Si 5 96 D U A L F REQUENCY VOLTAGE - C ON TROLLED C R Y S TA L O SCILLATOR ( V C X O ) 1 0 TO 810 MH Z Features Available with any-rate output frequencies from 10 to 810 MHz Two selectable output frequencies 3rd generation DSPLL® with superior jitter performance Internal fixed fundamental mode crystal frequency ensures high reliability and low aging Available CMOS, LVPECL, LVDS, and CML outputs 3.3, 2.5, and 1.8 V supply options Industry-standard 5 x 7 mm package and pinout Pb-free/RoHS-compliant –40 to +85 ºC operating range Si5602 Ordering Information: Applications See page 7. SONET/SDH (OC-3/12/48) Networking SD/HD SDI/3G SDI video FTTx Clock recovery and jitter cleanup PLLs FPGA/ASIC clock generation Pin Assignments: See page 6. Description The Si596 dual-frequency VCXO utilizes Silicon Laboratories’ advanced DSPLL® circuitry to provide a low-jitter clock at high frequencies. The Si596 is available with any-rate output frequency from 10 to 810 MHz. Unlike traditional VCXOs, where a different crystal is required for each output frequency, the Si596 uses one fixed crystal to provide a wide range of output frequencies. This IC-based approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides supply noise rejection, simplifying the task of generating low-jitter clocks in noisy environments. The Si596 IC-based VCXO is factory-configurable for a wide variety of user specifications including frequency, supply voltage, output format, tuning slope, and absolute pull range (APR). Specific configurations are factory programmed at time of shipment, thereby eliminating the long lead times associated with custom oscillators. (Top View) VC 1 6 VDD FS 2 5 CLK– GND 3 4 CLK+ Functional Block Diagram CLK– V DD CLK+ Any-rate 10–810 MHz DSPLL ® Clock Synthesis Fixed Frequency XO ADC Vc Rev. 1.0 6/16 FS GND Copyright © 2016 by Silicon Laboratories Si596 Si5 96 1. Electrical Specifications Table 1. Recommended Operating Conditions Parameter Supply Voltage1 Symbol Test Condition Min Typ Max VDD 3.3 V option 2.97 3.3 3.63 2.5 V option 2.25 2.5 2.75 1.8 V option 1.71 1.8 1.89 LVPECL CML LVDS CMOS — — — — 120 110 100 90 135 120 110 100 VIH 0.75 x VDD — — VIL — — 0.5 –40 — 85 Supply Current IDD Frequency Select (FS)2 Operating Temperature Range TA Units V mA V °C Notes: 1. Selectable parameter specified by part number. See 3. "Ordering Information" on page 7 for further details. 2. FS pin includes an internal 17 k pullup resistor to VDD. When the FS is left floating, the pullup causes FS = 1 = second frequency selected. Table 2. VC Control Voltage Input Parameter Control Voltage Tuning Slope 1,2,3 Control Voltage Linearity4 Symbol Test Condition Min Typ Max Units KV 10 to 90% of VDD — 45 95 125 185 380 — ppm/V LVC BSL –5 ±1 +5 Incremental –10 ±5 +10 % Modulation Bandwidth BW 9.3 10.0 10.7 kHz VC Input Impedance ZVC 500 — — k VC Input Capacitance CVC — 50 — pF — VDD/2 — V VDD V Nominal Control Voltage Control Voltage Tuning Range VCNOM @ fO VC 0 Notes: 1. Positive slope; selectable option by part number. See 3. "Ordering Information" on page 7. 2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR requirements. See “AN266: VCXO Tuning Slope (KV), Stability, and Absolute Pull Range (APR)” for more information. 3. KV variation is ±10% of typical values. 4. BSL determined from deviation from best straight line fit with VC ranging from 10 to 90% of VDD. Incremental slope determined with VC ranging from 10 to 90% of VDD. 2 Rev. 1.0 Si596 Table 3. CLK± Output Frequency Characteristics Parameter Symbol Test Condition Min Typ Max fO LVDS/CML/LVPECL 10 — 810 CMOS 10 — 160 TA = –40 to +85 ºC –20 –50 — — +20 +50 ppm Nominal Frequency1,2,3 Temperature Stability1,4 Units MHz Absolute Pull Range1,4 APR ±10 — ±370 ppm Power up Time5 tOSC — — 10 ms Settling Time After FS Change TFRQ — — 10 ms Notes: 1. See Section 3. "Ordering Information" on page 7 for further details. 2. Specified at time of order by part number. 3. Nominal output frequency set by VCNOM = VDD/2. 4. Selectable parameter specified by part number. 