INTEL 82575

Intel®
82575 Gigabit Ethernet Controller
Datasheet v1.00
June 2007
317697-001
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Legal Lines and Disclaimers
Intel may make changes to specifications and product descriptions at any time, without notice.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel
or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
IMPORTANT - PLEASE READ BEFORE INSTALLING OR USING INTEL® PRE-RELEASE PRODUCTS.
Please review the terms at http://www.intel.com/netcomms/prerelease_terms.htm carefully before using any Intel® pre-release product, including any
evaluation, development or reference hardware and/or software product (collectively, “Pre-Release Product”). By using the Pre-Release Product, you
indicate your acceptance of these terms, which constitute the agreement (the “Agreement”) between you and Intel Corporation (“Intel”). In the event
that you do not agree with any of these terms and conditions, do not use or install the Pre-Release Product and promptly return it unused to Intel.
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. See http://www.intel.com/products/processor_number for details.
This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not
finalize a design with this information.
The 82575 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.
Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a HT Technology enabled
chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/
products/ht/Hyperthreading_more.htm for additional information.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.
Intel and Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2005-2007, Intel Corporation. All Rights Reserved.
ii
82575 Gigabit Ethernet Controller Datasheet
Contents
1.0
Introduction .............................................................................................................. 1
1.1
Document Scope ................................................................................................. 1
1.2
Reference Documents .......................................................................................... 1
1.3
Block Diagram .................................................................................................... 3
2.0
Features of the 82575 Gigabit Ethernet Controller ..................................................... 5
2.1
PCI Express Features ........................................................................................... 5
2.2
MAC-Specific Features ......................................................................................... 5
2.3
PHY-Specific Features .......................................................................................... 6
2.4
Host Offloading Features ...................................................................................... 7
2.5
Manageability Features ........................................................................................ 7
2.6
Additional Device Features.................................................................................... 8
2.7
Technology Features............................................................................................ 9
3.0
Signal Descriptions and Pinout List.......................................................................... 10
3.1
Signal Type Definitions....................................................................................... 10
3.2
PCI Express Interface ........................................................................................ 10
3.3
Power Management Signals ................................................................................ 11
3.4
System Management Interface Signals ................................................................. 12
3.5
MDIO Signals.................................................................................................... 12
3.6
SPI EEPROM and FLASH Signals .......................................................................... 13
3.7
LED Signals ...................................................................................................... 13
3.8
Other Signals.................................................................................................... 14
3.9
Crystal Signals .................................................................................................. 14
3.10 PHY Analog Signals............................................................................................ 15
3.11 Serializer/Deserializer Signals ............................................................................. 16
3.12 Test Interface Signals ........................................................................................ 16
3.13 Power Supply Connections.................................................................................. 17
3.13.1 Digital and Analog Supplies ..................................................................... 17
3.13.2 Grounds, Reserved Pins and No Connects .................................................. 17
4.0
Pinout/Signal Name ................................................................................................ 17
5.0
Power Requirements ............................................................................................... 38
5.1
Targeted Absolute Maximum Ratings.................................................................... 38
5.2
Targeted Recommended Operating Conditions....................................................... 38
6.0
Thermal ................................................................................................................... 42
7.0
Electrical Specification............................................................................................. 42
7.1
DC Specifications .............................................................................................. 42
7.2
Resets ............................................................................................................. 46
7.3
Pull-up and Pull-down Specifications and Signals ................................................... 46
7.4
Targeted AC Characteristics ................................................................................ 49
8.0
Crystal Requirements .............................................................................................. 55
9.0
LED Configuration.................................................................................................... 55
10.0 Mechanical Information ........................................................................................... 56
10.1 Targeted Package Information ............................................................................ 56
10.2
Visual Pin Assignments ...................................................................................... 59
iii
82575 Gigabit Ethernet Controller Datasheet
Revision History
iv
Date
Revision
August 2005
0.10
Initial Release
Description
January 2006
0.25
Added general information, updated pins list
July 2006
0.50
Removed information regarding Fast Management Link; added general information
February 2007
0.75
Added measured power values; corrected Visual Pin Assignment Diagrams (RBIAS0_N and
RBIAS1_N corrected to VSS).
June 2007
1.0
Updated classification, changed RMII to NC-SI, updated pin list, updated NC-SI timing specs.
changed LAN_PWR_GOOD to Internal_Power_On_Reset.
82575 Gigabit Ethernet Controller Datasheet
This page intentionally left blank.
v
82575 Gigabit Ethernet Controller Datasheet
vi
82575 Gigabit Ethernet Controller Datasheet
1.0
Introduction
The Intel® 82575 Gigabit Ethernet Controller is a single, compact component with two
fully integrated Gigabit Ethernet Media Access Control (MAC) and physical layer (PHY)
ports. The device uses the PCI Express Base Specification, Rev.1.1RD.
The Intel 82575 provides a standard IEEE 802.3 Ethernet interface for 1000BASE-T,
100BASE-TX, and 10BASE-T applications (802.3z, 802.3u, and 802.3ab). Ports also
contain a Serializer-Deserializer (SERDES) to support 1000Base-SX/LX (optical fiber)
and Gigabit backplane applications. In addition to managing MAC and PHY Ethernet
layer functions, the controller manages PCI Express packet traffic across its
transaction, link, and physical/logical layers. The SERDES can be used in SGMII mode
to connect to external PHY, either on-board or via the SFP connector.
The Intel 82575’s on-board System Management Bus (SMB) ports enable network
manageability implementations required by information technology personnel for
remote control and alerting via the LAN. With SMB, management packets can be routed
to or from a management processor. Enhanced pass-through capabilities also allow
system remote control over standardized interfaces. Also included is a new
manageability interface, NC-SI that supports the DMTF preOS sideband protocol. An
internal management interface called MDIO enables the MAC (and software) to monitor
and control the PHY. Both ports support the Wake on LAN feature.
The 82575 Gigabit Ethernet Controller with PCI Express architecture is designed for
high performance and low memory latency. The device is optimized to connect to a
system Memory Control Hub (MCH) using four PCI Express lanes. Alternatively, the
82575 controller can connect to an I/O Control Hub that has a PCI Express interface.
Wide internal data paths eliminate performance bottlenecks by efficiently handling
large address and data words. Combining a parallel and pipe-lined logic architecture
optimized for Gigabit Ethernet and independent transmit and receive queues, the
82575 controller efficiently handles packets with minimum latency. The 82575
controller includes advanced interrupt handling features, including MSI-X support. The
82575 uses efficient ring buffer descriptor data structures, with up to 64 packet
descriptors cached on chip. A large 48 KByte per port on-chip packet buffer maintains
superior performance. In addition, using hardware acceleration, the controller offloads
tasks from the host, such as TCP/UDP/IP checksum calculations and TCP segmentation.
The 82575 operation can be configured using EEPROM and FLASH; it can be also be
used in EEPROM-less configurations.
The 82575 is packaged in a 25mm X 25mm, 576-pin flip chip ball grid array (FCBGA).
1.1
Document Scope
This document contains targeted datasheet specifications for the 82575 Gigabit
Ethernet Controller, including signal descriptions, DC and AC parameters, packaging
data, and pinout information.
1.2
Reference Documents
This application assumes that the designer is acquainted with high-speed design and
board layout techniques. The following documents provide additional information:
82575 Gigabit Ethernet Controller Design Guide. Intel Corporation.
Intel Ethernet Controllers Timing Device Selection Guide. Intel Corporation.
PCI Express Base Specification, Revision 1.1.
1
82575 Gigabit Ethernet Controller Datasheet
PCI Express Card Electromechanical Specification, Revision 1.0a. PCI Special Interest
Group.
PCI Bus Power Management Interface Specification, Revision 1.1. PCI Special Interest
Group.
IEEE Standard 802.3, 2002 Edition. Institute of Electrical and Electronics Engineers
(IEEE). This version incorporates various IEEE standards previously published
separately.
System Management Bus (SMBus) Specification, SBS Implementers Forum, Ver. 2.0,
August 2000.
INF-8074i Specification for SFP (Small Form factor Pluggable) Transceiver.
2
82575 Gigabit Ethernet Controller Datasheet
1.3
Block Diagram
FLASH
EEPROM
Host
LAN
PCI Express (x4)
Port 0
SerDes/SGMII/SFP
82575
RMII
SerDes/SGMII/SFP
SMB
LAN
Management
LEDs
Figure 1.
SDP
Port 1
JTAG
82575 Gigabit Ethernet Controller Block Diagram
3
82575 Gigabit Ethernet Controller Datasheet
This page intentionally left blank.
4
82575 Gigabit Ethernet Controller Datasheet
2.0
Features of the 82575 Gigabit Ethernet Controller
2.1
PCI Express Features
Features
•
•
•
Bus sharing not required
Low latency path to memory
Relieves congestion for IO devices connected to
ICH
•
Supports Gigabit Ethernet at full wire speed
•
•
Compatible extensions to PCI power
management and ACPI
PE_WAKE_N available for wakeup event
High bandwidth density per pin
•
Less congested board routing
64-bit address support for systems using more
than 4 GB of physical memory
•
Uses x4 PCI Express interface on MCH device
Peak bandwidth 2 GB/s in each direction per
PCI Express lane
PCI Express Power Management
2.2
Benefits
MAC-Specific Features
Features
Benefits
I/O Acceleration Technology2 (IOAT2)
•
Accelerated TCP I/O.
Four optimized transmit and receive queues
•
Network packets handled without waiting or
buffer overflow.
