Download Datasheet

TSX7191
Low-power, precision, rail-to-rail, 9.0 MHz, 16 V operational
amplifier
Datasheet - production data
Applications
•
•
•
•
•
Description
SOT23-5
Features
•
•
•
•
•
•
•
•
•
•
Low input offset voltage: 200 µV max.
Rail-to-rail input and output
Low current consumption: 850 µA max.
Gain bandwidth product: 9 MHz
Low supply voltage: 2.7 - 16 V
Stable when used with Gain ≥ 10
Low input bias current: 50 pA max.
High ESD tolerance: 4 kV HBM
Extended temp. range: -40 °C to +125 °C
Automotive qualification
Related products
•
•
•
•
See the TSX711 for lower speeds with
similar precision
See the TSX561 for low-power features
See the TSX631 for micro-power features
See the TSX921 for higher speeds
January 2015
Battery-powered instrumentation
Instrumentation amplifier
Active filtering
High-impedance sensor interface
Current sensing (high and low side)
The TSX7191 single, operational amplifier
(op amp) offers high precision functioning with
low input offset voltage down to a maximum of
200 µV at 25 °C. In addition, its rail-to-rail input
and output functionality allows this product to be
used on full range input and output without
limitation. This is particularly useful for a
low-voltage supply such as 2.7 V that the
TSX7191 is able to operate with.
Thus, the TSX7191 has the great advantage of
offering a large span of supply voltages, ranging
from 2.7 V to 16 V. It can be used in multiple
applications with a unique reference.
Low input bias current performance makes the
TSX7191 perfect when used for signal
conditioning in sensor interface applications. In
addition, low-side and high-side current
measurements can be easily made thanks to
rail-to-rail functionality. The TSX7191 is a
decompensated amplifier and must be used with
a gain greater than 10 to ensure stability.
High ESD tolerance (4 kV HBM) and a wide
temperature range are also good arguments to
use the TSX7191 in the automotive market
segment.
DocID026747 Rev 2
This is information on a product in full production.
1/24
www.st.com
Contents
TSX7191
Contents
1
Package pin connections................................................................ 3
2
Absolute maximum ratings and operating conditions ................. 4
3
4
Electrical characteristics ................................................................ 5
Application information ................................................................ 15
5
4.1
Operating voltages .......................................................................... 15
4.2
Input pin voltage ranges .................................................................. 15
4.3
Rail-to-rail input ............................................................................... 15
4.4
Rail-to-rail output ............................................................................. 15
4.5
Input offset voltage drift over temperature ....................................... 16
4.6
Long term input offset voltage drift .................................................. 16
4.7
High values of input differential voltage........................................... 17
4.8
Capacitive load................................................................................ 18
4.9
PCB layout recommendations ......................................................... 19
4.10
Optimized application recommendation .......................................... 19
Package information ..................................................................... 20
5.1
SOT23-5 package information ........................................................ 21
6
Ordering information..................................................................... 22
7
Revision history ............................................................................ 23
2/24
DocID026747 Rev 2
TSX7191
1
Package pin connections
Package pin connections
Figure 1: Pin connections (top view)
OUT
VCC-
1
5
2
+
IN+
VCC+
-
3
4
IN-
SOT23-5
DocID026747 Rev 2
3/24
Absolute maximum ratings and operating
conditions
2
TSX7191
Absolute maximum ratings and operating conditions
Table 1: Absolute maximum ratings (AMR)
Symbol
VCC
Parameter
Supply voltage
(1)
Vid
Differential input voltage
Vin
Input voltage
Iin
Tstg
Rthja
Tj
Input current
(2)
(3)
Storage temperature
Thermal resistance junction to ambient
Maximum junction temperature
HBM: human body model
ESD
(4)(5)
MM: machine model
(6)
Unit
18
V
±VCC
mV
VCC- - 0.2 to VCC++ 0.2
V
10
mA
-65 to +150
°C
250
°C/W
150
°C
4000
(7)
CDM: charged device model
Value
100
(8)
Latch-up immunity
V
1500
200
mA
Notes:
(1)
All voltage values, except the differential voltage are with respect to the network ground terminal.
