential voltage. VDIFFp-p = 2 × VDMAx. Specified at the package pins into a 100 Ω test load as shown in Figure 22, “Transmitter Test Load (100 Ω diff Load)” on page 83. Max level set by maximum single ended voltage after a reflection from an open. This value is for the first bit after a transition on the data lines. Subsequent bits of the same polarity shall have an amplitude of 6 dB (±0.5 db) less as measured differentially peak to peak than the specified value. 20–80% at transmitter. Slower rise/fall times are better. Peak common mode value. |VD+ + VD-|/2 - VCM-DC(avg) 50 MHz to 1.6 GHz. The driver output impedance shall result in a differential return loss greater than or equal to 15 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.8 GHz. This output impedance requirement applies to all valid output levels. The reference impedance for return loss measurements is 100 Ω for differential return loss and 25 Ω for common mode (i.e. as measured by a Vector Network Analyzer with 100 Ω differential probes). Note this is based on a nominal PCI Express* interconnect differential characteristic impedance of 100 Ω. Applicable during active (L0) and Align states only. DC Differential Mode Impedance 100 Ω ±10% tolerance. All devices shall employ on-chip adaptive impedance matching circuits to ensure the best possible termination/Zout for its Transmitters (as well as receivers). DC impedance matching between two lanes of a port. Between any two lanes within a single transmitter. Clock source PPM mismatch is in addition to this value. Measured over 250 UI. See Figure 23, “Transmitter Eye Diagram” on page 84. Between any voltage from max supply to gnd with power on or off. Squelch condition. Both signals brought to VCM-DC-|VD+ - VD-| December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 4.3.7 PCI Express* Differential Receiver (Rx) Input Specifications Table 30. PCI Express* Rx Input Specifications Symbol VDIFFp-p JTOTAL VCM-AC TReye RL-DiffRX RL-CMTX ZRX-OUT-DC ZRX-Match-DC VRX-SQUELCH CinRX LSKEW-RX Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Parameter Differential input voltage Total Output Jitter. AC Common Mode Receiver eye opening. Differential Return Loss Common Mode Return Loss DC Differential Output Impedance D+/D- impedance matching Squelch detect threshold AC coupled Lane to Lane Skew at Rx Min. Nom 0.175 0.35 15 6 90 0-5 75 400 Max 1.200 0.65 100 100 110 +5 175 20 Units Notes V UI mV UI dB dB Ω % mV pf UI 1 2 3 4 5 5 6 7 8 9 10 Peak-Peak differential voltage. VDIFFp-p = 2 * VRMAx. Measured at the package pins of the receiver. See Figure 12. Max Jitter tolerated by Rx. This is the nominal value tolerated at the package pin of the receiver device. A receiver must therefore tolerate any additional jitter generated by the package to the die. Peak common mode value. |VD+ + VD-|/2 - VCM-DC(avg) See Figure 24, “Receiver Eye Opening (Differential)” on page 84. 50 MHz to 1.6 GHz. The driver output impedance shall result in a differential return loss greater than or equal to 15 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.8 GHz. This output impedance requirement applies to all valid output levels. The reference impedance for return loss measurements is 100 Ω for differential return loss and 25 Ω for common mode (i.e. as measured by a Vector Network Analyzer with 100 Ω differential probes). Note this is based on a nominal PCI Express* interconnect differential characteristic impedance of 100 Ω. Applicable during active (L0) and Align states only. DC Differential Mode Impedance 100 Ω ±10% tolerance. DC impedance matching between two lanes of a port. Peak to Peak value. Measured at the pin of the receiver. Differential signal below this level will indicate a squelch condition. All receivers shall be AC coupled to the media. Lane skew at the Receiver that must be tolerated. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 77 Intel® 81348—Electrical Specifications 4.3.8 Boundary Scan Test Signal Timings Table 31. Boundary Scan Test Signal Timings Symbol TJTF TJTCH TJTCL TJTCR TJTCF TJTIS1 TJTIH1 TJTOV1 TOF1 Notes: 1. 