IEEE 802.3x compliant flow control support
with software controllable pause times and
threshold values
•
•
Control over the transmissions of pause frames
through software or hardware triggering
Frame loss reduced from receive overruns
Caches up to 64 packet descriptors (per
queue)
•
Efficient use of PCI Express bandwidth
Separate transmit and receive queues per port
•
Efficient packet prioritization
Programmable host memory receive buffers
(256 Bytes to 16 KBytes) and cache line size
(64 Bytes to 128 Bytes)
•
Efficient use of PCI Express bandwidth
Wide, pipelined internal data path architecture
•
•
Low latency data handling
Superior DMA transfer rate performance
Dual 8 KByte configurable Transmit and
Receive FIFO buffers
•
•
No external FIFO memory requirements
FIFO size adjustable to application
Descriptor ring management hardware for
transmit and receive
•
Simple software programming model
•
Efficient system memory and use of PCI Express
bandwidth
Optimized descriptor fetching and write-back
mechanisms
5
82575 Gigabit Ethernet Controller Datasheet
Features
Mechanism available for reducing interrupts
generated by transmit and receive operations
•
Maximizes system performance and throughput
Support for transmission and reception of
packets up to 9.5 kB
•
Enables jumbo frames
•
Part of the PCI standard, enables sending
interrupt messages to specific CPUs in a multiplecores platform
MSI-X Support
2.3
Benefits
PHY-Specific Features
Features
Benefits
IEEE 802.3x compliant flow control support
with software controllable pause times and
threshold values
Control over the transmissions of pause frames
through software or hardware triggering
Line Length >140m
Reliable operation at greater distances
Operates with worst-case cable
Reliability
Supports carrier extension and packet bursting
(half duplex)
Improves performance
Auto-negotiation with support for Next Page
Improves performance and reliability
PMA loopback capable (No echo cancel)
Facillitates testing/troubleshooting
Frame loss reduced from receive overruns
Advanced Power Management •
•
Low power link up
"Smart Power Down - Link disconnect
Improves power capabilities
Support for limited auto MDIO register init limited number of registers
Improves performance
Fiber/Copper switch support
Ease of design
SERDES Signal Detect and support of non-AN
partner
Smart Speed
Auto crossover for MDI
Smart Power Down
Advanced Cable Diagnostics
2.4
Host Offloading Features
Features
Transmit and receive IP, TCP and UDP
checksum off-loading capabilities
Transmit TCP segmentation
IPv6 Offloading
6
Benefits
•
Lower CPU utilization
•
•
Increased throughput and lower CPU utilization
Large send offload feature (in Microsoft*
Windows* XP) compatible
•
Checksum and segmentation capability extended
to new standard packet type
82575 Gigabit Ethernet Controller Datasheet
Features
Header split replication in receive
Benefits
•
Helps the driver to focus on the relevant part of
the packet without the need to parse it.
•
•
•
•
16 exact matched packets (unicast or multicast)
4096-bit hash filter for multicast frames
Promiscuous (unicast and multicast) transfer
mode support
Optional filtering of invalid frames
IEEE 802.1q VLAN support with VLAN tag
insertion, stripping and packet filtering for up
to 4096 VLAN tags
•
Ability to create multiple virtual LAN segments
Double Vlan
•
Insert in Tx and extract in Rx
Descriptor ring management hardware for
transmit and receive
•
Optimized fetching and write-back mechanisms
for efficient system memory and PCI bandwidth
usage
9.5 kByte jumbo frame support
•
High throughput for large data transfers on
networks supporting jumbo frames
Receive Side Scaling (RSS)
•
Multiple Rx queues
•
Virtualization environment. In this environment,
packets dedicated to different virtual machines
can be routed to different queues, thus easing
the routing of these packets to the target
machine.
•
The IO device activates a pre-fetch engine in the
CPU that loads the data into the CPU cache ahead
of time, before use, eliminating cache misses and
reducing CPU load.
Advanced packet filtering
VMDq
Direct Cache Access (DCA)
Fragmented UDP checksum offload for packet
reassembly
2.5
•
Manageability Features
Features
Benefits
Advance Pass Through-compatible
management packet Tx/Rx support
ASF 1.0 and Alert on LAN 2.0
Both ports support Wake on LAN (WoL)
SMBus port
Network management flexibility
NC-SI high-bandwidth interface
Manageability DMTF preOS sideband protocol
support
Promotes customized designs
On-board microcontroller
Allows packets routing to and from either LAN
port and a server management processor
Preboot eXecution Environment (PXE) Flash
interface support (32-bit and 64-bit)
Local Flash interface for PXE image
iSCSI Boot
Network Management Feature
7
82575 Gigabit Ethernet Controller Datasheet
Features
Compliance with PCI Power Management 1.1
and ACPI 2.0 register set compliant including:
•
•
2.6
D0 and D3 power states
Network Device Class Power Management
Specification 1.1
Benefits
PCI power management capability
requirements for PC and embedded
applications
SNMP and RMON statistic counters
Easy system monitoring with industry standard
consoles
SDG 3.0, WfM 3.0, and PC2001 compliance
Remote network management capabilities
through DMI 2.0 and SNMP software
Watchdog Timer
Used to give an indication to the manageability
firmware or external devices that the 82575 or
the driver is not functioning.
SGMII interface for embedded applications
with an I2C or MDC/MDIO control interface.
Ease of embedded designs
Additional Device Features
Features
Two complete Gigabit Ethernet connections in
a single device
Benefits
•
•
•
•
•
•
Integrated SERDES
•
Supports backplane and fiber applications as well
as copper-based Gigabit via the SGMII interface
Four activity and link indication outputs (per
port) that directly drive LEDs
•
Link and activity indications (10, 100, and 1000
Mbps) on each port
•
Software definable function (speed, link, and
activity) and blinking allowing flexible LED
implementations
Internal PLL for clock generation can use a 25
MHz crystal
•
Lower component count and system cost
JTAG (IEEE 1149.1) Test Access Port built in
silicon
•
•
Simplified testing using boundary scan
Supports the IDCODE instruction
Four software definable pins per port
•
Additional flexibility for LEDs or other low speed
I/O devices
Provides loopback capabilities
•
Validates silicon integrity
Four-wire SPI EEPROM interface
•
Standard
Programmable LED functionality
8
Inherent dual port teaming ability
High availability using one port for failover
Higher throughput than single Gigabit Ethernet
port
Lower latency due to one electrical load on the
bus
Saves critical board space
Reduced multi-port Gigabit Ethernet costs
82575 Gigabit Ethernet Controller Datasheet
2.7
Technology Features
Features
576-pin Flip-Chip Ball Grid Array (FC-BGA) package
Benefits
•
25 mm X 25 mm
•
Simple thermal design
•
Conditions: FF materials, nominal
voltage, 115 °C
Minimizes impact of incorporating
Gigabit instead of Fast Ethernet.
Operating temperature:
1000BASE-T, 0 °C to 55 °C*
1000BASE-SX/LX (or SERDES backplane), 0 °C to 70 °C
Storage temperature 65 °C to 140 °C
Typical targeted power dissipation:
2.43 W @ D0 1000 Mbps
0.79 W @ D3cold 100 Mbps (wakeup enabled)
•
0.29 W @ D3cold (wakeup disabled)
Maxmum Payload Size: 128 and 256
•
Max number of transactions (TLP) supported on PCIe:
Four TX DMA requests + 1 TX descriptor + 1 RX
descriptor
•
* For information about operating the 82575 outside of this range, please refer to the 82575 Thermal
Management Application Note.
9
82575 Gigabit Ethernet Controller Datasheet
3.0
Signal Descriptions and Pinout List
The targeted signal names are subject to change without notice. Verify with your local
Intel sales office that you have the latest information before finalizing a design.
3.1
Signal Type Definitions
The signals of the 82575 controller are electrically defined as follows:
Name
Definition
DC specification
Input
I
See Table 9
Standard input only digital signal.
Output
O
See Table 9
Standard output only digital signal.
Tri-state
TS
Bi-directional three-state digital input/
output signal.
See Table 9
Open Drain
Wired-OR with other agents.
The signaling agent asserts the OD
signal, but the signal is returned to the
inactive state by a weak pull-up
resistor. The pull-up resistor may
require two or three clock periods to
fully restore the signal to the deasserted state.
OD
See Table 10
Analog
A
See Table 10
PCI Express*, SERDES, or PHY analog
signal.
Power
P
3.2
Power connection, voltage reference, or
other reference connection.
See Table 10
PCI Express Interface
Symbol
Type
Name and Function
PER_0_N
PER_0_P
PER_1_N
PER_1_P
PER_2_N
PER_2_P
PER_3_N
PER_3_P
10
High Speed Serial Receive Data
A(I)
These signals connect to corresponding PETn and PETp signals on a
system motherboard or a PCI Express connector. Series AC coupling
capacitors are required at the transmitter end. The PCI Express
differential inputs are clocked at 2.5 Gb/s.
82575 Gigabit Ethernet Controller Datasheet
Symbol
Type
Name and Function
PET_0_N
PET_0_P
High Speed Serial Transmit Data
PET_1_N
PET_1_P
PET_2_N
A(0)
PET_2_P
These signals connect to corresponding PERn and PERp signals on a
system motherboard or a PCI Express connector. Series AC coupling
capacitors are required at the 82575 controller end. The PCI Express
differential outputs are clocked at 2.5 Gb/s.
PET_3_N
PET_3_P
High Speed Serial Impedance Compensation
PE_RCOMP
PE_CLK_P
PE_CLK_N
A
Connect the recommended resistor value 1.4K Ω from this ball to
ground.
100 MHz Differential Clock for the PCI Express Interface
A
The reference clock is furnished by the system and has a 300 ppm
frequency tolerance.
PCI Express Reset
PE_RST_N
When the signal is low, all PCI Express functions are held in reset.
When the signal is high, it denotes that main power is available to the
82575 controller and the reference clock is running.
I
In systems with a PCI Express add-in card, this signal routes to the
connector.
Wake
PE_WAKE_N
3.3
OD
The device drives this signal low when it receives a wake-up event and
either the PME Enable bit in the Power Management Control/Status
Register or the Advanced Power Management Enable (APME) bit of the
Wake-up Control Register (WUC) is 1b.
