Si 5 3 7 x - EVB S i537 X -EVB E VALUATION B OARD U SER ’ S G UIDE Description Features The Si5374/75/76 Any Frequency Precision Clocks are based on Silicon Labs 3rd-generation DSPLL technology, which provides any-frequency synthesis in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The devices have excellent phase noise and jitter performance. All of the devices support 350 fs RMS jitter generation across the 12 kHz to 20 MHz jitter filter bandwidth. For all devices, the DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. These devices are ideal for providing clock multiplication/clock division and jitter attenuation in mid-range and high-performance timing applications where printed circuit board real estate is at a premium. The Si537x-EVB includes the following: CD with documentation and EVB software including the Si537x_DSPLLsim configuration software utility. EVB circuit board Si537x-EVB User’s Guide (this document) Functional Block Diagram Regulator 3.3 V USB Serial # SPI MCU EEPROM I2C Level Translate CPLD Si530 I2C Control, monitor OSC Ext Ref A B C D Si537x Rev. 0.6 11/12 Copyright © 2012 by Silicon Laboratories Si537x-EVB Si537x-EVB 1. Introduction The Si537x-EVB provides a platform for evaluating Silicon Labs’ Si5374, Si5375, and Si5376 Any Frequency Precision Clocks. These devices are jitter attenuating quad DSPLLs that are microprocessor controlled using an I2C interface. The Si5374 and the Si5376 have eight clock inputs and 8 clock outputs, whereas the Si5375 has 4 clock inputs and 4 clock outputs. The Si5374 has the added feature of lower loop BW than the Si5375 and Si5376. Figure 1. Si537x-EVB 2 kHz–808 MHz 4–525 Hz 4/4 2 kHz–710 MHz 2 kHz–808 MHz 60 Hz–8.4 kHz 8/8 2 kHz–710 MHz 2 kHz–808 MHz 60 Hz–8.4 kHz Input Si5374 8/8 Si5375 Si5376 2 Rev. 0.6 Package Digital Hold 2 kHz–710 MHz Frequency Range Free Run Output DSPLL Loop Bandwidth Range # Input/ Output Clocks VCO Freeze Device Hitless Switching Table 1. Si537x Selection Summary 10x10 mm 80-PBGA 10x10 mm 80-PBGA 10x10 mm 80-PBGA Si537x-EVB 2. Applications The Si5374/75/76 Any Frequency Precision Clocks offer a comprehensive feature set, including any frequency synthesis, jitter attenuation, fully integrated loop filter, multiple clock inputs, multiple clock outputs, alarm and status outputs, hitless switching between multiple input clocks, programmable output clock format (LVPECL, LVDS, CML, CMOS), and output phase adjustment between all output clocks. For more details, consult the Silicon Labs timing products website at www.silabs.com/timing. The Si537x-EVB has a Silicon Labs MCU (C8051F430) that supports USB communications with a PC host. The Si5374/75/76 devices are controlled and monitored through the I2C serial port. A CPLD is connected to the MCU and stores pin configuration data and reads the device status pins. The MCU communicates to the Si537x device using I2C through a voltage level translator. However, the user has the option of bypassing the MCU and controlling the devices from an external serial device. On-board termination is included so that the user can evaluate either single-ended or differential as well as ac or dc coupled clock inputs and outputs. A separate DUT (device under test) power supply connector is included. LEDs are provided for convenient monitor of key status signals. The user can select between a number of reference oscillator options, including external sources and various on-board options. For more detailed information about the applications of these devices, please see their respective data sheets. 