(2)
Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. See
Section 4.7 for the precautions to follow when using the TSX711 with a high differential input voltage.
(3)
(4)
(5)
(6)
(7)
(8)
Input current must be limited by a resistor in series with the inputs.
Rth are typical values.
Short-circuits can cause excessive heating and destructive dissipation.
According to JEDEC standard JESD22-A114F.
According to JEDEC standard JESD22-A115A.
According to ANSI/ESD STM5.3.1
Table 2: Operating conditions
Symbol
4/24
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Value
2.7 to 16
DocID026747 Rev 2
VCC- - 0.1 to VCC+ + 0.1
-40 to +125
Unit
V
°C
TSX7191
3
Electrical characteristics
Electrical characteristics
+
-
Table 3: Electrical characteristics at VCC = +4 V with VCC = 0 V, Vicm = VCC/2, Tamb = 25 ° C,
and RL > 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Vio
ΔVio/ΔT
ΔVio
Parameter
Input offset voltage
Input offset voltage drift
(1)
Input bias current
Iio
Input offset current
RIN
Input resistance
CIN
Input capacitance
Avd
Min.
200
Tmin < Top < +85 °C
365
Tmin < Top < +125 °C
450
TSX7191A, Vicm = VCC/2
100
Tmin < Top < +85 °C
265
Tmin < Top < +125 °C
350
2.5
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
Large signal voltage gain
High level output voltage
(voltage drop from VCC+)
T = 25 °C
1
Vout = VCC/2
1
Vout = VCC/2
1
Tmin < Top < Tmax
Iout
Isource
µV/°C
Vicm = -0.1 to 4.1 V, Vout = VCC/2
84
Tmin < Top < Tmax
83
Vicm = -0.1 to 2 V, Vout = VCC/2
100
Tmin < Top < Tmax
94
RL= 2 kΩ, Vout = 0.3 to 3.7 V
110
Tmin < Top < Tmax
96
RL= 10 kΩ, Vout = 0.2 to 3.8 V
110
Tmin < Top < Tmax
96
12.5
pF
102
dB
122
136
dB
140
28
50
60
RL= 10 kΩ tο VCC/2
pA
TΩ
Tmin < Top < Tmax
6
15
mV
20
23
Tmin < Top < Tmax
50
60
RL= 10 kΩ tο VCC/2
5
15
mV
20
Vout = VCC
35
Tmin < Top < Tmax
20
Vout = 0 V
35
DocID026747 Rev 2
50
pA
1
Tmin < Top < Tmax
Isink
50
200
RL= 2 kΩ tο VCC/2
Low level output voltage
μV
nV
month
200
Tmin < Top < Tmax
VOL
Unit
---------------------------
Tmin < Top < Tmax
(1)
Max.
TSX7191, Vicm = VCC/2
RL= 2 kΩ to VCC/2
VOH
Typ.
(1)
Long term input offset
(2)
voltage drift
Iib
CMRR
Conditions
45
mA
45
5/24
Electrical characteristics
Symbol
TSX7191
Parameter
Conditions
Iout
Isource
ICC
Supply current per amplifier
GBP
ɸm
SRn
SRp
en
THD+N
Min.
Tmin < Top < Tmax
No load, Vout = VCC/2
570
800
900
Phase margin
Gain = 10, RL = 10 kΩ,
CL = 100 pF
5
Av = 10, Vout = 3 VPP,
10 % to 90 %
1.3
Tmin < Top < Tmax
1.0
Av = 10, Vout = 3 VPP,
10 % to 90 %
1.5
Tmin < Top < Tmax
1.1
Unit
mA
Tmin < Top < Tmax
RL = 10 kΩ, CL = 100 pF
Positive slew rate
Max.
20
Gain bandwidth product
Negative slew rate
Typ.
μA
7.7
MHz
42
Degrees
2.3
V/μs
2.5
f = 1 kHz
22
Equivalent input noise
voltage
f = 10 kHz
19
Total harmonic distortion +
noise
f =1 kHz, Av = 10, RL= 10 kΩ,
BW = 22 kHz, Vout = 3VPP
V/μs
nV
-----------Hz
0.003
%
Notes:
(1)
Maximum values are guaranteed by design.