Power Management Signals
Symbol
Type
Name and Function
Auxiliary Power Present.
AUX_PWR
I
If the Auxiliary Power signal is high, then auxiliary power is present
and the 82575device should support the D3cold power state.
LAN Disables 0 and 1
LAN0_DIS_N
LAN1_DIS_N
I
DEV_OFF_N
I
MAIN_PWR_OK
I
Disables individual Ethernet ports. State is latched upon a rising edge
of PERST_N or a PCI Express reset event. This pin has an internal
pull-up resistor.
Device Off
Asynchronously disables Ethernet controller.
Main Power OK
Indicates that platform main power is up. Must be connected
externally.
11
82575 Gigabit Ethernet Controller Datasheet
3.4
System Management Interface Signals
Symbol
Type
Name and Function
SMB Clock
SMBCLK
OD
SMBD
OD
The SMB Clock signal is an open drain signals for the serial SMB
interface.
SMB Data
The SMB Data signal is an open drain signal for the serial SMB
interface.
SMB Alert
OD
NCSI_CLK_IN
I
NCSI Reference Clock Input. Synchronous clock reference for
receive, transmit and control interface. It is a 50MHz clock /- 50
ppm.
NCSI_CLK_OUT
O
NCSI Reference Clock Output. Synchronous clock reference for
receive, transmit and control interface. It is a 50MHz clock /- 50
ppm. Serves as a clock source to the BMC and Zoar (when
configured so).
NCSI_CRS_DV
O
Carrier Sense / Receive Data Valid
O
Receive Data. Data signals from the device to the BMC
I
Transmit Enable
I
Transmit Data. Data signals from BMC to the device
NCSI_RXD[1]
NCSI_RXD[0]
NCSI_TX_EN
NCSI_TXD[1]
NCSI_TXD[0]
3.5
MDIO Signals
Symbol
MDC
MDIO
12
The SMB Alert signal is an open drain signal for serial SMB Port A. In
ASF mode, this signal acts as a power good input. It acts as an alert
input in 82559 compatible mode.
SMBALRT_N
Type
Name and Function
I
Management Data Clock. Used by the PHY as a clock timing
reference for information transfer on the MDIO signal. The MDC is
not required to be a continuous signal and can be frozen when no
management data is transferred. The MDC signal has a maximum
operating frequency of 2.5MHz.
I/O
Management Data I/O. This internal signaling between the MAC and
PHY logically represents a bi-directional data signal used to transfer
control information and status to and from the PHY (to read and
write the PHY management registers ). Asserting and interpreting
value(s) on this interface requires knowledge of the special MDIO
protocol to avoid possible internal signal contention or
miscommunication to/from the PHY
82575 Gigabit Ethernet Controller Datasheet
3.6
SPI EEPROM and FLASH Signals
Symbol
Type
Name and Function
EEPROM Data Input
EE_DI
TS
EE_DO
I
EE_CS_N
TS
EE_SK
TS
FLSH_CE_N
TS
FLSH_SCK
TS
FLSH_SI
TS
FLSH_SO
I
The EEPROM Data Input pin is used for output to the SPI EEPROM
memory device.
EEPROM Data Output
The EEPROM Data Output pin is used for input from the SPI EEPROM
memory device. The EE_DO includes an internal pull-up resistor.
EEPROM Chip Select
The EEPROM Chip Select signal is used to enable the device.
EEPROM Serial Clock
The EEPROM Shift Clock provides the clock rate for the SPI EEPROM
interface, which is approximately 2 MHz.
FLASH Chip Enable Output.
Used to enable FLASH device.
FLASH Serial Clock Output.
FLASH Serial Data Input.
This pin is an output to the memory device.
FLASH Serial Data Output
This pin is an input from the memory device.
3.7
LED Signals
Note:
The LED signals are push-pull (active-high) outputs. They are fully programmable
through the EEPROM interface
Symbol
Type
Name and Function
LED0_0
O
LED0_0. Programmable LED output for Port A. As the Link LED, it
indicates link connectivity on Port A.
LED0_1
O
LED0_1. Programmable LED output for Port A. As the Activity LED, it
flashes to indicate receive activity on Port A for packets destined for this
node.
LED0_2
O
LED0_3
O
LED1_0
O
LED0_2
Programmable LED output for Port A. As the Link 100 LED, it indicates
link at 100 Mbps for Port A.
LED0_3
Programmable LED output for Port A. As the Link 1000 LED, it indicates
link at 1000 Mbps for Port A.
LED1_0.
Programmable LED output for Port B. As the Link LED, it indicates link
connectivity on Port B.
13
82575 Gigabit Ethernet Controller Datasheet
Symbol
Type
Name and Function
LED1_1
LED1_1
O
LED1_2
O
LED1_3
O
Programmable LED output for Port B. As the Activity LED, it flashes to
indicate receive activity on Port B for packets destined for this node.
LED1_2
Programmable LED output for Port B. As the Link 100 LED, it indicates
link at 100 Mbps for Port B.
LED1_3
3.8
Programmable LED output for Port B. As the Link 1000 LED, it indicates
link at 1000 Mbps for Port B.
Other Signals
Symbol
Type
Name and Function
SDP0_0
SDP0_1
Software Defined Pin (SDP)
SDP0_2
SDP0_3
SDP1_0
TS
SDP1_1
The Software Defined Pins are programmable with respect to input and
output capability. These pins also can optionally be configured as interrupt
inputs. SDP signals default to inputs upon power-up, but can be configured
differently by the EEPROM.
SDP1_2
SDP1_3
3.9
Crystal Signals
Symbol
Type
Name and Function
Crystal One
XTAL1
AI
XTAL2
AO
The Crystal One pin is a 25 MHz input signal. It should be connected to a
parallel resonant crystal with a frequency tolerance of 30 ppm or better. The
other end of the crystal should be connected to XTAL2.
Crystal Two
14
Crystal Two is the output of an internal oscillator circuit used to drive a
crystal into oscillation.
82575 Gigabit Ethernet Controller Datasheet
3.10
PHY Analog Signals
Symbol
Type
RBIAS0_P/RBIAS1_P
A
Name and Function
Compensation Reference Resistor.
A 1.4 KΩ, 1% tolerance resistor should be used. RBIAS_N
should also be connected to ground (VSS).
Media Dependent Interface [0]
MDI0_P_0
MDI0_N_0
MDI1_P_0
A
MDI1_N_0
1000BASE-T: In MDI configuration, these correspond to
BI_DA+/-, and in MDI-X configuration, MDIp0/MDIn0
corresponds to BI_DB+/-.
100BASE-TX: In MDI configuration, MDIp0/MDIn0 is used for
the transmit pair, and in MDI-X configuration, MDIp0/MDIn0 is
used for the receive pair.
10BASE-T: In MDI configuration, MDIAp0/MDI_MINUS0_0 is
used for the transmit pair, and in MDI-X configuration, MDIp0/
MDIn0 is used for the receive pair.
Media Dependent Interface [1]
MDI0_P_1
MDI0_N_1
MDI1_P_1
A
MDI1_N_1
1000BASE-T: In MDI configuration, MDIp1/MDIn1
corresponds to BI_DB+/-, and in MDI-X configuration, MDIp1/
MDIn1 corresponds to BI_DA+/-.
100BASE-TX: In MDI configuration, MDIp1/MDIn1 is used for
the receive pair, and in MDI-X configuration, MDIp1/MDIn1 is
used for the transit pair.
10BASE-T: In MDI configuration, MDIp1/MDIn1 is used for the
receive pair, and in MDI-X configuration, MDIp1/MDIn1 is used
for the transit pair.
Media Dependent Interface [2]
MDI0_P_2
MDI0_N_2
MDI1_P_2
A
MDI1_N_2
1000BASE-T: In MDI configuration, MDIp2/MDIn2
corresponds to BI_DC+/-, and in MDI-X configuration, MDIp2/
MDIn2 corresponds to BI_DD+/-.
100BASE-TX: Unused.
10BASE-T: Unused.
Media Dependent Interface [3]
MDI0_P_3
MDI0_N_3
MDI1_P_3
MDI1_N_3
A
1000BASE-T: In MDI configuration, MDIp3/MDIn3
corresponds to BI_DD+/-, and in MDI-X configuration, MDIp3/
MDIn3 corresponds to BI_DC+/-.
100BASE-TX: Unused.
10BASE-T: Unused.
15
82575 Gigabit Ethernet Controller Datasheet
3.11
Serializer/Deserializer Signals
Symbol
Type
Name and Function
SERDES Receive Pairs A and B
SRDSI_0_P
SRDSI_1_N
These signals make the differential receive pair for the 1.25 GHz serial
interface. For serializer/deserializer operation, the inputs should be
coupled to ECL voltage levels. If the SERDES interface is not used,
these pins should not be connected.
SRDSO_0_P
SERDES Transmit Pairs A and B
SRDSI_0_N
SRDSI_1_P
SRDSO_0_N
SRDSO_1_P
AI
AO
SRDSO_1_N
These signals make the differential transmit pair for the 1.25 GHz
serial interface. For serializer/deserializer operation, the outputs drive
the LVPECL voltage levels. If the SERDES interface is not used, these
pins should not be connected.
Signal Detects A and B
These pins indicate whether the SERDES signals (connected to the
1.25 GHz serial interface) have been detected by the optical
transceivers. If the SERDES interface is not used with copper media,
these can be left with no connection (NC). If the SERDES interface is
not used with fiber media, the SIG_DET inputs should be tied high to
VCC.
SRDS0_SIG_DET/
SRDS1_SIG_DET
I
SER_RCOMP
A
SERDES Impedance Compensation. Connect the recommended
resistor (1.4K Ω) from this ball to ground.
SFP0_I2C_CLK
O
Port 0 SFP I2C clock. Connects to Mod-Def1 input of SFP. Can also be
used as MDC pin.