3. Si5374/75/76-EVB Quick Start For more detailed information about these devices, see their respective data sheets. Rev. 0.6 3 Si537x-EVB 4. Functional Description The Si537x-EVB and software allows for a complete and simple evaluation of the functions, features, and performance of the Si5374/75/76 Any Frequency Precision Clocks. For the following material, refer to the schematics in section “7. Schematics.” 4.1. Block Diagram Regulator 3.3 V USB Serial # SPI MCU EEPROM I2C Level Translate CPLD Si530 I2C Control, monitor OSC Ext Ref A B C D Si537x Figure 2. Si537x-EVB Block Diagram Figure 2 is a block diagram of the evaluation board and it is helpful to refer to this diagram. The MCU communicates to the host PC over a USB connection. The MCU controls and monitors the Si537x pins through the CPLD, which provides level translation between the MCU and the Si537x. I2C level translation is provided separately. A number of different options are provided for the required Si537x external reference oscillator. 4.2. Si537x Device To minimize noise and crosstalk, the Si537x device has separate and filtered VDD supplies. Two-pin jumper plugs (J16, J17, J25, and J33) are provided so that the distinct power supplies can be monitored. 4.3. Input Clocks The input clocks are all located at the edge of the board. For each clock input pair, each input is ac terminated with 50 to ground. With this configuration, single ended inputs can be implemented by simply leaving the unused clock input disconnected. If low frequency clock inputs are in use, the reactance of the 100 nf capacitors (C12, C13, C14, etc.) can become significant and they should be replaced with 0 resistors. In some circumstances, the ac termination should be removed and replaced. CMOS inputs are typically best terminated by using series source termination at the output of the CMOS driver and completely removing all of the on-board input termination. Regardless of the termination scheme in use, a scope should be used to verify that none of the clock input specifications found in the data sheet are being violated. 4 Rev. 0.6 Si537x-EVB 4.4. Output clocks The output clocks all use vertical mount SMA connectors and are ac coupled. There may be circumstances (e.g., CMOS outputs) for which the 100 nF capacitors should be replaced with 0 resistors. Pads for resistors between the two halves of the outputs are provided for CMOS outputs so that the outputs can be put in parallel for greater drive strength. 4.5. OSC Reference Source The Si537x requires a low-jitter reference on its OSC_P and OSC_N input pins. To provide a clock source, the user has a number of different options: 1. The factory default configuration is a 121.109 MHz Si530 crystal oscillator (XO). For this configuration install C78 and C81 (in the silkscreen XO box on the top of the board), remove C97 and C101 (in the INT silkscreen box on the bottom of the board), and remove C77 and C80 (in the silkscreen box EXT on the top of the board). J50 should be removed and J60 should select the desired XO supply voltage of 3.3 V by jumpering J60.2 to J60.3. 2. There are provisions for three different XO oscillator packages in industry standard pinouts: 5x7 mm, 3.2x5 mm, and 3.2x2.5 mm. If any of these are used, be sure to install C78 and C81 (in the silkscreen XO box on the top of the board), remove C97 and C101 (in the INT silkscreen box on the bottom of the board), and remove C77 and C80 (in the silkscreen box EXT on the top of the board). J50 should be removed and J60 should select the desired XO supply voltage of either the Si537x VDD or 3.3 V. 3. An off-board, external reference oscillator may be used instead of the Si530 XO. If this is desired, C98 and C102 (in the CKIN silkscreen box on the bottom of the board), C101 and C97 (in the INT silkscreen box on the bottom of the board), and C78 and C81 (in the silkscreen XO box on the top of the board) should all be removed and C77 and C80 (in the EXT silkscreen box on the top of the board) should be installed. If this mode is selected, the clock input should be applied to J64 and J66. Both J50 and J60 should be removed so that the other references sources are not powered and do not add noise. 