(2)
Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 4.6).
+
-
Table 4: Electrical characteristics at VCC = +10 V with VCC = 0 V, Vicm = VCC/2, Tamb = 25 °C,
and RL > 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Vio
ΔVio/ΔT
ΔVio
Parameter
Input offset voltage
Input offset voltage drift
Long term input offset
(2)
voltage drift
(1)
Iib
Input bias current
Iio
Input offset current
RIN
Input resistance
CIN
Input capacitance
6/24
Conditions
Min.
Typ.
TSX7191, Vicm = VCC/2
200
Tmin < Top < +85 °C
365
Tmin < Top < +125 °C
450
TSX7191A, Vicm = VCC/2
100
Tmin < Top < +85 °C
265
Tmin < Top < +125 °C
350
(1)
2.5
Unit
μV
μV/°C
nV
month
---------------------------
T = 25 °C
25
Vout = VCC/2
1
Tmin < Top < Tmax
(1)
Max.
Vout = VCC/2
200
1
Tmin < Top < Tmax
DocID026747 Rev 2
50
50
200
pA
pA
1
TΩ
12.5
pF
TSX7191
Electrical characteristics
Symbol
CMRR
Avd
Parameter
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
Large signal voltage gain
Conditions
Min.
Typ.
Vicm = -0.1 to 10.1 V, Vout = VCC/2
90
102
Tmin < Top < Tmax
86
Vicm = -0.1 to 8 V, Vout = VCC/2
105
Tmin < Top < Tmax
95
RL= 2 kΩ, Vout = 0.3 to 9.7 V
110
Tmin < Top < Tmax
100
RL= 10 kΩ, Vout = 0.2 to 9.8 V
110
Tmin < Top < Tmax
100
RL= 2 kΩ tο VCC/2
VOH
High level output voltage
(voltage drop from VCC+)
140
dB
45
Tmin < Top < Tmax
10
42
Tmin < Top < Tmax
Iout
Isource
ICC
Supply current per amplifier
RL= 10 kΩ tο VCC/2
9
Vout = VCC
50
Tmin < Top < Tmax
40
Vout = 0 V
50
Tmin < Top < Tmax
40
No load, Vout = VCC/2
G = 10, RL = 10 kΩ, CL = 100 pF
SRn
Negative slew rate
Av = 10, Vout = 8 VPP,
10 % to 90 %
1.3
Tmin < Top < Tmax
1.0
Av = 10, Vout = 8 VPP,
10 % to 90 %
1.5
Tmin < Top < Tmax
1.1
THD+N
850
1000
Phase margin
en
mA
69
630
ɸm
Positive slew rate
mV
70
Tmin < Top < Tmax
RL = 10 kΩ, CL = 100 pF
SRp
30
40
Gain bandwidth product
GBP
mV
70
80
Tmin < Top < Tmax
Isink
30
40
RL= 2 kΩ tο VCC/2
Low level output voltage
70
80
RL= 10 kΩ tο VCC/2
Unit
dB
117
Tmin < Top < Tmax
VOL
Max.
5
μA
9
MHz
48
Degrees
2.3
2.5
f = 1 kHz
22
Equivalent input noise
voltage
f = 10 kHz
19
Total harmonic distortion +
noise
f = 1 kHz, Av = 10, RL= 10 kΩ,
BW = 22 kHz, Vout = 9 VPP
0.0001
V/μs
V/μs
nV
-----------Hz
%
Notes:
(1)
Maximum values are guaranteed by design.
(2)
Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 4.6).
DocID026747 Rev 2
7/24
Electrical characteristics
TSX7191
+
-
Table 5: Electrical characteristics at VCC = +16 V with VCC = 0 V, Vicm = VCC/2, Tamb = 25 °C,
and RL > 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Vio
ΔVio/ΔT
ΔVio
Parameter
Input offset voltage
Input offset voltage drift
(1)
Input bias current
Iio
Input offset current
RIN
Input resistance
CIN
Input capacitance
SVRR
Avd
Min.