SFP0_I2C_DATA
TS/
OD
Port 0 SFP I2C data. Connects to Mod-Def2 pin of SFP. Can also be
used as MDIO pin
SFP1_I2C_CLK
O
Port 1 SFP I2C clock. Connects to Mod-Def1 input of SFP. Can also be
used as MDC pin.
SFP1_I2C_DATA
TS/
OD
Port 1 SFP I2C data. Connects to Mod-Def2 pin of SFP. Can also be
used as MDIO pin
3.12
Test Interface Signals
Note:
Pull-up resistors are needed on these signals as shown in the reference schematic.
Symbol
JTCK
16
Type
I
Name and Function
JTAG Test Access Port Clock
JTDI
I
JTAG Test Access Port Test Data In
JTDO
OD
JTAG Test Access Port Test Data Out
JTMS
I
JTAG Test Access Port Mode Select
82575 Gigabit Ethernet Controller Datasheet
3.13
Power Supply Connections
3.13.1
Digital and Analog Supplies
Symbol
Type
VCC3P3
P
VCC1P8
P
VCC1P0
P
Name and Function
3.3 V Digital Power Supply.
For I/O circuits.
1.8 V Analog Power Supply
For PHY analog, PHY I/O, PCI Express analog, and Phase Lock Loop circuits,
Connect all 1.8 V pins to a single power supply.
1.0 V Digital Power Supply
3.13.2
For core digital, PHY digital, PCI Express digital and clock circuits, connect
all 1.0 V pins to a single power supply.
Grounds, Reserved Pins and No Connects
Symbol
VSS
Type
P
Name and Function
Ground.
Reserved, VCC
These pins are reserved by Intel and may have factory test functions. For
normal operation, connect them directly to VCC. Do not connect them to
pull-up resistors.
RSVD_VCC
Reserved, Ground
RSVD_GND
P
These pins are reserved by Intel and may have factory test functions. For
normal operation, connect them directly to ground. Do not connect them to
pull-down resistors.
Reserved, No Connect
RSVD_ NC
P
NC
P
These pins are reserved by Intel and may have factory test functions. For
normal operation, do not connect any circuitry to these pins. Do not connect
pull-up or pull-down resistors.
No Connect
This pin is not connected internally.
4.0
Pinout/Signal Name
Table 1.
Pinout
Name
Pin
PE_CLK_P
N2
PE_CLK_N
N1
17
82575 Gigabit Ethernet Controller Datasheet
18
PET_0_P
D2
PET_0_N
D1
PET_1_P
H2
PET_1_N
H1
PET_2_P
R2
PET_2_N
R1
PET_3_P
W2
PET_3_N
W1
PER_0_P
F2
PER_0_N
F1
PER_1_P
K2
PER_1_N
K1
PER_2_P
U2
PER_2_N
U1
PER_3_P
AA2
PER_3_N
AA1
PE_WAKE_N
AC20
PE_RST_N
AC9
PE_RCOMP
L1
RSVDM3_NC
M3
RSVDM2_NC
M2
FLSH_SI
AC14
FLSH_SO
AD14
FLSH_SCK
AD15
FLSH_CE_N
AC15
82575 Gigabit Ethernet Controller Datasheet
EE_DI
A21
EE_DO
A20
EE_SK
B20
EE_CS_N
B21
SMBD
AD21
SMBCLK
AC21
SMBALRT_N
AD20
RSVDAD17_NC
AD17
RSVDAC17_NC
AC17
RSVDAC16_NC
AC16
RSVDAD16_NC
AD16
NCSI_CLK_IN
B5
NCSI_CLK_OUT
B4
NCSI_CRS_DV
A4
NCSI_RXD_1
A6
NCSI_RXD_0
B7
NCSI_TX_EN
B6
NCSI_TXD_1
A7
NCSI_TXD_0
B8
SDP0_0
A16
SDP0_1
B16
SDP0_2
B17
19
82575 Gigabit Ethernet Controller Datasheet
20
SDP0_3
B15
SDP1_0
AD10
SDP1_1
A12
SDP1_2
A13
SDP1_3
AC10
RSVDAB19_NC
AB19
RSVDAB18_NC
AB18
RSVDAD9_3P3
AD9
MAIN_PWR_OK
AD4
DEV_OFF_N
B9
RSVDL14_1P0
L14
RSVDP14_1P0
P14
XTAL1
N23
XTAL2
N24
SRDSI_0_P
J23
SRDSI_0_N
J24
SRDSO_0_P
K23
SRDSO_0_N
K24
SRDS0_SIG_DET
A9
SRDSI_1_P
T23
SRDSI_1_N
T24
SRDSO_1_P
R23
SRDSO_1_N
R24
82575 Gigabit Ethernet Controller Datasheet
SRDS1_SIG_DET
A10
SER_RCOMP
L22
RSVDM23_NC
M23
RSVDM24_NC
M24
SFP0_I2C_CLK/
MDC0
AD19
SFP0_I2C_DATA/
MDIO0
AD18
SFP1_I2C_CLK/
MDC1
AC19
SFP1_I2C_DATA/
MDIO1
AC18
LED0_0
A19
LED0_1
B19
LED0_2
B18
LED0_3
A18
LED1_0
AD13
LED1_1
AC11
LED1_2
AC13
LED1_3
AC12
MDI0_P_0
C24
MDI0_N_0
C23
MDI0_P_1
D24
MDI0_N_1
D23
MDI0_P_2
F24
MDI0_N_2
F23
MDI0_P_3
G24
21
82575 Gigabit Ethernet Controller Datasheet
22
MDI0_N_3
G23
RBIAS0_P
E22
VSS
F22
IEEE_TEST0_P
A22
IEEE_TEST0_N
B22
MDI1_P_0
AB24
MDI1_N_0
AB23
MDI1_P_1
AA24
MDI1_N_1
AA23
MDI1_P_2
W24
MDI1_N_2
W23
MDI1_P_3
V24
MDI1_N_3
V23
RBIAS1_P
Y22
VSS
W22
IEEE_TEST1_P
AD22
IEEE_TEST1_N
AC22
RSVDAD8_VSS
AD8
JTCK
AC6
JTDI
AD7
JTDO
AC8
JTMS
AC7
RSVDAC5_NC
AC5
AUX_PWR
B14
LAN1_DIS_N
A15
82575 Gigabit Ethernet Controller Datasheet
RSVDB12_NC
B12
LAN0_DIS_N
B13
RSVDA8_3P3
A8
RSVDA11_3P3
A11
RSVDB10_3P3
B10
RSVDB11_3P3
B11
RSVDA14_VSS
A14
NCB3
B3
NCAC3
AC3
NCAD3
AD3
VCC3P3
AD6
VCC3P3
AD12
VCC3P3
A5
VCC3P3
A17
VCC1P8
P5
VCC1P8
P4
VCC1P8
N9
VCC1P8
N8
VCC1P8
N5
VCC1P8
N4
VCC1P8
M9
VCC1P8
M8
VCC1P8
M5
VCC1P8
M4
VCC1P8
L9
VCC1P8
L8
VCC1P8
L5
VCC1P8
L4
VCC1P8
L15
VCC1P8
K15
23
82575 Gigabit Ethernet Controller Datasheet
24
VCC1P8
J15
VCC1P8
H15
VCC1P8
G15
VCC1P8
E20
VCC1P8
E19
VCC1P8
D20
VCC1P8
D19
VCC1P8
Y20
VCC1P8
Y19
VCC1P8
V15
VCC1P8
U15
VCC1P8
T15
VCC1P8
R15
VCC1P8
P15
VCC1P8
AA20
VCC1P8
AA19
VCC1P8
N21
VCC1P8
N15
VCC1P8
M21
VCC1P8
M15
VCC1P8
P9
VCC1P8
P8
VCC1P0
R14
VCC1P0
R13
VCC1P0
R12
VCC1P0
R11
VCC1P0
P13
VCC1P0
P12
VCC1P0
L13
VCC1P0
L12
VCC1P0
K14
VCC1P0
K13
82575 Gigabit Ethernet Controller Datasheet
VCC1P0
K12
VCC1P0
K11
VCC1P0
V5
VCC1P0
V4
VCC1P0
U5
VCC1P0
U4
VCC1P0
P11
VCC1P0
N11
VCC1P0
M11
VCC1P0
L11
VCC1P0
H5
VCC1P0
H4
VCC1P0
G5
VCC1P0
G4
VCC1P0
J21
VCC1P0
J20
VCC1P0
J18
VCC1P0
J17
VCC1P0
L21
VCC1P0
L20
VCC1P0
L18
VCC1P0
L17
VCC1P0
K21
VCC1P0
K20
VCC1P0
K18
VCC1P0
K17
VCC1P0
T21
VCC1P0
T20
VCC1P0
T18
VCC1P0
T17
VCC1P0
P21
VCC1P0
P20
VCC1P0
P18
25
82575 Gigabit Ethernet Controller Datasheet
26
VCC1P0
P17
VCC1P0
R21
VCC1P0
R20
VCC1P0
R18
VCC1P0
R17
VSS
Y9
VSS
Y8
VSS
Y7
VSS
Y6
VSS
Y15
VSS
Y14
VSS
Y13
VSS
Y12
VSS
Y11
VSS
Y10
VSS
W9
VSS
W8
VSS
W7
VSS
W22
VSS
W14
VSS
W13
VSS
W12
VSS
W11
VSS
W10
VSS
V9
VSS
V8
VSS
V14
VSS
V13
VSS
V12
VSS
V11
VSS
V10
VSS
U9
82575 Gigabit Ethernet Controller Datasheet
VSS
U14
VSS
U13
VSS
U12
VSS
U11
VSS
U10
VSS
T14
VSS
T13
VSS
T12
VSS
T11
VSS
N14
VSS
N13
VSS
N12
VSS
M14
VSS
M13
VSS
M12
VSS
J14
VSS
J13
VSS
J12
VSS
J11
VSS
H9
VSS
H14
VSS
H13
VSS
H12
VSS
H11
VSS
H10
VSS
G9
VSS
G8
VSS
G14
VSS
G13
VSS
G12
VSS
G11
VSS