4. A PCB footprint for a reference Si5326 is included on the EVB. If it is installed, the Si5326 is initialized by the MCU and EEPROM so that it powers up with an output that is 114.285 MHz based on its crystal, X1. The output of the Si5326 can be monitored at J65 and J67 and can be changed to most any frequency using DSPLLsim . Free run at 114.285 MHz is the factory default Si5326 frequency plan. If a reference OSC frequency in the 37–41 MHz band is to be used, be sure to set the RATE register (reg 2) for all of the DSPLLs to 0101. For options 2 and 4 above, an external OSC reference XO in the 37–41 MHz frequency band can also be used. With this approach, the output jitter will be higher by an amount that is illustrated in “AN591: Crystal Selection for the Si5315 and Si5317,” Figures 3 and 4. It will also be necessary to create an Si537xDSPLLsim frequency plan with the appropriate RATE_REG (at addr 2) setting of 0001. It is also possible to have the reference Si5326 lock onto an external clock source instead of locking to its 114.285 MHz crystal in free run mode. If this mode is desired, install C98 and C102 (in the CKIN silkscreen box on the bottom of the board) and then load the appropriate frequency plan into the reference Si5326 using DSPLLsim. The external clock source is connected to J64 and J66. If the Si5326 is being used, J50 should be installed and J60 should be removed. Though they will result in slightly lower performance, single ended reference clock inputs can be connected to J66, with the unused J64 connected to ground. In all cases, when a single ended reference oscillator is in use, C53 (located close to the Si537x) should be installed. Rev. 0.6 5 Si537x-EVB 4.6. CPLD The CPLD provides various functions including level translation and the buffering of monitor/control of signals for the Si537x DUT and the Si5326 reference source. Examples are the LOL, IRQ, and CS_CA signals from the Si537x as well as the SPI port connection to the reference Si5326. 4.7. MCU The MCU is the intermediary between the PC host and the Si537x DUT. The host’s USB port provides power for the MCU and the LEDs through a 3.3 V regulator (U17). U6 provides I2C level translation to the DUT VDD voltage level. U2 is an EEPROM that is used to initialize the reference Si5326. J51 is an I2C serial port connector by which an external I2C master can control the on-board Si537x or by which the on-board MCU can control an Si537x that resides on a external target board. 4.8. Power and LEDs J4 is the main Si537x power connector. Remote sensing for the power supply is provided by J3. DUT current can be monitored by removing R1 and connecting to J7. U10 and U11 are buffers that are used to drive the LEDs. The status outputs are available at J44/45. 6 Rev. 0.6 Si537x-EVB 5. Connectors and LEDs U1 J44, J45, status J51, ext I2C XO caps J50, Ref pwr EXT caps Top J60, XO pwr INT caps Bottom CKIN caps Figure 3. Connectors, Top, and Bottom Views J51 can be used as an attachment point for controlling the Si537x DUT from an external I2C master or to use the MCU to control an Si537x DUT that resides on an external target board. To control the on-board Si537x from an external I2C master, disconnect the cable from the USB connector (J61), thereby depriving the EVB of its 5 V power source. A lack of 3.3 V power will disable the U6 level translator (by virtue of U6.8) so that the MCU will be isolated from the external I2C bus that should be