5. Time from power up or tristate mode to fO. Table 4. CLK± Output Levels and Symmetry Parameter LVPECL Output Option LVDS Output Option 1 2 Symbol Test Condition Min Typ Max Units VO mid-level VDD – 1.42 — VDD – 1.25 V VOD swing (diff) 1.1 — 1.9 VPP VSE swing (single-ended) 0.55 — 0.95 VPP VO mid-level 1.125 1.20 1.275 V VOD swing (diff) 0.5 0.7 0.9 VPP 2.5/3.3 V option mid-level — VDD – 1.30 — 1.8 V option mid-level — VDD – 0.36 — 2.5/3.3 V option swing (diff) 1.10 1.50 1.90 1.8 V option swing (diff) 0.35 0.425 0.50 VOH 0.8 x VDD — VDD VOL — — 0.4 LVPECL/LVDS/CML — — 350 ps CMOS with CL = 15 pF — 2 — ns 45 — 55 % VO CML Output Option2 VOD CMOS Output Option3 Rise/Fall time (20/80%) Symmetry (duty cycle) tR, tF SYM LVPECL: LVDS: CMOS: VDD – 1.3 V (diff) 1.25 V (diff) VDD/2 V VPP V Notes: 1. 50 to VDD – 2.0 V. 2. Rterm = 100 (differential). 3. CL = 15 pF. Sinking or sourcing 12 mA for VDD = 3.3 V, 6 mA for VDD = 2.5 V, 3 mA for VDD = 1.8 V. Rev. 1.0 3 Si5 96 Table 5. CLK± Output Phase Jitter Parameter Phase Jitter (RMS)1,2 for FOUT of 50 MHz < FOUT 810 MHz Symbol J Test Condition Min Typ Max Kv = 45 ppm/V 12 kHz to 20 MHz — 0.5 — Kv = 95 ppm/V 12 kHz to 20 MHz — 0.5 — Kv = 125 ppm/V 12 kHz to 20 MHz — 0.5 — Kv = 185 ppm/V 12 kHz to 20 MHz — 0.5 — Kv = 380 ppm/V 12 kHz to 20 MHz — 0.7 — Units ps Notes: 1. Refer to AN256 for further information. 2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR requirements. See “AN266: VCXO Tuning Slope (KV), Stability, and Absolute Pull Range (APR)” for more information. Table 6. CLK± Output Period Jitter Parameter Period Jitter* Symbol Test Condition Min Typ Max Units JPER RMS — 3 — ps Peak-to-Peak — 35 — *Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information. Table 7. CLK± Output Phase Noise (Typical) Offset Frequency 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 20 MHz 4 74.25 MHz 148.5 MHz 155.52 MHz 185 ppm/V 185 ppm/V 95 ppm/V LVPECL LVPECL LVPECL –77 –101 –121 –134 –149 –151 –150 –68 –95 –116 –128 –144 –147 –148 –77 –101 –119 –127 –144 –147 –148 Rev. 1.0 Units dBc/Hz Si596 Table 8. Environmental Compliance and Package Information Parameter Conditions/Test Method Mechanical Shock MIL-STD-883, Method 2002 Mechanical Vibration MIL-STD-883, Method 2007 Solderability MIL-STD-883, Method 2003 Gross and Fine Leak MIL-STD-883, Method 1014 Resistance to Solder Heat MIL-STD-883, Method 2036 Contact Pads Gold over Nickel Table 9. Thermal Characteristics (Typical values TA = 25 ºC, VDD = 3.3 V) Parameter Symbol Test Condition Min Typ Max Unit Thermal Resistance Junction to Ambient JA Still Air — 84.6 — °C/W Thermal Resistance Junction to Case JC Still Air — 38.8 — °C/W Ambient Temperature TA –40 — 85 °C Junction Temperature TJ — — 125 °C Table 10. Absolute Maximum Ratings1 Parameter Symbol Rating Units TAMAX 85 ºC VDD –0.5 to +3.8 V Input Voltage VI –0.5 to VDD + 0.3 Storage Temperature TS –55 to +125 ºC ESD 2500 V TPEAK 260 ºC tP 20–40 seconds Maximum Operating Temperature Supply Voltage ESD Sensitivity (HBM, per JESD22-A114) Soldering Temperature (Pb-free profile) 2 Soldering Temperature Time @ TPEAK (Pb-free profile)2 Notes: 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability. 2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download from www.silabs.com/VCXO for further information, including soldering profiles. Rev. 1.0 5 Si5 96 2. Pin Descriptions (Top View) VC 1 6 VDD FS 2 5 CLK– GND 3 4 CLK+ Table 11. Si596 Pin Descriptions Pin Name Type Function 1 VC Analog Input 2 FS* Input 3 GND Ground Electrical and Case Ground 4 CLK+ Output Oscillator Output 5 CLK– (N/C for CMOS) Output Complementary Output (N/C for CMOS, do not make external connection) 6 VDD Power Power Supply Voltage Control Voltage Frequency Select: 0 = first frequency selected 1 = second frequency selected *Note: FS pin includes a 17 k resistor to VDD. When the FS is left floating, the pullup causes FS = 1 = second frequency selected. See 3. "Ordering Information" on page 7 for details on frequency select ordering options. 