G10
VSS
F22
27
82575 Gigabit Ethernet Controller Datasheet
28
VSS
F9
VSS
F8
VSS
F7
VSS
F14
VSS
F13
VSS
F12
VSS
F11
VSS
F10
VSS
E9
VSS
E8
VSS
E7
VSS
E6
VSS
E15
VSS
E14
VSS
E13
VSS
E12
VSS
E11
VSS
E10
VSS
D9
VSS
D8
VSS
D7
VSS
D6
VSS
D5
VSS
D16
VSS
D15
VSS
D14
VSS
D13
VSS
D12
VSS
D11
VSS
D10
VSS
C9
VSS
C8
VSS
C7
82575 Gigabit Ethernet Controller Datasheet
VSS
C6
VSS
C5
VSS
C4
VSS
C17
VSS
C16
VSS
C15
VSS
C14
VSS
C13
VSS
C12
VSS
C11
VSS
C10
VSS
B2
VSS
B1
VSS
AD5
VSS
AD2
VSS
AD11
VSS
AD1
VSS
AC4
VSS
AC2
VSS
AC1
VSS
AB9
VSS
AB8
VSS
AB7
VSS
AB6
VSS
AB5
VSS
AB4
VSS
AB17
VSS
AB16
VSS
AB15
VSS
AB14
VSS
AB13
VSS
AB12
VSS
AB11
29
82575 Gigabit Ethernet Controller Datasheet
30
VSS
AB10
VSS
AA9
VSS
AA8
VSS
AA7
VSS
AA6
VSS
AA5
VSS
AA16
VSS
AA15
VSS
AA14
VSS
AA13
VSS
AA12
VSS
AA11
VSS
AA10
VSS
A3
VSS
A2
VSS
A1
VSS
Y24
VSS
Y23
VSS
Y21
VSS
Y18
VSS
Y17
VSS
Y16
VSS
W21
VSS
W20
VSS
W19
VSS
W18
VSS
W17
VSS
W16
VSS
W15
VSS
V22
VSS
V21
VSS
V20
VSS
V19
82575 Gigabit Ethernet Controller Datasheet
VSS
V18
VSS
V17
VSS
V16
VSS
U24
VSS
U23
VSS
U22
VSS
U21
VSS
U20
VSS
U19
VSS
U18
VSS
U17
VSS
U16
VSS
T22
VSS
T19
VSS
T16
VSS
R22
VSS
R19
VSS
R16
VSS
P24
VSS
P23
VSS
P22
VSS
P19
VSS
P16
VSS
N22
VSS
N20
VSS
N19
VSS
N18
VSS
N17
VSS
N16
VSS
M22
VSS
M20
VSS
M19
VSS
M18
31
82575 Gigabit Ethernet Controller Datasheet
32
VSS
M17
VSS
M16
VSS
L24
VSS
L23
VSS
L19
VSS
L16
VSS
K22
VSS
K19
VSS
K16
VSS
J22
VSS
J19
VSS
J16
VSS
H24
VSS
H23
VSS
H22
VSS
H21
VSS
H20
VSS
H19
VSS
H18
VSS
H17
VSS
H16
VSS
G22
VSS
G21
VSS
G20
VSS
G19
VSS
G18
VSS
G17
VSS
G16
VSS
F21
VSS
F20
VSS
F19
VSS
F18
VSS
F17
82575 Gigabit Ethernet Controller Datasheet
VSS
F16
VSS
F15
VSS
E24
VSS
E23
VSS
E21
VSS
E18
VSS
E17
VSS
E16
VSS
D22
VSS
D21
VSS
D18
VSS
D17
VSS
C22
VSS
C21
VSS
C20
VSS
C19
VSS
C18
VSS
B24
VSS
B23
VSS
AD24
VSS
AD23
VSS
AC24
VSS
AC23
VSS
AB22
VSS
AB21
VSS
AB20
VSS
AA22
VSS
AA21
VSS
AA18
VSS
AA17
VSS
A24
VSS
A23
VSS
Y5
33
82575 Gigabit Ethernet Controller Datasheet
34
VSS
Y4
VSS
Y3
VSS
Y2
VSS
Y1
VSS
W6
VSS
W5
VSS
W4
VSS
W3
VSS
V7
VSS
V6
VSS
V3
VSS
V2
VSS
V1
VSS
U8
VSS
U7
VSS
U6
VSS
U3
VSS
T9
VSS
T8
VSS
T7
VSS
T6
VSS
T5
VSS
T4
VSS
T3
VSS
T2
VSS
T10
VSS
T1
VSS
R9
VSS
R8
VSS
R7
VSS
R6
VSS
R5
VSS
R4
82575 Gigabit Ethernet Controller Datasheet
VSS
R3
VSS
R10
VSS
P7
VSS
P6
VSS
P3
VSS
P2
VSS
P10
VSS
P1
VSS
N7
VSS
N6
VSS
N3
VSS
N10
VSS
M7
VSS
M6
VSS
M10
VSS
M1
VSS
L7
VSS
L6
VSS
L3
VSS
L2
VSS
L10
VSS
K9
VSS
K8
VSS
K7
VSS
K6
VSS
K5
VSS
K4
VSS
K3
VSS
K10
VSS
J9
VSS
J8
VSS
J7
VSS
J6
35
82575 Gigabit Ethernet Controller Datasheet
36
VSS
J5
VSS
J4
VSS
J3
VSS
J2
VSS
J10
VSS
J1
VSS
H8
VSS
H7
VSS
H6
VSS
H3
VSS
G7
VSS
G6
VSS
G3
VSS
G2
VSS
G1
VSS
F6
VSS
F5
VSS
F4
VSS
F3
VSS
E5
VSS
E4
VSS
E3
VSS
E2
VSS
E1
VSS
D4
VSS
D3
VSS
C3
VSS
C2
VSS
C1
VSS
AB3
VSS
AB2
VSS
AB1
VSS
AA4
82575 Gigabit Ethernet Controller Datasheet
VSS
AA3
37
82575 Gigabit Ethernet Controller Datasheet
This page intentionally left blank.
38
82575 Gigabit Ethernet Controller Datasheet
5.0
Power Requirements
5.1
Targeted Absolute Maximum Ratings
Table 2.
Absolute Maximum Ratings1
Symbol
Parameter
Min
Max
Unit
VCC(3.3)
DC supply voltage on 3.3 V
pins with respect to VSS
VSS - 0.5
4.6
V
VCC(1.8)
DC supply voltage on 1.8 V
pins with respect to VSS2
VSS - 0.3
2.5
V
VCC(1.0)
DC supply voltage on 1.0 V
pins with respect to VSSb
VSS - 0.2
1.7
V
3.3 V I/O Voltage
VSS - 0.5
4.6
1.8 V I/O Voltage
VSS - 0.3
2.5
1.0 V I/O Voltage
VSS - 0.2
1.7
IO
DC output current
N/A
TBD
Tstorage
Storage temperature range
-65
140
Tcase
Case temperature under bias
0
85
°C
ESD per MIL_STD-883 Test
Method 3015, Specification
2001V Latchup Over/
Undershoot: 150 mA, 125° C
N/A
VDD overstress:
VDD(3.3) * (7.2
V)
V
VI / V O
V
mA
°C
1. Maximum ratings are referenced to ground (VSS). Permanent device damage is likely to occur if the ratings
in this table are exceeded for an indefinite duration. These values should not be used as the limits for normal
device operations.
2. During normal device power up and power down, the 1.8 V and 1.0 V supplies must not ramp before the 3.3
V supply.
5.2
Targeted Recommended Operating Conditions
5.2.1
General Operating Conditions
Table 3.
Recommended Operating Conditions 1
Symbol
Parameter
Min
Max
Unit
VCC(3.3)
DC supply voltage on 3.3 V pins
3.0
3.6
V
VCC(1.8)
DC supply voltage on 1.8 V pins
1.71
1.89
V
VCC(1.0)
DC supply voltage on 1.0 V pins
0.95
1.05
V
tR / tF
Input rise/fall time (normal
input)
0
200
ns
Ta
Operating temperature range
(ambient)
0
55
°C
TJ
Junction temperature
N/A
≤110
°C
1. Sustained operation of the device at conditions exceeding these values, even if they are within the absolute
maximum rating limits, might result in permanent damage. Device functionality to stated DC and AC limits is
not guaranteed, if conditions exceed recommended operating conditions.
39
82575 Gigabit Ethernet Controller Datasheet
5.2.2
Voltage Ramp and Sequencing Recommendations
The following tables give the specifications for the power supply ramps:
Table 4.
3.3 V Supply Voltage Ramp
Parameter
Description
Min
Max
Unit
Rise Time
Time from 10% to 90% mark
0.1
1001
ms
Monotonicity
Voltage dip allowed in ramp
N/A
0
mV
Slope
Ramp rate at any time between
10% to 90%
24
28800
mV/ms
3
3.6
V
Operational
Range
Voltage range for normal
operating conditions
Ripple
Maximum voltage ripple at a
bandwidth equal to 50 MHz
N/A
70
mVpeak-peak
Ripple
Overshoot time upon ramp2
N/A
0.05
ms
N/A
100
mV
Overshoot
b
Maximum voltage allowed
1. Good design practices achieve voltage ramps to within the regulation bands in approximately 20 ms or less.
2. Excessive overshoot can affect long term reliability.
Table 5.