applied to J51. To control an external Si537x from the on-board MCU, the on-board Si537x must be held in reset so that it does not assert either of the two I2C bus signals. This can be done by opening the Si537x Register Programmer and going to the Options pull down menu on the top toolbar and selecting "Switch to External Control Mode.” Rev. 0.6 7 Si537x-EVB Table 2. External I2C J51 Name Comment J51.1 SDA serial data J51.3 SCL serial clock J51.9 DUT_RST_L DUT reset J45 is used to make external connections to status signals: Table 3. Status 8 J45 Name Comment J45.27 DUT_PWR +2.5 or 1.8 V J45.25 REF_LOL J45.23 IRQ_D J45.21 IRQ_C J45.19 IRQ_B J45.17 IRQ_A J45.15 CS_CA_D J45.13 CS_CA_C J45.11 CS_CA_B J45.9 CS_CA_A J45.7 LOL_D J45.5 LOL_C J45.3 LOL_B J45.1 LOL_A Rev. 0.6 Si537x-EVB The LEDs are used to quickly determine the board status: Table 4. LED Descriptions LED Color Label D17 yellow CS_CA_D D16 yellow CS_CA_C D15 yellow CS_CA_B D14 yellow CS_CA_A D13 red LOL_D D12 red LOL_C D11 red LOL_B D10 red LOL_A D9 red IRQ_D D8 red IRQ_C D7 red IRQ_B D6 red IRQ_A D5 green MCU_2 D4 green MCU_1 D3 red REF_LOL D2 green 3.3 V D1 green DUT_PWR Rev. 0.6 9 Si537x-EVB 6. EVB Software Installation The release notes and the procedure for installing the EVB software can be found on the release CD included with the EVB. These items can also be downloaded from the Silabs web site: www.silabs.com/timing. Follow the links for 4-PLL Jitter attenuators, and look under the Tools tab. Program Description Si537x_DSPLLsim Provides the high level control of the Si537x device. It has the frequency planning wizard as well as control of the pins in an organized, intuitive manner. Register maps and other configuration files can be saved and opened. Setting Utility This application allows for quick read/write access to each control word of the Si537x device. It can save and open text files. Register Prgmr Provides a low-level, hex register read/write capability on a byte basis (as opposed to control word). Register map files can be opened and saved in its batch mode. Register Viewer Displays the current register map data in a table format sorted by register address. Can save and print the register map. 10 Rev. 0.6 100N 100N RSTD_L CS_CA_D RSTC_L CS_CA_C RSTB_L CS_CA_B RSTA_L CS_CA_A NOPOP 220UF + C116 SCL SDA CKIN2N_D CKIN2P_D CKIN1N_D CKIN1P_D CKIN2N_C CKIN2P_C CKIN1N_C CKIN1P_C CKIN2N_B CKIN2P_B CKIN1N_B CKIN1P_B CKIN2N_A CKIN2P_A CKIN1N_A CKIN1P_A C112 402 C17 100N 10UF_805 C19 1 2 1 2 1 2 C27 NOPOP 220UF C117 + 10UF_805 C18 1 2 C20 100N C28 100N 49.9 49.9 49.9 49.9 J16 G5 G6 F4 J4 G4 G3 H4 H3 F6 F9 F7 G7 F8 G8 D6 A6 C6 C7 B6 B7 D4 D1 D3 C3 D2 C2 SCL SDA RSTL_D CS_CA_D CKIN2N_D CKIN2P_D CKIN1N_D CKIN1P_D RSTL_C CS_CA_C CKIN2N_C CKIN2P_C CKIN1N_C CKIN1P_C RSTL_B CS_CA_B CKIN2N_B CKIN2P_B CKIN1N_B CKIN1P_B RSTL_A CS_CA_A CKIN2N_A CKIN2P_A CKIN1N_A CKIN1P_A J17 NOPOP 1 2 NOPOP 1 2 R29 R31 R32 R30 100N C113 402 B A VDD_B D C B A Si537x U1 C1 B5 C4 VddA1 VddA2 VddA3 CKOUT1P_A 402 C115 100N E6 E5 H5 F2 F1 E1 H1 J1 E8 H6 J6 J5 J8 J9 C5 D8 D9 E9 B9 A9 E2 B4 A4 A5 2A B1 C30 100N Figure 4. Si537x OSC_N OSC_P LOL_D IRQ_D CKOUT2N_D CKOUT2P_D CKOUT1N_D CKOUT1P_D LOL_C IRQ_C CKOUT2N_C CKOUT2P_C CKOUT1N_C CKOUT1P_C LOL_B IRQ_B CKOUT2N_B CKOUT2P_B CKOUT1N_B CKOUT1P_B LOL_A IRQ_A CKOUT2N_A CKOUT2P_A CKOUT1N_A Gnd1 Gnd2 Gnd3 Gnd4 B2 A3 B3 E4 VDD_A D5 A7 D7 VddB1 VddB2 VddB3 Gnd5 Gnd6 Gnd7 Gnd8 C8 A8 B8 C9 Ferrite L2 F5 E7 G9 VddC1 VddC2 VddC3 Gnd9 Gnd10 Gnd11 Gnd12 H7 J7 H8 H9 C29 100N 1 10UF_805 C31 C53 100N 402 NOPOP 2 Ferrite L1 F3 J3 E3 VddD1 VddD2 VddD3 Gnd13 Gnd14 Gnd15 Gnd16 Rev. 0.6 G1 H2 J2 G2 C118 220UF NOPOP OSC_N OSC_P + VDD_C C J25 CKOUT2N_D CKOUT2P_D CKOUT1N_D CKOUT1P_D CKOUT2N_C CKOUT2P_C CKOUT1N_C CKOUT1P_C CKOUT2N_B