2. 3. 4. Intel® 81348 I/O Processor Datasheet 78 Parameter Min. TCK Frequency TCK High Time TCK Low Time TCK Rise Time TCK Fall Time Input Setup to TCK—TDI, TMS Input Hold from TCK—TDI, TMS TDO Output Valid Delay TDO Float Delay 0 7.0 7.0 3.0 2.0 4.25 4.25 Max Units 66 5 5 13.25 13.25 MHz ns ns ns ns ns ns ns ns Notes Measured at 1.5 V (1) Measured at 1.5 V (1) 0.8 V to 2.0 V (1) 2.0 V to 0.8 V (1) (3) (3) Relative to falling edge of TCK (2) Relative to falling edge of TCK (4) Not tested. See Figure 11, “Output Timing Measurement Waveforms” on page 79. See Figure 12, “Input Timing Measurement Waveforms” on page 80. A float condition occurs when the output current becomes less than ILO. Float delay is not tested. See Figure 11, “Output Timing Measurement Waveforms” on page 79. December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 4.4 AC Timing Waveforms Figure 10. Clock Timing Measurement Waveforms V tch Vih(min) V test Vil(max) V tcl TCH TCL TC Figure 11. Output Timing Measurement Waveforms Vth CLK Vtest Vtl TOV1 Vtfall O UTPUT DELAY FALL TO V1 O UTPUT DELAY RISE Vtrise TO F O UTPUT F LOAT December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 79 Intel® 81348—Electrical Specifications Figure 12. Input Timing Measurement Waveforms Vth CLK Vtest Vtl TIH1 TIS1 Vth INPUT Vtest Valid Vtest Vmax Vtl Figure 13. I2C Interface Signal Timings SD A T LO W TB U F TS R T HD STA TS F TS P SCL T S US T O THD S T A TH DDA T Sto p Intel® 81348 I/O Processor Datasheet 80 Start T H IG H T S UDA T T S US TA Re pea te d Start Sto p December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 Figure 14. DDR2 SDRAM Write Timings ADDR/CMD CS # T VB3 TVB 4/ 5 TVA3 T VA4 / 5 M_CK DQ S DQS# T VB1 T VA 1 DQ Figure 15. DQS Falling Edge Output Access Time to/from M_CK Rising Edge M_CK TVA2 DQS Max DQS Min December 2007 Order Number: 315038-003US TVB 2 Intel® 81348 I/O Processor Datasheet 81 Intel® 81348—Electrical Specifications Figure 16. DDR2 SDRAM Read Timings DQS T VB6 T VA6 DQ Table 32. AC Measurement Conditions Symbol Vth Vtl Vtest Vtrise Vtfall Vmax Slew Rate Notes: 1. PCI-X 0.6VCC3P3 0.25VCC3P3 0.4VCC3P3 0.285VCC3P3 0.615VCC3P3 0.35VCC3P3 1.5 PCI 0.6VCC3P3 0.2VCC3P3 0.4VCC3P3 0.285VCC3P3 0.615VCC3P3 0.4VCC3P3 DDR2 M_VREF+0.250 M_VREF-0.250 0.5VCC1P8 0.5VCC1P8 0.5VCC1P8 1.0 1.0 1.5 PBI Units 2.0 0.8 1.5 1.5 1.5 1.2 1.0 V V V V V V V/nS Notes 1 Input signal slew rate is measured between Vil and Vih Figure 17. AC Test Load for all Signals Except PCI, PCI-Express and DDR2 and Storage PHY Test Point Output 50 pF Figure 18. AC Test Load for DDR2 SDRAM Signals VTT 25 Ω Output Intel® 81348 I/O Processor Datasheet 82 Test Point December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 Figure 19. PCI/PCI-X TOV(max) Rising Edge AC Test Load Test Point Output 25 Ω 10 pF Figure 20. PCI/PCI-X TOV(max) Falling Edge AC Test Load VCC33 Test Point 25 Ω Output 10 pF Figure 21. PCI/PCI-X TOV(min) AC Test Load VCC33 Test Point 1 KΩ Output 1 KΩ 10 pF Figure 22. Transmitter Test Load (100 Ω diff Load) D+ D- 50 Ω 50 Ω + V cm-dc - December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 83 Intel® 81348—Electrical Specifications Figure 23. Transmitter Eye Diagram UI VDmax TDeye VDmin Note: Transmitter Vdiffp-p = 2 * VDmax Figure 24. Receiver Eye Opening (Differential) UI VRmax TReye VRmin Note: Transmitter Vdiffp-p = 2 * VRmax Intel® 81348 I/O Processor Datasheet 84 December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 Figure 25. PBI Output Timings PBI Output Timings - READ A2D w/s READ A A Wn ... D2D w/s Wo D D Wm ... Recovery w/s Wo D D Rn ... Ro pbi_clk Address A Address++ Tasc Tah Twce CE# Taso Twoe OE# D DATA(rd) D PBI Output Timings - WRITE WRITE A2D w/s A A Wn ... Recovery w/s Wo D D Rn ... Ro pbi_clk Address A Tahw CE# Tasw Twwe WE# Tdsw Tdhw DATA(wr) Notes: (1) pbi_clk is provided as a virtual clock and is not available as an external