1.8 V Supply Voltage Ramp
Parameter
Min
Max
Unit
Time from 10% to 90% mark
0.1
1001
ms
Monotonicity
Voltage dip allowed in ramp
N/A
0
mV
Slope
Ramp rate at any time between
10% to 90%
14
60000
mV/ms
Voltage range for normal
operating conditions
1.71
1.89
V
Ripple
Maximum voltage ripple at a
bandwidth equal to 1 MHz
N/A
40
mVpeak-peak
Overshoot
SettlingTime
Overshoot time upon ramp2
N/A
0.1
ms
Overshoot
Maximum voltage allowedb
N/A
100
mV
Rise Time
Operational
Range
Description
1. Good design practices achieve voltage ramps to within the regulation bands in approximately 20 ms or less.
2. Excessive overshoot can affect long term reliability.
Table 6.
1.0 V Supply Voltage Ramp
Parameter
Min
Max
Unit
Rise Time
Time from 10% to 90% mark
0.1
1001
ms
Monotonicity
Voltage dip allowed in ramp
N/A
0
mV
Slope
Ramp rate at any time between
10% to 90%
7.6
33600
mV/ms
0.95
1.05
V
Operational
Range
40
Description
Voltage range for normal
operating conditions
82575 Gigabit Ethernet Controller Datasheet
Ripple
Maximum voltage ripple at a
bandwidth equal to 1 MHz
N/A
40
mVpeak-peak
Overshoot
SettlingTime
Overshoot time upon ramp2
N/A
0.05
ms
Overshoot
Maximum voltage allowedb
N/A
100
mV
1. Good design practices achieve voltage ramps to within the regulation bands in approximately 20 ms or less.
2. Excessive overshoot can affect long term reliability.
Table 7.
Power Supply Sequencing
Symbol
Parameter
Min
Max
Unit
T3 18
VCC3p3 (3.3 V) stable to VCC1p8
stable
0
100
ms
T18 1
VCC1p8 stable to VCC (1.0 V)
stable
0
T3 1
VCC3p3 (3.3 V) stable to VCC
(1.0 V) stable
0
Tm-per, Tm-ppo
3.3 V core to GIO_PWR_GOOD
and MAIN_PWR_OK on
TBD
ms
Tper-m, Tppo-m
GIO_PWR_GOOD, MAIN_PWR_OK
off before 3.3 V core down
0
ms
ms
100
mV
Aux power stable
VCCP (3.3V)
VCC1p8 (1.8V)
VCC/VCC1p0(1V)
T3_18
Tlpgw
T18_1
Power-on Reset
(internal)
T3_1
Tlpg
Main Power stable
Main power stable
GIO_PWR_GOOD
MAIN_PWR_OK
Tm-per
Tper-m
Tm-ppo
Tppo-m
Tlpg-per
Figure 2.
Voltage Power Sequencing Options
To meet the 375 mA inrush current requirements (not including external capacitors)
the ramp time should be 5 ms -100 ms on all power rails. For faster ramps (100 us - 5
ms), expect higher inrush current due to the high charging current of the decoupling
capacitors of 3.3 V, 1.8 V and 1.0 V rails.
41
82575 Gigabit Ethernet Controller Datasheet
This page intentionally left blank.
42
82575 Gigabit Ethernet Controller Datasheet
6.0
Thermal
The 82575 device is specified for operation when the ambient temperature (TA) is
within the range of 0 °C to 55 °C. For information about the thermal characteristics of
the device, including operation outside this range, please refer to the 82575 Thermal
Application Note.
7.0
Electrical Specification
7.1
DC Specifications
Table 8.
DC Characteristics
Symbol
Table 9.
Parameter
Condition
Min
Typ
Max
Units
VCC(3.3)
DC supply voltage on
3.3 V pins
3.00
3.30
3.60
V
VCC(1.8)
DC supply voltage on
1.8 V pins
1.71
1.80
1.89
V
VCC(1.0)
DC supply voltage on
1.0 V pins
0.95
1.00
1.05
V
I/O Characteristics
Symbol
Parameter
Condition1
Min
Typ
Max
Units
VIH
Input high voltage
2.0
N/A
VCC(3.3)
+ 0.5
V
VIL
Input low voltage
-0.5
N/A
0.8
V
IIN
Input current
-15
N/A
15
μA
2.4
N/A
N/A
VIN = VDD(3.3) or
VSS
IOH = -16 mA
VOH
Output high voltage
VCC = Min
IOH = -100 μA
VCC = Min
IOL = 14 mA
VOL
Output low voltage
VCC = Min
IOL = 100 μA
VCC = Min
IOZ
Off-state output
leakage current
VO = VCC or VSS
V
VCC - 0.02
N/A
N/A
N/A
N/A
0.4
N/A
N/A
0.2
-10
N/A
10
V
μA
CIN2
Input capacitance
N/A
2.5
N/A
pF
PU
Internal pull-up
2.6
N/A
5.5
kΩ
VOS
Overshoot
N/A
N/A
4.0
V
VUS
Undershoot
N/A
N/A
-0.4
V
1. The input buffer also has hysteresis > 160 mV.
43
82575 Gigabit Ethernet Controller Datasheet
2. Cin= 2.5 pF(maximum input capacitance), Cout = 16 pF (characterized max output load capacitance per 160
MHz).
Table 10.
Open Drain I/O
Symbol
Parameter
VCC3P3
Condition
Min
Max
Units
Periphery supply
3.0
3.6
V
VCC
Core supply
0.9
1.32
V
Vih
Input High Voltage
2.1
Vil
Input Low Voltage
Ileakage
Output Leakage
Current
Vol
Note
V
0.8
V
0 < Vin < VCC3P3
+/-10
ìA
2
Output Low Voltage
@ Ipullup
0.4
V
4
Ipullup
Current sinking
Vol=0.4V
Cin
Input Pin
Capacitance
7
pF
3
Cout
Output Pin
Capacitance
30
pF
3
Ioffsmb
Input leakage
current
+/-10
ìA
2
Notes:
1.
2.
3.
4.
Table 11.
4
VCC3P3 off or
floating
mA
Applies to SMBD0, SMBCLK0, , SMBALRT _N, PE_WAKE_n, SFP1_I2C_Data, SFP0_I2C_Data pads.
Device meets this whether powered or not.
Characterized, not tested.
OD no high output drive. VOL max=0.4V at 14mA, VOL max=0.2V at 0.1mA
Power Consumption
D0a--Active Link
@10
Mbps
@100
Mbps
@ 1000 Mbps
(copper)
@ 1000 Mbps
(SERDES)
Typ Icc
(mA)1
Typ Icc
(mA)1
Typ Icc
(mA)1
Max Icc
(mA)1
Typ Icc
(mA)1
Max Icc
(mA)2
3.3 V
18
18
18
23
19
19
1.8 V
344
312
841
856
142
203
1.0 V
304
388
856
1184
354
492
Total
Device
Power
0.98 W
1.01 W
2.43 W
2.80 W
0.67 W
0.92 W
1. Typical conditions: operating temperature (TA) = 25 C, nominal voltages
and moderate network traffic at full duplex.
2. Maximum conditions: maximum operating temperature (TJ) values,
typical voltage values and continuous network traffic at full duplex.
44
82575 Gigabit Ethernet Controller Datasheet
D0a--Idle Link
Unplugged--no link
LOs only
Typ Icc (mA)1
3.3 V
18
1.8 V
129
1.0 V
264
Total
Device
Power2
0.56
1. Typical conditions: room
temperature (TA)=25C, nominal
voltages and idle network (no
traffic) at full duplex
2. Known errata on LOs & L1 states
might impact devide power
consumption
D0a--Idle Link
@10Mbps
LOs only
Typ Icc (mA)1
3.3 V
18
1.8 V
140
1.0 V
302
Total
Device
Power2
0.61 W
1. Typical
conditions:
room
temperature (TA)=25C, nominal
voltages and idle network (no
traffic) at full duplex
2. Known errata on LOs & L1 states
might impact devide power
consumption
D0a--Idle Link
@100Mbps
(Copper)
LOs only
Typ Icc (mA)1
3.3 V
18
45
82575 Gigabit Ethernet Controller Datasheet
D0a--Idle Link
@100Mbps
(Copper)
LOs only
Typ Icc (mA)1
1.8 V
837
1.0 V
755
Total
Device
Power2
2.32 W
1. Typical
conditions:
room
temperature
(TA)=25C,
nominal voltages and idle
network (no traffic) at full
duplex
2. Known errata on LOs & L1
states might impact devide
power consumption
D0a--Idle Link
@1000Mbps
(SERDES)
Typ Icc (mA)1
3.3 V
17
1.8 V
142
1.0 V
341
Total
Device
Power2
0.65 W
1. Typical
conditions:
room
temperature
(TA)=25C,
nominal voltages and idle
network (no traffic) at full
duplex
2. Known errata on LOs & L1
states might impact devide
power consumption
D3cold - wake-up
enabled
3.3 V
46
D3coldwake
disabled
@10
Mbps
@100
Mbps
Typ Icc
(mA)
Typ Icc
(mA)
Typ Icc
(mA)
18
18
18
82575 Gigabit Ethernet Controller Datasheet
D3cold - wake-up
enabled
D3coldwake
disabled
@10
Mbps
@100
Mbps
Typ Icc
(mA)
Typ Icc
(mA)
Typ Icc
(mA)
1.8 V
98
269
83
1.0 V
168
249
70
Total
Device
Power
0.40 W
0.79 W
0.29 W
D(r) Uninitialized
Disabled through
DEV_OFF_N
Typ Icc (mA)
7.2
3.3 V
11
1.8 V
179
1.0 V
283
Total Device
Power
0.64
Resets
Power-on Reset (internal): The 82575 has an internal mechanism for sensing the
power pins. Once the power is up and stable, it creates an internal reset, this reset acts
as a master reset of the entire chip. It is level sensitive, and while it is 0, will hold all of
the registers in reset. Power-on Reset is interpreted to be an indication that device
power supplies are all stable. Power-on Reset changes state during system power-up.
In-band PCIe Reset: The 82575 will generate an internal reset in response to a
physical layer message from the PCIe or when the PCIe link halts (entry to Polling or
Detect state). This reset is equivalent to PCI reset in previous (PCI) gigabit LAN
controllers.