200
Tmin < Top < +85 °C
365
Tmin < Top < +125 °C
450
TSX7191A, Vicm = VCC/2
100
Tmin < Top < +85 °C
265
Tmin < Top < +125 °C
350
2.5
Common mode rejection
ratio 20 log (ΔVicm/ΔVio)
Supply voltage rejection
ratio 20 log (ΔVcc/ΔVio)
Large signal voltage gain
High level output voltage
(voltage drop from VCC+)
Vout = VCC/2
1
Vout = VCC/2
1
Tmin < Top < Tmax
Iout
Isource
8/24
Vicm = -0.1 to 16.1 V, Vout = VCC/2
94
Tmin < Top < Tmax
90
Vicm = -0.1 to 14 V, Vout = VCC/2
110
Tmin < Top < Tmax
96
Vcc = 4 to 16 V
100
Tmin < Top < Tmax
90
RL= 2 kΩ, Vout = 0.3 to 15.7 V
110
Tmin < Top < Tmax
100
RL= 10 kΩ, Vout = 0.2 to 15.8 V
110
Tmin < Top < Tmax
100
μV/°C
pA
TΩ
12.5
pF
113
dB
116
131
dB
146
dB
149
100
130
150
RL= 10 kΩ
pA
1
Tmin < Top < Tmax
16
40
70
130
mV
50
Tmin < Top < Tmax
150
RL= 10 kΩ
15
40
mV
50
Vout = VCC
50
Tmin < Top < Tmax
45
Vout = 0 V
50
DocID026747 Rev 2
50
200
Tmin < Top < Tmax
Isink
50
200
Tmin < Top < Tmax
Low level output voltage
μV
nV
month
500
RL= 2 kΩ
VOL
Unit
---------------------------
T = 25 °C
Tmin < Top < Tmax
(1)
Max.
TSX7191, Vicm = VCC/2
RL= 2 kΩ
VOH
Typ.
(1)
Long term input offset
(2)
voltage drift
Iib
CMRR
Conditions
71
mA
68
TSX7191
Electrical characteristics
Symbol
Parameter
Iout
Isource
ICC
Supply current per amplifier
GBP
ɸm
SRn
SRp
en
THD+N
Conditions
Tmin < Top < Tmax
Min.
Max.
45
No load, Vout = VCC/2
Tmin < Top < Tmax
900
1000
RL = 10 kΩ, CL = 100 pF
Phase margin
G = 10, RL = 10 kΩ, CL = 100 pF
Negative slew rate
Av = 10, Vout = 10 VPP,
10 % to 90 %
1.5
Tmin < Top < Tmax
1.1
Av = 10, Vout = 10 VPP,
10 % to 90 %
1.5
Tmin < Top < Tmax
1.1
5
Unit
mA
660
Gain bandwidth product
Positive slew rate
Typ.
μA
8.5
MHz
51
Degrees
2.4
2.5
f = 1 kHz
22
Equivalent input noise
voltage
f = 10 kHz
19
Total harmonic distortion +
Noise
f = 1 kHz, Av = 10, RL= 10 kΩ,
BW = 22 kHz, Vout = 10 VPP
0.0001
V/μs
V/μs
nV
-----------Hz
%
Notes:
(1)
Maximum values are guaranteed by design.
(2)
Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 4.6).