CKOUT2P_B CKOUT1N_B CKOUT1P_B CKOUT2N_A CKOUT2P_A CKOUT1N_A CKOUT1P_A NOPOP 1 2 LOL_D IRQ_D LOL_C IRQ_C LOL_B IRQ_B LOL_A IRQ_A C43 10UF_805 402 C114 100N 1 2 C44 100N L3 Ferrite C45 100N + C119 220UF NOPOP VDD_D VDD_D 2 1 1 2 NOPOP J33 D L4 Ferrite DUT_PWR 2 1 DUT_PWR Si537x-EVB 7. Schematics 11 Si537x-EVB 1 CKIN1P_A CKIN1_A- 49.9 R14 J18 2 CKIN1N_A C33 10NF 49.9 CKIN1P_C J35 SMA_EDGE CKIN1_C- 100N C15 SMA_EDGE 100N C52 49.9 C35 10NF R15 J31 CKIN1N_C 100N C42 C34 10NF SMA_EDGE 49.9 1 CKIN2P_A 100N C3 49.9 R6 R16 1 CKIN2_C+ 2 C21 10NF 3 J5 SMA_EDGE 3 2 CKIN2_A+ R17 1 2 3 2 1 1 CKIN1_C+ C32 10NF 3 100N C9 3 J13 SMA_EDGE 3 2 CKIN1_A+ J56 CKIN2P_C 100N C69 49.9 R21 C46 10NF SMA_EDGE J1 CKIN2N_A 100N C1 CKIN2_C- C22 10NF SMA_EDGE 49.9 R7 1 3 3 2 1 2 CKIN2_A- J48 CKIN2N_C 100N C60 C39 10NF SMA_EDGE 49.9 SMA_EDGE 49.9 1 CKIN2P_B J23 SMA_EDGE 100N C16 3 2 CKIN2_B+ CKIN2_B- 49.9 C26 10NF 3 2 3 3 J55 CKIN1N_D 100N C65 C57 10NF 49.9 R28 1 CKIN2P_D J26 100N C36 SMA_EDGE CKIN2_D- CKIN2N_B C25 10NF 49.9 R27 49.9 R25 C54 10NF 100N C14 SMA_EDGE 49.9 C56 10NF SMA_EDGE CKIN2_D+ R11 1 J14 Do not populate for Si5375-EVB R8 100N C59 1 2 C23 10NF CKIN1P_D J46 SMA_EDGE CKIN1_D- CKIN1N_B 100N C2 1 2 3 2 1 J2 2 C24 10NF 2 CKIN1_B- 1 CKIN1_D+ R9 3 49.9 3 2 CKIN1P_B J6 100N C4 SMA_EDGE 3 1 CKIN1_B+ R19 J34 CKIN2N_D 100N C47 C55 10NF 49.9 R26 SMA_EDGE R10 Figure 5. Clock Inputs C10 C40 J19 100N SMA_VERT R2 0 ohm CKOUT1_C+ R20 0 ohm J9 J30 100N 100N CKOUT1_A- 1 CKOUT1N_A J29 SMA_VERT NOPOP CKOUT1_C- 1 C41 2 3 4 5 C5 CKOUT1N_C SMA_VERT 2 3 4 5 NOPOP 1 CKOUT1P_C 2 3 4 5 100N 2 3 4 5 CKOUT1_A+ 1 CKOUT1P_A SMA_VERT C11 C50 J20 100N SMA_VERT R23 0 ohm J10 100N J39 100N CKOUT2_A- 1 CKOUT2N_A CKOUT2_C+ SMA_VERT NOPOP R3 0 ohm J38 C51 2 3 4 5 C6 CKOUT2_C- 1 CKOUT2N_C SMA_VERT 2 3 4 5 NOPOP 1 CKOUT2P_C CKOUT2_A+ 2 3 4 5 100N 2 3 4 5 1 CKOUT2P_A SMA_VERT Do not populate for Si5375-EVB C12 C49 J21 100N SMA_VERT R4 0 ohm R22 0 ohm J11 100N CKOUT1_B- C48 2 3 4 5 C7 SMA_VERT SMA_VERT C13 C38 J22 100N SMA_VERT R5 0 ohm NOPOP J28 SMA_VERT R18 0 ohm J12 100N J27 100N CKOUT2_B- C8 C37 SMA_VERT SMA_VERT Figure 6. Clock Outputs Rev. 0.6 CKOUT2_D- 1 CKOUT2N_D 2 3 4 5 1 CKOUT2N_B CKOUT2_D+ 1 CKOUT2P_D CKOUT2_B+ 2 3 4 5 100N 2 3 4 5 1 CKOUT2P_B 12 CKOUT1_D- 1 CKOUT1N_D 2 3 4 5 1 NOPOP CKOUT1_D+ J36 100N CKOUT1N_B J37 SMA_VERT NOPOP 2 3 4 5 NOPOP 1 CKOUT1P_D 2 3 4 5 100N 2 3 4 5 CKOUT1_B+ 1 CKOUT1P_B 5()B/2/ 5()B567B/ 026, 5()B66B/ 0,62 6&/. 1) & 1) & 5 5 12323 & 1 5 - 60$B('*( 5 N 5()B&.,1B3 5()B&.,1B1 CKIN 12323 & 1 5 N 73 ; 73 8 567 &02'( )547%/ 6',B)546(/ $B66B)546(/ $B)546(/ $B)546(/ ,17B&% &% 6)287 6)287 &.287 &.287 &.287 &.287 /2/ &.6(/&.B$&79 12323 Si532x 6'$B6'2B%:6(/ 6&/B6&/.B%:6(/ '%/B%< $8726(/ ,1& '(& &.,1B &.,1B &.,1 &.,1 ;$ ;% 5()B9'' 5()B1 & 1 / / & 8) )HUULWH & 8) - RKP & 1 '87B3:5 73 5 INT & 1 12323 & & REF_OUT- REF_OUT+ & 1 12323 9GG &/. 9'' 12323 287 9'' ;2E\P 8 *1' 2( 6L *1' &/. 1& 2( 8 &ON 6L *QG 2( 8 &ON 1& 121.109 MHz ;2B3:5 - 60$B('*( - 60$B('*( 12323 1 12323 1 REF_PWR & 1 93 EXT 1 & )HUULWH 26&B'87B3:5 - XO_PWR 5()B&.287B3 5()B&.287B1 & 1 93 & 1 Figure 7. Reference Oscillators 0+] 5DWH EXT_REF- 5()B3 5DWH - 60$B('*( 9'' 9'' 9'' Rev. 0.6 *1' *1' *1' GND EXT_REF+ & 1 5 RKP 5 5 N 12323 5 XO & 1 26&B1 26&B3 Si537x-EVB 13 RSTA_L RSTB_L RSTC_L RSTD_L CPLD_DUT_PWR R57 1 2 3 4 Rev. 0.6 C99 1UF 10 R80 LOL_A LOL_B LOL_C LOL_D 10 NOPOP R62 0 ohm + J53 J54 NOPOP R61 0 ohm 0 ohm R90 C70 33UF R81 2 3 1 LOL NOPOP NOPOP NOPOP R60 0 ohm 4 5 66.5 R89 TPS76201 FB Vreg Out R10x4 R50 5 6 7 8 R10Kx4 R58 0 ohm Gnd EN In U3 4 3 2 1 install exactly one resistor: code E Si5374: install R58 D Si5375: install R60 B Si5376: install R61 V3P3 R36 0 ohm 1 2 3 4 1 2 3 4 14 8 7 6 5 DUT_PWR LS MS 2 1 2 C66 1UF + C73 100N C71 33UF C63 10NF C96 