Main_Power_Good: Used by the device to detect the D3Cold condition and activate
part of the power saving scheme. Also used to change the state of the ASF
manageability firmware.
47
82575 Gigabit Ethernet Controller Datasheet
7.3
Pull-up and Pull-down Specifications and Signals
Table 12.
Internal and External Pull-up and Pull-down Values
PU (Internal)
Min
Nominal
Max
Units
2.7K
5K
8.6K
Ω
PU (External,
recommende
d)
<3K
Ω
PD (External,
reccommend
ed)
<400
Ω
For external Pull-up requirements, see the 82575 reference schematics.
The table below lists internal & external pull-up resistors and whether they are
activated in the different device states. Each internal PUP has a nominal value of 5kΩ,
ranging from 2.7KΩ to 8.6KΩ.
The device states are defined as follow:
Power-up = while 3.3 V is stable, but not 1.0 V
Active = normal mode (not power up nor disable)
Disable = device disabled
Table 13.
48
Internal Pull-up and External Pull Up Requirements
Signal Name
Power up
Active
Disable
External
Recomended?
PE_WAKE_N
N
N
N
Y
PE_RST_N
Y
N
N
N
FLSH_SI
Y
N
Y
N
FLSH_SO
Y
Y
Y
N
FLSH_SCK
Y
N
Y
N
FLSH_CE_N
Y
N
Y
Y
EE_DI
Y
N
Y
N
EE_DO
Y
Y
Y
N
EE_SK
Y
N
Y
N
EE_CS_N
Y
N
Y
Y
SMBD
N
N
N
Y
SMBCLK
N
N
N
Y
SMBALRT_N
N
N
N
Y
Notes
82575 Gigabit Ethernet Controller Datasheet
NCSI_CLK_IN
N
N
N
N
NCSI_CLK_OUT
Y
N
N
N
NCSI_CRS_DV
N
N
N
Y
Pull down only if NCSI is
NOT being used or
configured for multi drop
NCSI_RXD[1:0]
N
N
N
Y
Pull Up only if NCSI is NOT
being used or configured
for multi drop
NCSI_TX_EN
N
N
N
N
Should be connected to
external PD if NCSI is NOT
used
NCSI_TXD[1:0]
N
N
N
N
Should be connected to
external PD if NCSI is NOT
used
SDP0[3:0]
Y
Y
N
N
SDP1[3:0]
Y
Y
N
N
DEV_OFF_N
Y
N
N
Must be
connected on
board
MAIN_PWR_OK
Y
N
N
Must be
connected on
board
SRDS_0_SIG_DET
Y
N
N
Must be
connected
externally
SRDS_1_SIG_DET
Y
N
N
Must be
connected
externally
SFP0_I2C_CLK
Y
N
Y
Y if active
If used.
SFP0_I2C_DATA
Y
N
N
Y
If used.
SFP1_I2C_CLK
Y
N
Y
Y if active
If used.
SFP1_I2C_DATA
Y
N
N
Y
If used.
LED0_0
Y
N
N
LED0_1
Y
N
N
LED0_2
Y
N
N
LED0_3
Y
N
N
LED1_0
Y
N
N
LED1_1
Y
N
N
LED1_2
Y
N
N
LED1_3
Y
N
N
JTCK
Y
N
N
N
49
82575 Gigabit Ethernet Controller Datasheet
JTDI
Y
N
N
Y
JTDO
Y
N
N
Y
JTMS
Y
N
N
Y
AUX_PWR
Y
N
N
Y (or PD)
LAN1_DIS_N
Y
Y
Y
LAN0_DIS_N
Y
Y
Y
7.4
Targeted AC Characteristics
Table 14.
25 MHz Clock Input Requirements
Symbol
Parameter
Min
Typ
Max
Unit
25.000
N/A
MHz
f0
Frequency
N/A
df0
Frequency Variation
-50
N/A
+50
ppm
Dc
Duty Cycle
40
N/A
60
%
tr
Rise Time
N/A
N/A
5
ns
tf
Fall Time
N/A
N/A
5
ns
Jptp
Clock Jitter (peak-to-peak)1
N/A
N/A
250
ps
Cin
Input Capacitance
N/A
20
N/A
pF
T
Operating Temperature
N/A
N/A
70
°C
Aptp
Input clock amplitude (peak-topeak)
1.0
1.2
1.3
V
Vcm
Clock common mode
N/A
0.6
N/A
V
1. Clock jitter is defined according to the recommendations of part 40.6.1.2.5 IEEE 1000Base-T Standard (at
least 105 clock edges, filtered by HPF with cut off frequency of 5000 Hz).
Table 15.
Link Interface Clock Requirements
Symbol
1
fGTX
Parameter
Min
Typ
Max
Unit
GTX_CLK frequency
N/A
125
N/A
MHz
1. GTX_CLK is used externally for test purposes only. See signals IEEE_TEST1_p and IEEE_TEST1_n.
7.4.1
EEPROM Interface
Applicable over recommended operating range from Ta = -40C to +85C, VCC3P3 = 3.3
V, Cload = 1 TTL Gate and 16pF (unless otherwise noted).
Symbol
50
Parameter
Min
Typ
Max
Units
Note
82575 Gigabit Ethernet Controller Datasheet
tSCK
SCK clock frequency
tRI
2
2.1
MHz
Input rise time
2.5ns
2
us
tFI
Input fall time
2.5ns
2
us
tWH
SCK high time
200
250
ns
tWL
SCK low time
200
250
ns
tCS
CS high time
250
ns
tCSS
CS setup time
250
ns
tCSH
CS hold time
250
ns
tSU
Data-in setup time
50
ns
tH
Data-in hold time
50
ns
tV
Output valid
0
tHO
Output hold time
0
tDIS
Output disable time
1.
Clock is 2MHz
2.
50% duty cycle
0
200
[1]
[2]
ns
ns
250
ns
tCS
VIH
CS
VIL
tCSH
tCSS
VIH
tWL
SCK
tWH
VIL
tSU
tH
VIH
SI
VALID IN
VIL
tV
VIH
SO
Hi-Z
tHO
tDIO
Hi-Z
VIL
Figure 3.
EEPROM Interface Time Diagram
7.4.2
FLASH Interface
Applicable over recommended operating range from Ta = -40C to +85C, VCC3P3 = 3.3
V, Cload = 1 TTL Gate and 16 pF (unless otherwise noted)
51
82575 Gigabit Ethernet Controller Datasheet
Table 16.
FLASH Parameters
Symbol
Parameter
Min
Typ
Max
Units
Note
tSCK
SCK clock frequency
0
15.625
20
MHz
[1]
tRI
Input rise time
2.5
20
ns
tFI
Input fall time
2.5
20
ns
tWH
SCK high time
20
32
ns
[2]
tWL
SCK low time
20
32
ns
[2]
tCS
CS high time
25
ns
tCSS
CS setup time
25
ns
tCSH
CS hold time
25
ns
tSU
Data-in setup time
5
ns
tH
Data-in hold time
5
ns
tV
Output valid
tHO
Output hold time
tDIS
Output disable time
20
0
ns
ns
100
ns
tCS
VIH
CS
VIL
tCSH
tcss
VIH
tWH
Sck
tWL
VIL
tSU
tH
VIH
SI
VALID IN
VIL
tHO
tv
SO
VOH
tDIS
HI-Z
HI-Z
VOL
Figure 4.
FLASH Timing Diagram
7.4.3
NC-SI Interface
Table 17.
NC-SI AC Specification
Symbol
52
Parameter
Min
Typ
Max
Units
Notes
82575 Gigabit Ethernet Controller Datasheet
REF_CLK Frequency
REF_CLK Duty Cycle
50
35
REF_CLK accuracy
MHz
2
65
%
1
100
ppm
Tsu
TXD[1:0], TX_EN, Data Setup to REF_CLK
rising edge
3
ns
Thold
TXD[1:0], TX_EN Data hold from REF_CLK
rising edge
1.5
ns
Tval
RXD[1:0], CRS_DV Data valid from REF_CLK
rising edge
1.8
9
ns
Tor
RXD[1:0], CRS_DV Output Time rise
0.5
6
ns
3
Tof
RXD[1:0], CRS_DV Output Time fall
0.5
6
ns
3
Todr1
RXD[1:0], CRS_DV Output delay rise
2
5.8
ns
3
Todf1
RXD[1:0], CRS_DV Output delay fall
2
5.8
ns
3
Tidr2
TXD[1:0], TX_EN Input delay rise
0.5
6
ns
4, 5
Tidf2
TXD[1:0], TX_EN Input delay fall
0.5
6
ns
4, 5
Tir
TXD[1:0], TX_EN Input Time rise
0.02
0.15
ns
4, 5
TXD[1:0], TX_EN Input Time fall
0.02
0.15
ns
4, 5
Tif
6
Notes:
1. Clock Duty cycle measurement: High interval measured from Vih to Vil points, Low from Vil to next Vih
2. Clock interval measurement from Vih to Vih
3. Cload = 25 pF
4. Cload = 200 fF
5. The input delay test conditions: Maximum input level = VIN = 2.7V; Input rise/fall time (0.2VIN to 0.8VIN)
= 1ns (Slew Rate ~ 1.5ns).
6. The NC-SI specification defines a hold time of 1.0 ns. In order to work with the 82575, the board designer
should guarantee a hold time of 1.5 ns.
7.4.4
SMBus Interface
Table 18.
SMBus AC Characteristics (master mode)
Symbol
Parameter
FSMB
Min
Typ
Max
Units
SMBus Frequency
74.4
100
kHz
TBUF
Time between STOP and START
condition driven by the device
6.56
µs
THD:STA
Hold time after Start Condition. After
this period, the first clock is generated.