DocID026747 Rev 2
9/24
Electrical characteristics
TSX7191
Figure 2: Supply current vs. supply voltage
Figure 3: Input offset voltage distribution at VCC = 16 V
20
800
Vcc=16V
Vicm=8V
T=25°C
15
600
Population (%)
Supply Current (µA)
Vicm=Vcc/2
T=-40°C
400
T=25°C
T=125°C
10
200
0
5
0
2
4
6
8
10
Supply Voltage (V)
12
14
0
-300
16
-200
-150
-100
Input offset voltage (µV)
10
5
200
250
300
200
0
-200
-400
-150
-100
-50
0
50
100
150
200
250
-600
-40
300
Vcc=16V
Vicm=8V
-20
0
Input offset voltage (µV)
Figure 6: Input offset voltage
drift population
20
40
60
Temperature (°C)
80
100
120
Figure 7: Input offset voltage vs. supply voltage
at VICM = 0 V
40
600
Vcc=16V
Vicm=8V
T=25°C
Vicm=0V
400
Input Offset Voltage (µV)
35
30
Population (%)
150
100
Vio limit
400
15
-200
50
600
Vcc=4V
Vicm=2V
T=25°C
-250
0
Figure 5: Input offset voltage vs. temperature
at VCC = 16 V
20
0
-300
-50
Input offset voltage (µV)
Figure 4: Input offset voltage distribution
at VCC = 4 V
Population (%)
-250
25
20
15
10
200
0
-200
T=-40°C
T=25°C
T=125°C
-400
5
-600
0
-4
-3
-2
-1
0
1
2
3
4
∆Vio/∆T (µV/ºC)
10/24
DocID026747 Rev 2
4
6
8
10
12
Supply voltage (V)
14
16
TSX7191
Electrical characteristics
Figure 8: Input offset voltage vs. common mode voltage
at VCC = 2.7 V
Figure 9: Input offset voltage vs. common mode voltage
at VCC = 16 V
600
600
Vcc=2.7V
200
0
-200
T=125°C
T=25°C
T=-40°C
-400
-600
0.5
1.0
1.5
2.0
Input Common Mode Voltage (V)
0
-200
T=125°C
-400
2.5
0
2
T=-40°C
T=25°C
4
6
8
10
12
Input Common Mode Voltage (V)
14
16
Figure 11: Output current vs. output voltage
at VCC = 16 V
Figure 10: Output current vs. output voltage
at VCC = 2.7 V
30
20
200
-600
0.0
Vcc=16V
400
Input Offset Voltage (µV)
Input Offset Voltage (µV)
400
100
Sink
Vid=-1V
Sink
75 Vid=-1V
Output Current (mA)
Output Current (mA)
50
10
T=-40°C
0
T=25°C
T=125°C
-10
25
0
T=25°C
T=125°C
T=-40°C
-25
-50
-20
Vcc=2.7V
-30
0.0
0.5
-75
Source
Vid=1V
1.0
1.5
2.0
Output Voltage (V)
2.5
12
14
16
30
Vid=-0.1V
Rl=10kΩ to Vcc/2
Output voltage (from Vcc+) (mV)
Output voltage (mV)
6
8
10
Output Voltage (V)
Figure 13: Output high voltage (drop from VCC ) vs.
supply voltage
30
T=-40°C
T=25°C
20
T=125°C
15
10
5
0
4
2
+
Figure 12: Output low voltage vs.
supply voltage
25
Source
Vid=1V
Vcc=16V
-100
0
4
6
8
10
12
Supply Voltage (V)
14
16
25
Vid=0.1V
Rl=10kΩ to Vcc/2
T=-40°C
T=25°C
20
T=125°C
15
10
5
0
DocID026747 Rev 2
4
6
8
10
12
Supply Voltage (V)
14
16
11/24
Electrical characteristics
TSX7191
Figure 14: Output voltage vs. input voltage close to the
rail at VCC = 16 V
Figure 15: Slew rate vs.