1UF 1.8V FN12_M11 FN12_M13 FN12_M14 FN12_M15 FN11_M11 FN11_M12 FN11_M13 FN11_M14 FN10_M1 FN10_M2 FN10_M3 FN10_M4 FN10_M5 FN10_M6 FN10_M12 FN9_M1 FN9_M2 FN9_M4 FN9_M6 FN9_M12 FN4_M1 FN4_M2 FN4_M3 FN4_M5 FN4_M6 FN4_M13 FN3_M5 FN3_M12 FN3_M14 FN3_M16 FN2_M1_GTS2 FN2_M3_GTS3 FN2_M5_GTS0 FN2_M12_GTS1 FN2_M14 FN2_M15 FN5_M4_GCK1 FN5_M6_GCK0 Bank 1 C85 1UF C72 10NF 100N C74 43 42 41 40 39 58 59 60 61 63 64 52 50 49 46 44 53 54 55 56 32 33 34 35 36 37 C83 100N C75 10NF RST_L C82 10NF 88 98 20 38 51 26 57 XC2C128 VCCIO2-1 VCCIO2-2 VCCIO1-1 VCCIO1-2 VCCIO1-3 VCC1 VCC2 U12A Figure 8. CPLD C62 10NF C61 10NF XC2C128 FN16_M5 FN16_M6 FN16_M11 FN16_M12 FN16_M13 FN15_M11 FN15_M12 FN15_M13 FN15_M14 FN15_M15 FN15_M16 FN14_M1 FN14_M3 FN14_M5 FN14_M14 FN14_M15 FN13_M2 FN13_M4 FN13_M6 FN13_M13 FN8_M6 FN8_M11 FN8_M12 FN8_M13 FN8_M14 FN8_M15 FN7_M5 FN7_M6 FN7_M11 FN7_M12 FN7_M13 FN7_M14 19 18 17 16 15 14 24 27 28 29 30 23 22 +3.3V FN6_M2_CDRST FN6_M4_GCK2 FN6_M12_DGE FN6_M14 FN6_M16 U12C FN1_M3_GSR FN1_M6 FN1_M12 FN1_M13 FN1_M14 Bank 2 V1P8 68 67 66 65 85 86 87 89 77 76 74 73 72 71 70 78 79 80 81 82 8 9 10 11 12 13 93 92 91 90 1 2 3 4 6 7 1 2 99 97 96 95 94 1 R79 113 IRQ_A IRQ_B IRQ_C IRQ_D CS_CA_A CS_CA_B CS_CA_C CS_CA_D TP1 TP3 TP4 DUT_PWR GND1 GND2 GND3 GND4 GND5 GND6 GND7 GND8 SMT J63 21 25 31 62 69 75 84 100 1 2 3 4 5 6 VCCAUX TMS TDI TDO TCK J52 NOPOP JTAG 1 2 3 4 5 6 NOPOP CLK Trig1 R49 REG_ADR0 REG_ADR1 REG_ADR2 REG_ADR3 REG_ADR4 SS_L MOSI SCLK MISO REF_RST_L 5 83 47 48 45 V3P3 LED_CS_CA_A LED_CS_CA_B LED_CS_CA_C LED_CS_CA_D REF_LOL LED_LOL_A LED_LOL_B LED_LOL_C LED_LOL_D LED_IRQ_A LED_IRQ_B LED_IRQ_C LED_IRQ_D NOPOP U12B 10 10 R47 R44 XC2C128 VCCAUX TDO TMS TCK TDI Trig3 Trig2 J47 NOPOP J49 0 ohm J43 1 2 3 4 1 2 3 4 5 6 1 2 3 R74 100 76 CPLD_RST_L REF_SS_L 10 1 75 CPLD CMND_DONE DUT_PWR_L 25 51 26 50 Si537x-EVB I2C 10 8 6 4 2 J51 9 7 5 3 1 2 C64 100N I2C CS 49.9 R43 Vref2 SDA2 SCL2 R85 0 ohm NOPOP SDA1 SCL1 7 3 MCU_SCLK MCU_MISO EEPROM_WE EEPROM_CS 4 3 U6 PCA9306 2 Vref1 C104 100N 1 R45 10k R41 10k R83 1.5K 1 2 disable I2C Xcvr J68 MCU_MOSI R48 49.9 R46 10k R93 1.5K A K NOPOP 1 2 1 5 6 M95040 HOLD EEPROM W Q D Clk U2 SCL SDA R77 0 ohm D20 2 NOPOP BAT54S D19 4 3 3 BAT54S 6 I2C pullup BUS1 BUS2 NOPOP LTC4311 10_M_Header_SMT V3P3 SDA SCL EN DUT_RST_L C105 100N 3 GND1 1 GND2 VCC U5 3 1 Q3 BSS138 1 Q2 3 MCU_SDA 5 NOPOP R92 MCU_SCL R82 4.99K 2 6 7 C100 100N BSS138 0 ohm 2 2 DUT_PWR C87 1UF R91 4.99K 10k 10k S G + 46 45 44 43 42 41 40 39 6 5 4 3 2 1 48 47 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 U14 V5V U17 49.9 49.9 R54 R52 SCLK MOSI SS_L MISO Figure 9. MCU 49.9 49.9 1 2 3 23 24 25 26 27 28 29 30 15 16 17 18 19 20 21 22 SPI to Si5326 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0 LM1117 GND VOUT1 VIN 3 4 2 1 Vreg VOUT2 C8051F340 4 R55 R53 Si8051F340 C89 33UF V3P3 MCU_SS_L C88 100N R84 FET D R78 TP8 2 48 37 1 36 2 1 + MCU 12 13 24 C90 33UF 25 CMND_DONE TP5 J62 R24 1K NOPOP MCU_EVB_SER_NUM R33 1K 10_M_Header_SMT 2 1 4 3 6 5 8 7 10 9 MCU USB Clamp 49.9 V3P3 NO USB Clamp D+ D- J61 Gnd V USB 4 1 R39 10k 1 2 3 SN65220 SW1 4 3 RESET Ser No. I/O DS2411 2 R65 1K serial number EVB_SER_NUM MCU_LED1 1 2 1 2 J59 NOPOP 5V CPLD_RST_L NC1 NC2 NC3 U9 3 4 5 C109 100N MCU depends on USB for power 3 USB U15 R40 2 U16 SN65220 C67 100N 10 D18 3 BAT54S D_P MCU_LED2 REG_ADR4 REG_ADR3 REG_ADR2 REG_ADR1 REG_ADR0 C68 1UF 1K C58 100N R76 1K D_N R64 VBUS R42 R38 0 ohm V3P3 1 NC1 A 6 5 8 2 R34 8 EN GND 1 3 NC2 B 0 ohm GND 7 Vcc Vss 4 10 11 Vdd REGIN 13 14 RST/C2CK C2D 12 8 9 VBUS D+ D- P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 38 37 36 35 34 33 32 31 1 6 Gnd1 Gnd2 2 6 4 1 NC1 A S2 5 3 NC2 B 4 Gnd1 Gnd2 5 S1 5 6 Vcc GND Rev. 0.6 1 MCU_DUT_PWR Si537x-EVB 15 1 R67 10k DUT_PWR DUT_PWR_L LED_LOL_A LED_LOL_B