6 Rev. 1.0 Si596 3. Ordering Information The Si596 supports a variety of options including frequency, temperature stability, tuning slope, output format, and VDD. Specific device configurations are programmed into the Si596 at time of shipment. Configurations are specified using the Part Number Configuration chart shown below. Silicon Labs provides a web browser-based part number configuration utility to simplify this process. Refer to www.silabs.com/VCXOPartNumber to access this tool and for further ordering instructions. The Si596 VCXO series is supplied in an industry-standard, RoHS compliant, lead-free, 6-pad, 5 x 7 mm package. Tape and reel packaging is an ordering option. 596 X X D XXXXXX G R R = Tape & Reel Blank = Trays 596 Dual VCXO Product Family Operating Temp Range (°C) G –40 to +85 °C Device Revision Letter 6-digit Frequency Designator Code Two unique frequencies can be specified within the following frequency range: 10 to 810 MHz. A six digit code will be assigned for the specified combination of frequencies. Codes > 000100 refer to dual XOs programmed with the lower frequency value selected when FS = 0, and the higher value when FS = 1. Six digit codes < 000100 refer to dual XOs programmed with the higher frequency value selected when FS = 0, and the lower value when FS = 1. 1st Option Code A B C D E F G H J K VDD 3.3 3.3 3.3 3.3 2.5 2.5 2.5 2.5 1.8 1.8 Output Format LVPECL LVDS CMOS CML LVPECL LVDS CMOS CML CMOS CML Note: CMOS available to 160 MHz. 2nd Option Code Code A B C D E F G H Temperature Stability ± ppm (max) 20 20 50 20 20 50 50 20 Tuning Slope Kv ppm/V (typ) 380 185 185 125 95 125 95 45 3.3 V 370 160 130 100 65 70 35 15 Minimum APR (±ppm) for VDD @ 2.5 V 1.8 V 275 200 110 80 80 50 75 40 50 25 45 10 20 N/A N/A N/A Notes: 1. For best jitter and phase noise performance, always choose the smallest Kv that meets the application’s minimum APR requirements. Lower Kv options minimize noise coupling and jitter in real-world PLL designs. See AN266 for more information. 2. APR is the ability of a VCXO to track a signal over the product lifetime. A VCXO with an APR of ±100 ppm is able to lock to a clock with a ±100 ppm stability over 15 years over all operating conditions. 3. Nominal Pull range (±) = 0.5 x VDD x tuning slope. 4. Minimum APR values noted above include worst case values for all parameters. Figure 1. Part Number Convention Rev. 1.0 7 Si5 96 4. Outline Diagram and Suggested Pad Layout Figure 2 illustrates the package details for the Si596. Table 12 lists the values for the dimensions shown in the illustration. Figure 2. Si596 Outline Diagram Table 12. Package Diagram Dimensions (mm) Dimension A b c D D1 e E E1 H L p R aaa bbb ccc ddd eee 8 Min 1.50 1.30 0.50 4.30 6.10 0.55 1.17 1.80 Nom 1.65 1.40 0.60 5.00 BSC 4.40 2.54 BSC. 7.00 BSC. 6.20 0.65 1.27 — 0.70 REF 0.15 0.15 0.10 0.10 0.50 Rev. 1.0 Max 1.80 1.50 0.70 4.50 6.30 0.75 1.37 2.60 Si596 5. Si5xx Mark Specification Figure 3 illustrates the mark specification for the Si596. Table 13 lists the line information. Figure 3. Mark Specification Table 13. Si596 Top Mark Description Line Position 1 1–10 “SiLabs”+ Part Family Number, 596 (First 3 characters in part number) 2 1–10 Si596: Option1+Option2+Freq(6)+Temp 3 Description Trace Code Position 1 Pin 1 orientation mark (dot) Position 2 Product Revision (D) Position 3–6 Tiny Trace Code (4 alphanumeric characters per assembly release instructions) Position 7 Year (least significant year digit), to be assigned by assembly site (ex: 2009 = 9) Position 8–9 Calendar Work Week number (1–53), to be assigned by assembly site Position 10 “+” to indicate Pb-Free and RoHS-compliant Rev. 1.0 9 Si5 96 6. 6-Pin PCB Land Pattern Figure 4 illustrates the 6-pin PCB land pattern for the Si596. Table 14 lists the values for the dimensions shown in the illustration. Figure 4. Si596 PCB Land Pattern Table 14. PCB Land Pattern Dimensions (mm) Dimension Min Max D2 5.08 REF e 2.54 BSC E2 4.15 REF GD 0.84 — GE 2.00 — VD 8.20 REF VE 7.30 REF X 1.70 TYP Y 2.15 REF ZD — 6.78 ZE — 6.30 Notes: 1. Dimensioning and tolerancing per the ANSI Y14.5M-1994 specification. 2. Land pattern design based on IPC-7351 guidelines. 3. All dimensions shown are at maximum material condition (MMC). 4. Controlling dimension is in millimeters (mm). 10 Rev. 1.0 Si596 DOCUMENT CHANGE LIST Revision 1.0 June 10, 2016 Initial release. Rev. 1.0 11 Smart. Connected. Energy-Friendly Products Quality www.silabs.com/products www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com