supply voltage
16.00
3.0
15.95
15.90
2.0
15.80
Slew rate (V/µs)
15.75
0.20
0.15
0.10
Vcc=16V
Gain=10
1.600
1.595
1.590
1.585
1.580
1.575
0.020
0.015
0.010
0.005
-1.0
-3.0
Input voltage (V)
4
T=-40°C
4
2
0.2
T=25°C
0
0.0
-2
T=125°C
-0.2
0.6
4
0.4
2
-8
-1.0
-10
-6
-10
0
12/24
4
6
Time (µs)
8
10
4
Time (µs)
6
10
0.20
Gain=101
Rl=10kΩ
0.16
Cl=100pF
T=25°C
0.12
8
Vin
-100
12
Output voltage (mV)
-50
2
2
50
0
-5
T=-40°C
Vcc=16V
-0.4
Vicm=Vcc/2
-0.6
Gain=11
Rl=10k Ω
-0.8
Cl=100pF
-1.0
8
Figure 19: Recovery behavior after a negative step on
the input
100
Vcc=16V
Vicm=8V
Rl=10k Ω
Cl=100pF
Gain=10
T=25°C
0
T=25°C
0
10
5
-0.2
-4
-10
8
0.0
-2
-0.8
6
0.2
T=125°C
0
-0.6
Figure 18: Response to a small input
voltage step
Input voltage (mV)
0.8
6
-8
4
Time (µs)
16
1.0
-6
2
14
8
-0.4
0
8
10
12
Supply Voltage (V)
10
-4
Output Voltage (V)
Output Voltage (V)
6
Output Voltage (V)
8
Input Voltage (V)
1.0
Vcc=16V
0.8
Vicm=Vcc/2
Gain=11
0.6
Rl=10kΩ
0.4
Cl=100pF
6
Figure 17: Positive slew rate at VCC = 16 V
Figure 16: Negative slew rate at VCC = 16 V
10
T=125°C
T=25°C
T=-40°C
Vicm=Vcc/2
Vload=Vcc/2
Gain=10
Rl=10kΩ
Cl=100pF
-2.0
0.00
0.000
0.0
Input Voltage (V)
0.05
1.0
6
Vcc=±8V
4
0.08
Vcc=±1.35V
2
0.04
0
0.00
-2
-10
DocID026747 Rev 2
0
10
20
Time (µs)
30
-0.04
40
Input voltage (V)
Output voltage (V)
15.85
TSX7191
Electrical characteristics
Figure 20: Recovery behavior after a positive step on
the input
0.04
300
50
240
40
0
0.00
Gain
-4
-0.08
Vcc=±8V
-6
-0.12
Gain=101
Rl=10kΩ
Cl=100pF
T=25°C
Vin
-8
-10
-10
0
10
20
Time (µs)
10
0
0
Vcc=2.7V
Vicm=1.35V
Rl=10kΩ
Cl=100pF
Gain=101
-30
-60
-120
-180
T=125°C
-240
10M
-40
1k
10k
100k
1M
Frequency (Hz)
Figure 23: Power supply rejection ratio (PSRR) vs.
frequency
100
300
50
240
40
+
PSRR
Gain
30
T=25°C
80
180
60
Phase
0
0
Vcc=16V
Vicm=8V
Rl=10kΩ
Cl=100pF
Gain=101
-10
-20
-30
-60
-120
60
40
20
-180
T=125°C
-240
10M
-40
1k
PSRR (dB)
T=-40°C
10
Phase (°)
120
20
100k
10k
1M
0
10
Vcc=16V
Vicm=8V
Gain=10
Rl=10kΩ
Cl=100pF
Vosc=20mVPP
T=25°C
100
Frequency (Hz)
Figure 24: Output overshoot vs.
capacitive load
Unstable
1000
Rf=9.1kΩ
50
Rf=91kΩ
25
0
10
1k
Frequency (Hz)
10k
100k
10000
Vcc=16V
Vicm=Vcc/2
Rl=10kΩ
Vin=10mVpp
Gain=10
T=25°C
Output impedance(Ω)
75
-
PSRR
Figure 25: Output impedance vs. frequency in closed
loop configuration
100
Overshoot (%)
60
Phase
-20
-0.16
Figure 22: Bode diagram at
VCC = 16 V
Gain (dB)
120
T=-40°C
-10
-0.20
40
30
180
20
Gain (dB)
Output Voltage (V)
-0.04
Vcc=±1.35V
Input voltage (V)
30
-2
T=25°C
Phase (°)
2
Figure 21: Bode diagram at
VCC = 2.7 V
100
Cload (pF)
1000
Vicm=Vcc/2
Gain=1
Vosc=30mVRMS
T=25°C
100
Vcc=16V
10
Vcc=2.7V
1
0.1
1k
DocID026747 Rev 2
10k
100k
Frequency (Hz)
1M
10M
13/24
Electrical characteristics
TSX7191
Figure 26: THD + N vs. frequency
Figure 27: THD + N vs. output voltage
1
1
Rl=2kΩ
0.1
Rl=2kΩ
Rl=10kΩ
0.01
THD + N (%)
THD + N (%)
0.1
Vcc=16V
Vicm=8V
Gain=10
Vout=10Vpp
BW=80kHz
T=25°C
Rl=100kΩ
Figure 28: Noise vs. frequency
6
Vcc=16V
Vicm=Vcc/2
T=25°C
100
80
60
40
Vcc=16V
4 Vicm=8V
T=25°C
Input voltage noise (µV)
Equivalent Input Noise Voltage (nV/√ Hz)
14/24
10
1
0.1
Output Voltage (Vpp)
Figure 29: 0.1 to 10 Hz noise
120
2
0
-2
-4
20
0
10
Vcc=16V
Vicm=8V
Gain=10
f=1kHz
BW=22kHz
T=25°C
1E-4
0.01
10000
1000
Frequency (Hz)
Rl=100kΩ
0.01
1E-3
1E-3
100
Rl=10kΩ
100
1k
Frequency (Hz)
10k
-6
0
2
4
6
Time (s)
DocID026747 Rev 2
8
10
TSX7191
Application information
4
Application information
4.1
Operating voltages
The TSX7191 device can operate from 2.7 to 16 V. The parameters are fully specified for
4 V, 10 V, and 16 V power supplies. However, the parameters are very stable in the full VCC
range. Additionally, the main specifications are guaranteed in extended temperature ranges
from -40 to +125 °C.