LED_LOL_C LED_LOL_D LED_CS_CA_A LED_CS_CA_B LED_CS_CA_C LED_CS_CA_D 1 R69 10k BSS138 C94 100N Phoenix_2_screw GND 2 OE1 OE2 IN0 IN1 IN2 IN3 IN4 IN5 IN6 IN7 R96 + Grn C 18 17 16 15 14 13 12 11 A D1 C91 220UF 1 + DUT_PWR 2 10k O0 O1 O2 Q3 O4 O5 O6 O7 Buffer 2 74LCX541 V3P3 1612 L6 Q1 1 19 2 3 4 5 6 7 8 9 U10 1 20 Vcc GND 150 C92 33UF R73 LOL_D LOL_C LOL_B LOL_A CS_CA_D CS_CA_C CS_CA_B CS_CA_A V3P3 C93 100N 1 1 1 1 2 2 2 2 NOPOP Yel Yel D17 Yel D15 D16 Yel D14 Red D13 Red D12 Red D11 Red D10 2 2 2 2 1 1 1 1 #4 H4 -S #4 #4 H5 J3 1 2 3 SENSE +S H1 mounting holes #4 H3 R150x4 R68 8 7 6 5 1 LED_IRQ_A LED_IRQ_B LED_IRQ_C LED_IRQ_D REF_LOL MCU_LED1 MCU_LED2 0 ohm R13 OE1 OE2 J58 1 J32 J57 J15 1 1 J41 1 J40 J8 1 1 J24 1 J42 18 17 16 15 14 13 12 11 1 1 O0 O1 O2 Q3 O4 O5 O6 O7 Buffer IN0 IN1 IN2 IN3 IN4 IN5 IN6 IN7 74LCX541 ground pins R75 10k 1 19 2 3 4 5 6 7 8 9 U11 10k R70 V3P3 Place resistors next to U1 0 ohm R12 Figure 10. Power and LEDs #4 H2 1 2 3 4 4 3 2 1 R66 R150x4 5 6 7 8 DUT_PWR measure DUT voltage, currrent J7 0 ohm R1 2 1 1 * * 1 R35 20 Vcc GND J4 A A C C A DUT_PWR 1 100 C95 100N 3.3V MCU_2 MCU_1 REF_LOL IRQ_D IRQ_C IRQ_B IRQ_A 14_M_Header J44 J45 14_M_Header 14 13 12 11 10 9 8 7 6 5 4 3 2 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Status 1 1 1 2 2 2 2 2 D3 D9 D8 D7 D6 D4 D5 D2 Red Red Red Red Red Grn Grn Grn 2 2 2 1 1 1 1 1 REF_LOL LED_IRQ_D LED_IRQ_C LED_IRQ_B LED_IRQ_A LED_CS_CA_D LED_CS_CA_C LED_CS_CA_B LED_CS_CA_A LED_LOL_D LED_LOL_C LED_LOL_B LED_LOL_A 1 2 3 4 4 3 2 1 R150x4 R72 8 7 6 5 R71 R150x4 5 6 7 8 3M unshrouded header: 2380-6121TG Digikey: 2380-6121TG-ND A DUT_PWR C A C A Ferrite C A C A 3 C A C A Rev. 0.6 2 C A C A A C C 10 C A 1 C A 10 C A 16 C DUT Power Si537x-EVB Si537x-EVB 8. Bill of Materials Table 5. Si537x-EVB Bill of Materials Item Qty Reference Part Mfgr Mfr Part Num BOM Digikey Footprint 1 62 C1,C2,C3,C4, C5,C6,C7,C8, C9,C10,C11, C12,C13,C14, C15,C16,C19, C20,C27,C28, C29,C30,C36, C37,C38,C40, C41,C42,C44, C45,C47,C48, C49,C50,C51, C52,C58,C59, C60,C64,C65, C67,C69,C73, C74,C83,C86, C88,C93,C94, C95,C97,C100, C101,C103, C104,C105, C106,C107, C109,C110,C111 100N Venkel C0603X7R160-104KNE 603 2 4 C17,C18,C31,C43 10UF_805 Venkel C0805Y5V6R3106ZN 805 3 24 C21,C22,C23,C24, C25,C26,C32,C33, C34,C35,C39,C46, C54,C55,C56,C57, C61,C62,C63,C72, C75,C76,C82,C84 10NF Venkel C0603X7R160-103KNE 603 5 8 C66,C68,C79,C85, C87,C96,C99,C108 1UF Venkel C0603X7R6R3-105KNE 603 6 3 C70,C89,C90 33UF Venkel TA006TCM336MBR 3528 7 2 C71,C92 33UF Venkel TA0006TCM336MBR 3528 9 1 C91 220UF Kemet T494B227M004AT 399-4631-1-ND SM_C_3528_21 10 4 D1,D2,D4,D5 Grn Panasonic LN1371G P491CT-ND LED_gull 11 9 D3,D6,D7,D8,D9, D10,D11, Red Lumex LN1271RAL P493CT-ND LED_gull D12,D13 12 4 D14,D15,D16,D17 Yel Panasonic LN1471YTR P11125CT-ND LED_gull 13 1 D18 BAT54S Fairchild BAT54S BAT54SFSCTND SOT23 Rev. 0.6 17 Si537x-EVB Table 5. Si537x-EVB Bill of Materials (Continued) Item Qty Reference Part 16 20 J1,J2,J5,J6,J13,J14 SMA_EDGE ,J18,J23,J26,J31,J 34,J35,J46,J48,J55 ,J56,J64,J65,J66,J 67 17 2 J3,J60 Jmpr_3pin 18 1 J4 Phoenix_2_ screw 20 9 J8,J15,J24,J32,J40 , J41,J42,J57,J58 Jmpr_1pin 21 16 J9,J10,J11,J12,J19, SMA_VERT J20,J21,J22,J27,J2 8,J29,J30,J36,J37, J38,J39 23 2 J44,J45 unshrouded _Header 26 1 J50 Jmpr_2pin 27 2 J51,J62 28 1 29 Mfgr Mfr Part Num Johnson 142-0701-801 BOM Digikey Footprint J502-ND SMA_EDGE_ p062 3pin_p1pitch Phoenix MKDSN 1.5/2-5.08 277-1247-ND Phoenix2pinM_ p2pitch 1pin_p1pitch Johnson 142-0701-211 J494-ND SMA_VERT 3M 2380-6121TG 2380-6121TG-ND 28pin thru hole header 10_M_Head er_SMT Samtec HTST-105-01-lm-dv-a J61 USB FCI 61729-0010BLF 609-1039-ND USB_typeB 1 J63 SMT Sullins GZC36SABN-M30 S1033-36-ND 6pin_m_smt 30 6 L1,L2,L3,L4,L5,L7 Ferrite Venkel FBC1206-471H 1206 