signal. (2) D2D Wait State Register is not available until B-step. A2D must be used for this value for A-step. (3) Timings are based on 66 MHz PBI_CLK. December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 85 Intel® 81348—Electrical Specifications Figure 26. PBI External Device Timings (Flash) PBI External Device Timings (Flash) A2D w/s READ A A Wn ... D2D w/s Wo D D Wm ... Recovery w/s Wo D D Rn ... Ro pbi_clk Address A Address++ Tad1 TadN CE# Tcd Tdh OE# Tdh Toe DATA(rd) D D Notes: (1) pbi_clk is provided as a virtual clock and is not available as an external signal. (2) D2D Wait State Register is not available until B-step. A2D must be used for this value for A-step. (3) Timings are based on 66 MHz PBI_CLK. Intel® 81348 I/O Processor Datasheet 86 December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 4.5 Storage Interface Electrical Specifications Table 33. Storage Interface Reference Clock Electrical Characteristics [S_CLKP0/ S_CLKN0] Parameter Min. Limit Typ. S_CLKP0/S_CLKN0 250 350 1000 Differential Input voltage S_CLKP0/S_CLKN0 VCC1P8S × VCC1P8S × VCC1P8S × Input Common Mode Voltage 0.665 0.7 0.735 S_CLKP0/S_CLKN0 VCC1P8S/2 - V V CC1P8S/2 + CC1P8S/2 Input Bias Voltage 100 mV 100 mV 150 150 150 - 100 ppm + 100 ppm S_CLKP0/S_CLKN0 Input Clock Frequency 125 125 125 - 100 ppm + 100 ppm S_CLKP0/S_CLKN0 45 55 Duty Cycle S_CLKP0/S_CLKN0 0.35 0.55 Rise and Fall Ttime S_CLKP0/S_CLKN0 2 Input Jitter S_CLKP0/S_CLKN0 80 100 120 Differential Input Resistance S_CLKP0/S_CLKN0 Differential Input 1.5 Capacitance Notes: 1. 2. Unit Max. Condition mV diff-pk V V MHz This is the voltage to which both S_CLKP0/ S_CLKN0 are internally biased. 1.5G, 3G 1G, 1.5G, 2G, 3G, 4G % nS 20% to 80% pS rms 10 KHz–20 MHz bandwidth Ω pF S_CLKP0/S_CLKN0 are AC coupled with a 100 nF capacitor. S_CLKP0/S_CLKN0 are driven from 100 ±5% Ω differential source December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 87 Intel® 81348—Electrical Specifications Table 34. Storage Interface Transmitter Output Electrical Characteristics [S_TXP[7:0] S_TXN[7:0] Parameter Min. S_TXP [7:0] S_TXN [7:0] Differential Output Voltage S_TXP [7:0] S_TXN [7:0] De-emphasis S_TXP [7:0] S_TXN [7:0] Differential Output Rise & Fall Time S_TXP [7:0] S_TXN [7:0] Differential Output Impedance S_TXP [7:0] S_TXN [7:0] Singled Ended Impedance Notes: 1. Limit Typ. Max. Unit Condition 600 1600 700 1600 mV pk-pk SATA Gen 1i. Gen 1m SATA Gen 1x, Gen 2x SATA Gen 2i, Gen 2m SAS (including emphasis) 0 44 % See Figure 27 on page 88. 47 130 pS 115 Ω 400 800 400 400 85 500 100 40 Ω Transmitter outputs are AC coupled with a 10 nF capacitor. Figure 27. Maximum Amplitude De-emphasis: percentage of maximum voltage below maximum Maximum Amplitude 0 One bit (UI) When emphasis is enabled, the de-emphasized output level is defined as a percentage of the maximum voltage below the maximum output level. Intel® 81348 I/O Processor Datasheet 88 December 2007 Order Number: 315038-003US Electrical Specifications—Intel® 81348 Table 35. Storage Interface Receiver Input Electrical Characteristics [S_RXP[7:0] S_RXN[7:0] Parameter Min. S_RXP [7:0] S_RXN [7:0] Differential Input Voltage S_RXP [7:0] S_RXN [7:0] Differential Input Impedance S_RXP [7:0] S_RXN [7:0] Common Mode Impedance Notes: 1. Limit Typ. 325 240 275 275 240 275 Max. Unit 600 600 1600 750 750 1600 mV pk-pk 85 100 115 Ω 20 30 40 Ω Condition SATA Gen 1i SATA Gen 1m SATA Gen 1x, 2x SATA Gen 2i SATA Gen 2m SAS (including emphasis) Receiver inputs are AC coupled with a 10 nF capacitor. Figure 28. Intel® 81348 I/O Processor Storage PHY 1.2 V/1.8 V Power Sequencing System Requirements • • • Signal/Ball names concerned: vcc1p8s, vcc1p2as and vcc1p2ds 1.8V supply should never exceed the 1.2V supply (analog or digital) when vcc1p2 < nominal The 3.3V supplies and VccVio supplies don’t have any sequencing requirements. 1.8 1.8V unsafe 1.8V safe 1.8V safe 1.8V unsafe 1.2 0 December 2007 Order Number: 315038-003US Intel® 81348 I/O Processor Datasheet 89