4.2
Input pin voltage ranges
The TSX7191 device has internal ESD diode protection on the inputs. These diodes are
connected between the input and each supply rail to protect the input MOSFETs from
electrical discharge.
If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become
conductive and excessive current can flow through them. Without limitation this over
current can damage the device.
In this case, it is important to limit the current to 10 mA, by adding resistance on the input
pin, as described in Figure 30.
Figure 30: Input current limitation
9R2
R2
Vin
4.3
Vcc
R1
Rail-to-rail input
The TSX7191 device has a rail-to-rail input, and the input common mode range is extended
from VCC- - 0.1 V to VCC+ + 0.1 V.
4.4
Rail-to-rail output
The operational amplifier output levels can go close to the rails: to a maximum of 30 mV
above and below the rail when connected to a 10 kΩ resistive load to VCC/2.
DocID026747 Rev 2
15/24
Application information
4.5
TSX7191
Input offset voltage drift over temperature
The maximum input voltage drift variation over temperature is defined as the offset
variation related to the offset value measured at 25 °C. The operational amplifier is one of
the main circuits of the signal conditioning chain, and the amplifier input offset is a major
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated
during production at application level. The maximum input voltage drift over temperature
enables the system designer to anticipate the effect of temperature variations.
The maximum input voltage drift over temperature is computed using Equation 1.
Equation 1
∆V io
V ( T ) – V io ( 25 °C )
= ma x io
∆T
T – 25 °C
Where T = -40 °C and 125 °C.
The TSX7191 datasheet maximum value is guaranteed by measurements on a
representative sample size ensuring a Cpk (process capability index) greater than 1.3.
4.6
Long term input offset voltage drift
To evaluate product reliability, two types of stress acceleration are used:
•
•
Voltage acceleration, by changing the applied voltage
Temperature acceleration, by changing the die temperature (below the maximum
junction temperature allowed by the technology) with the ambient temperature.
The voltage acceleration has been defined based on JEDEC results, and is defined using
Equation 2.
Equation 2
A FV = e
β . ( VS – VU )
Where:
AFV is the voltage acceleration factor
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)
VS is the stress voltage used for the accelerated test
VU is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in
Equation 3.
Equation 3
A FT = e
E
1
1
-----a- .
–
k
TU TS
Where:
AFT is the temperature acceleration factor
Ea is the activation energy of the technology based on the failure rate
16/24
DocID026747 Rev 2
TSX7191
Application information
-5
-1
k is the Boltzmann constant (8.6173 x 10 eV.K )
TU is the temperature of the die when VU is used (K)
TS is the temperature of the die under temperature stress (K)
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and
the temperature acceleration factor (Equation 4).
Equation 4
A F = A FT × A FV
AF is calculated using the temperature and voltage defined in the mission profile of the
product. The AF value can then be used in Equation 5 to calculate the number of months of
use equivalent to 1000 hours of reliable stress duration.