31 1 L6 Ferrite Steward HI1612X560R-10 1612 32 3 Q1,Q2,Q3 BSS138 On Semi BSS138LT1G 33 14 R1,R12,R13,R29, R30,R31,R32,R34, R36,R37,R38,R49, R61,R77,R87, R90, R23,R62,R85,R92 0 Venkel CR0603-16W-000T 603 35 25 R6,R7,R8,R9,R10, R11,R14,R15,R16, R17,R19,R21,R25, R26,R27,R28,R43, R48,R51,R52,R53, R54,R55,R56,R64 49.9 Venkel CR0603-16W-49R9FT 603 37 4 R33,R42,R65,R76 1K Venkel CR0603-16W-1001FT 603 38 1 R35, R86, R94 100 Venkel CR0603-16W-1000FT 603 18 Rev. 0.6 10pinMdualHea der_p1pitch_smt BSS138LT10SCT -ND SOT23 Si537x-EVB Table 5. Si537x-EVB Bill of Materials (Continued) Item Qty Reference Part Mfgr Mfr Part Num BOM Digikey Footprint 39 13 R39,R41,R45,R46, R57,R59,R67,R69, R70,R75,R78,R84, R88 10k Venkel CR603-16W-1002FT 603 40 7 R40,R44,R47,R63, R74,R80,R81 10 Venkel CR0603-16W-10R0FT 603 41 1 R50 R10x4 Panasonic EXB-38V100JV Y9100CT-ND 1206x4 42 4 R66,R68,R71,R72 R150x4 Panasonic EXB-38V151JV Y9151CT-ND 1206x4 43 1 R73 150 Venkel CR0603-16W-1500FT 603 44 1 R79 113 Venkel CR0603-16W-1130FT 603 45 2 R82,R91 4.99K Venkel CR0603-16W-4991FT 603 46 2 R83,R93 1.5K Venkel CR0603-16W-1501FT 603 48 1 R89 66.5 Venkel CR0603-16W-66R5FT 603 49 1 SW1 NO Mountain Switch 101-0161-EV 51 1 U1 Si537x Silicon Labs Si537x 10x10 mm BGA 52 1 U2 M95040 ST Micro M95040-WMN6P SOIC-8 53 1 U3 TPS76201 TI TPS76201DBVT 296-11013-1-ND SOT23-5 56 1 U6 PCA9306 TI PCA9306DCTR-ND 296-18509-1-ND SM8 57 1 U7 Si530_2.5V PECL Silicon Labs 530EB121M109DG 5x7 mm 59 1 U9 DS2411 Maxim/ Dallas DS2411P TSOC-6 60 2 U10,U11 74LCX541 Fairchild 74LCX541MTC_NL 61 1 U12 XC2C128 Xilinx XC2C128-7VQG100I VQG100 63 1 U14 Si8051F340 Silicon Labs C8051F340-GQ TQFP-48 64 2 U15,U16 SN65220 TI SN65220DBVT 296-9694-1-ND SOT23-6 65 1 U17 FAN1540B Fairchild FAN1540BPMX FAN1540BMPXC T-ND MLP6 66 1 X1 114.285 MH z TXC 7MA1400014 4 spacer SPC Technology 2397 4 screw Richco NSS-4-4-01 1010161(mouser) TC74LCX541FTF CT-ND 4pin Switch TSSOP-20 xtal_3p2by2p5 4 1 C53 10NF Venkel C0603X7R160-103KNE NOPOP 603 8 6 C77,C78,C80,C81, C98,C102 100N Venkel C0603X7R160-104KNE NOPOP 603 Rev. 0.6 19 Si537x-EVB Table 5. Si537x-EVB Bill of Materials (Continued) Item Qty Reference Part Mfgr Mfr Part Num BOM Digikey Footprint Fairchild BAT54S NOPOP BAT54SFSCTND SOT23 14 2 D19,D20 BAT54S 19 5 J7,J16,J17,J25,J33 Jmpr_2pin NOPOP 22 3 J43,J53,J54 Jmpr_4pin NOPOP 4pin_p1pitch 24 2 J47,J52 Jmpr_6pin NOPOP 6pin_p1pitch 25 2 J49,J59 Jmpr_3pin NOPOP 3pin_p1pitch 34 14 R2,R3,R4,R5,R18, R20,R22, 0 ohm Venkel CR0603-16W-000T Note: install R58 for Si5374-EVB, install R60 for Si5375-EVB NOPOP 603 36 1 R24 1K Venkel CR0603-16W-1001FT NOPOP 603 50 8 TP1,TP2,TP3,TP4, TP5,TP6, test_points none none NOPOP Silicon Labs Si5326C-C-GM NOPOP TP7,TP8 54 1 U4 Si5326 55 1 U5 LTC4311 58 1 U8 Si500 Silicon Labs 62 1 U13 XO, 3.2 by 2.5 Pericom 67 1 — heatsink Aavid Thermalloy 20 LinearTech LTC4311ISC6#TRMPBF NOPOP LTC4311CSC6#T RMPBFCT-ND QFN-36 SC70 NOPOP 3x5 mm_6pin FKB420001 NOPOP 3x2 mm 375324B00035G NOPOP 10x10 mm Rev. 0.6 Si537x-EVB 9. Layout Contact Silicon Labs to obtain the Allegro Board file. Rev. 0.6 21 Si537x-EVB DOCUMENT CHANGE LIST Revision 0.2 to Revision 0.3 Various changes to accommodate 1.8 V operation. Revision 0.3 to Revision 0.4 Removed software installation instructions and directed reader to refer to release CD or download from Silicon Labs web site. Revision 0.4 to Revision 0.5 Changed U7 to LVPECL, part number Si530EB121M109G. Installed 100 resistors at R94 and R86. Revision 0.5 to Revision 0.6 Added Si5376. Updated " Description" on page 1. 22 Rev. 0.6 Si537x-EVB NOTES: Rev. 0.6 23 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW Quality Support and Community www.silabs.com/CBPro www.silabs.com/quality community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com