Equation 5
Months = A F × 1000 h × 12 months / ( 24 h × 365.25 days )
To evaluate the op amp reliability, a follower stress condition is used where VCC is defined
as a function of the maximum operating voltage and the absolute maximum rating
(as recommended by JEDEC rules).
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at
different measurement conditions (see Equation 6).
Equation 6
V CC = maxV op with V icm = V CC / 2
The long term drift parameter (ΔVio), estimating the reliability performance of the product, is
obtained using the ratio of the Vio (input offset voltage value) drift over the square root of
the calculated number of months (Equation 7).
Equation 7
∆V io =
V io dr ift
( month s )
Where Vio drift is the measured drift value in the specified test conditions after 1000 h
stress duration.
4.7
High values of input differential voltage
In a closed loop configuration, which represents the typical use of an op amp, the input
differential voltage is low (close to Vio). However, some specific conditions can lead to
higher input differential values, such as:
•
•
•
operation in an output saturation state
operation at speeds higher than the device bandwidth, with output voltage dynamics
limited by slew rate.
use of the amplifier in a comparator configuration, hence in open loop
Use of the TSX7191 in comparator configuration, especially combined with high
temperature and long duration can create a permanent drift of Vio.
DocID026747 Rev 2
17/24
Application information
4.8
TSX7191
Capacitive load
Driving large capacitive loads can cause stability problems. Increasing the load
capacitance produces gain peaking in the frequency response, with overshoot and ringing
in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an
op amp might become unstable.
Generally, the unity gain configuration is the worst case for stability and the ability to drive
large capacitive loads.
Figure 31 shows the serial resistor that must be added to the output, to make a system
stable. Figure 32 shows the test configuration using an isolation resistor, Riso.
Figure 31: Stability criteria with a serial resistor at different supply voltages
Figure 32: Test configuration for Riso
100kΩ
Vcc+
11kΩ
Riso
Vout
Vin
Vcc-
18/24
DocID026747 Rev 2
Cl
10kΩ
TSX7191
4.9
Application information
PCB layout recommendations
Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier,
load, and power supply. The power and ground traces are critical as they must provide
adequate energy and grounding for all circuits. The best practice is to use short and wide
PCB traces to minimize voltage drops and parasitic inductance.
In addition, to minimize parasitic impedance over the entire surface, a multi-via technique
that connects the bottom and top layer ground planes together in many locations is often
used.
The copper traces that connect the output pins to the load and supply pins should be as
wide as possible to minimize trace resistance.
4.10
Optimized application recommendation
It is recommended to place a 22 nF capacitor as close as possible to the supply pin. A
good decoupling will help to reduce electromagnetic interference impact.
DocID026747 Rev 2
19/24
Package information
5
TSX7191
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
®
ECOPACK is an ST trademark.
20/24
DocID026747 Rev 2
TSX7191
5.1
Package information
SOT23-5 package information
Figure 33: SOT23-5 package mechanical drawing
Table 6: SOT23-5 package mechanical data
Dimensions
Millimeters
Ref.
A
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
1.20
1.45
0.035
0.047
0.057
A1
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.014
0.016
0.020
C
0.09
0.15
0.20
0.004
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.014
0.024
K
0 degrees
10 degrees
0 degrees
DocID026747 Rev 2
10 degrees
21/24
Ordering information
6
TSX7191
Ordering information
Table 7: Order codes
Order code
Temperature range
Package
Packaging
TSX7191ILT
K34
TSX7191AILT
TSX7191IYLT
Marking
(1)
TSX7191AIYLT
-40 to +125 °C
SΟΤ23-5
(1)
Tape and reel
K196
K199
K200
Notes:
(1)
Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001
& Q 002 or equivalent are on-going.
22/24
DocID026747 Rev 2
TSX7191
7
Revision history
Revision history
Table 8: Document revision history
Date
Revision
Changes
29-Sep-2014
1
Initial release
06-Jan-2015
2
Features: updated "stable when used with gain" feature.
Applications: removed "DAC buffer"
Electrical characteristics: replaced Figure 14
DocID026747 Rev 2
23/24
TSX7191
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
24/24
DocID026747 Rev 2