6.72
µs
TSU:STA
Start Condition setup time
TSU:STO
Stop Condition setup time
6.88
µs
THD:DAT
Data hold time
0.48
µs
TTIMEOUT
Detect SMBClk low timeout
TLOW
SMBClk low time
µs
26.2
31.5
5.76
ms
µs
53
82575 Gigabit Ethernet Controller Datasheet
THIGH
Table 19.
Table 20.
SMBClk high time
6.56
SMBus AC Characteristics (slave mode)
Symbol
Parameter
Typ
Max
Units
FSMB
SMBus Frequency
74.4
100
kHz
TBUF
Time between STOP and START
condition driven by the device
6.56
µs
THD:STA
Hold time after Start Condition. After
this period, the first clock is generated.
6.72
µs
TSU:STA
Start Condition setup time
TBD
µs
TSU:STO
Stop Condition setup time
6.88
µs
THD:DAT
Data hold time
0.48
µs
TTIMEOUT
Detect SMBClk low timeout
TLOW
SMBClk low time
5.76
µs
THIGH
SMBClk high time
6.56
µs
Min
26.2
CL
Parameter
ms
Capacitance of test load
Min
Typ
Max
Unit
N/A
16
N/A
pF
CL
54
31.5
AC Test Loads for General Output Pins
Symbol
Figure 5.
µs
AC Test Loads for General Output Pins
82575 Gigabit Ethernet Controller Datasheet
This page intentionally left blank.
55
82575 Gigabit Ethernet Controller Datasheet
8.0
Crystal Requirements
Table 21.
Reference Crystal Specification Requirements
Parameter Name
Symbol
Recommended Value
Conditions
Frequency
fo
25.000 [MHz]
@25 [°C]
Vibration mode
Fundamental
Cut
AT
Operating /Calibration Mode
Parallel
Frequency Tolerance @25°C
Δf/fo @25°C
±30 [ppm]
Temperature Tolerance
Δf/fo
±30 [ppm]
Operating Temperature
Topr
-20 to +70 [°C]
Non Operating Temperature Range
Topr
-40 to +90 [°C]
Equivalent Series Resistance (ESR)
Rs
50 [Ù] maximum
Load Capacitance
Cload
20 [pF] (max 24pF)
Shunt Capacitance
Co
6 [pF] maximum
Pullability from Nominal Load Capacitance
Δf/Cload
15 [ppm/pF] maximum
Max Drive Level
DL
0.5 [mW]
Insulation Resistance
IR
500 [MΩ] minimum
Aging
Δf/fo
±5 [ppm/year[
Differential board capacitance*
CD
2 [pF]
Board Capacitance
Cs
4 [pF]
External Capacitors
C1, C2
27 [pF]
Board Resistance
Rs
0.1 [Ω]
9.0
@25 [°C]
@25 [MHz]
@ 100V DC
LED Configuration
The 82575provides 4 LEDs per port that may be used to indicate the status of the
traffic. The default setup of the LEDs is done via the EEPROM words 1Ch and 1Fh. The
default setup for both ports is the same. This setup is reflected in the LEDCTL register
of each port. Each driver may change its setup individually. For each of the LEDs the
following parameters can be defined:
1. Mode: Defines which information is reflected by this LED. The encoding is described
in the LEDCTL register.
2. Polarity: Defines the polarity of the LED.
3. Blink mode: should the LED blink or be stable.
In addition, the blink rate of all LEDs can be defined. The possible rates are 200 ms or
83 ms for each phase. There is one rate for all LEDs
56
82575 Gigabit Ethernet Controller Datasheet
10.0
Mechanical Information
This section describes the 82575 device physical characteristics.
The targeted signal names are subject to change without notice. Verify with your local
Intel sales office that you have the latest information before finalizing a design.
10.1
Targeted Package Information
The 82575device is a 576-lead flip-chip ball grid array (FC-BGA) measuring 25 mm by
25 mm. The nominal ball pitch is 1 mm. See Figure 9.
Detail Area
0.43 mm
Solder Resist Opening
0.62 mm
Metal Diameter
57
58
!
"
#
$
0!#+!'%
$
0!#+!'%35"342!4%
%0/895.$%2&),,
3%%$%4!),!
Œ.
$)%
"
#
$%4!),!
3#!,%
&
4()3$2!7).'#/.4!).3).4%,#/20/2!4)/.#/.&)$%.4)!,).&/2-!4)/.)4)3$)3#,/3%$).#/.&)$%.#%!.$)43#/.4%.43
-!9./4"%$)3#,/3%$2%02/$5#%$$)30,!9%$/2-/$)&)%$7)4(/544(%02)/272)44%.#/.3%.4/&).4%,#/20/2!4)/.
&
#
# "
"
!
*
"!,,3
*
!$
!#
!"
!!
9
7
6
5
4
2
0
.
,
+
*
(
'
&
%
$
#
"
!
(
4()2$!.',%02/*%#4)/.
5.,%33/4(%27)3%30%#)&)%$
).4%202%4$)-%.3)/.3!.$4/,%2!.#%3
).!##/2$!.#%7)4(!3-%9-
$)-%.3)/.3!2%).-),,)-%4%23
4/,%2!.#%3
8¼
!NGLES¼
88¼
3#!,%
'
²
.
"
"
#
#
$
&
&
'
'
(
(
*
*
39-"/,
$7'./
(
"!3)#
;=
"!3)#
;=
"!3)#
;=
"!3)#
;=
"!3)#
;=
"!3)#
;=
"!3)#
;=
;=
;=
;=
-!8
;=
;=
;=
;=
-),,)-%4%23
;).#(%3=
;=
;=
-).
;=
;=
'
3(4
#
#/--%.43
).#/-).'"!,,3):%
0/342%&,/7
2%6
3(%%4/&
# ! "
!
"
#
$
82575 Gigabit Ethernet Controller Datasheet
Figure 6.
!
"
#
$
8 8 4/06)%7
4()3$2!7).'#/.4!).3).4%,#/20/2!4)/.#/.&)$%.4)!,).&/2-!4)/.)4)3$)3#,/3%$).#/.&)$%.#%!.$)43#/.4%.43
-!9./4"%$)3#,/3%$2%02/$5#%$$)30,!9%$/2-/$)&)%$7)4(/544(%02)/272)44%.#/.3%.4/&).4%,#/20/2!4)/.
#/-0/.%.4+%%0/54
#2/33(!4#(%$!2%!
3)$%6)%7
"/44/-6)%7
3):%
#!'%#/$%
3(4
3(%%4/&
!
"
#
$
82575 Gigabit Ethernet Controller Datasheet
82575 Mechanical Specifications
59
82575 Gigabit Ethernet Controller Datasheet
10.2
Visual Pin Assignments
This section contains the illustrations of the pin outs.
Figure 7.
60
82575 Visual Pin Assignment Part 1 (Top View)
$'
966
966
,(((B7
(67B3
60%'
60%$/57B1
$&
966
966
,(((B7
(67B1
60%&/.
3(B:$.(B1
$%
0',B3B
0',B1B
966
966
966
569'$%
B1&
$$
0',B3B
0',B1B
966
966
9&&3
<
966
966
5%,$6
B3
966
:
0',B3B
0',B1B
5%,$6
VSS
B1
9
0',B3B
0',B1B
8
966
966
6)3B,&B 6)3B,&B
&/.
'DWD
)/%0'
)/%6,17&.(
;
)/6+B6&.
)/6+B62
/('B
6)3B,&B 6)3B,&B
&/.
'DWD
)/%0&.
)/%6'
)/6+B&(B1
)/6+B6,
/('B
569'$%
B1&
966
966
966
966
966
9&&3
966
966
966
966
966
966
9&&3
9&&3
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
9&&3
966
966
966
966
966
966
966
966
966
9&&3
966
966
7
65'6,BB 65'6,BB
1
3
966
9&&3
9&&3
966
9&&3
9&&3
966
9&&3
966
966
5
65'62BB 65'62BB
1
3
966
9&&3
9&&3
966
9&&3
9&&3
966
9&&3
9&&3
9&&3
3
966
966
966
9&&3
9&&3
966
9&&3
9&&3
966
9&&3
1
;7$/
;7$/
966
9&&3
966
966
966
966
966
9&&3
569'3
B3
966
9&&3
966
82575 Gigabit Ethernet Controller Datasheet
Figure 8.
0
/
82575 Visual Pin Assignment Part 2 (Top View)
569'0
1&
966
569'0
1&
966
966
6(5B
5&
203
9&&3
966
966
966
966
966
9&&3
9&&3
9&&3
966
9&&3
9&&3
966
9&&3
966
569'/
B3
966
9&&3
.
65'62BB 65'62BB
1
3
966
9&&3
9&&3
966
9&&3
9&&3
966
9&&3
9&&3
9&&3
-
65'6,BB 65'6,BB
1
3
966
9&&3
9&&3
966
9&&3
9&&3
966
9&&3
966
966
+
966
966
966
966
966
966
966
966
966
9&&3
966
966
*
0',B3B
0',B1B
966
966
966
966
966
966
966
9&&3
966
966
)
0',B3B
0',B1B
966
966
966
966
966
966
966
966
966
(
966
966
9&&3
9&&3
966
966
966
966
966
966
'
0',B3B
0',B1B
966
966
9&&3
9&&3
966
966
966
966
966
966
&
0',B3B
0',B1B
966
966
966
966
966
966
966
966
966
966
%
966
966
((B&6B1
((B6.
/('B
/('B
6'3B
6'3B
6'3B
$8;B3:5
/$1B',6B1
$
966
966
((B',
((B'2
/('B
/('B
9&&3
6'3B
/$1B',6B1
569'$
B1&
6'3B
5%,$6
B1
966
5%,$6
B3
,(((B7
(67B1
,(((B7
(67B3
61
82575 Gigabit Ethernet Controller Datasheet
Figure 9.
62
82575 Visual Pin Assignment Part 3(Top View)
9&&3
966
6'3B
569'$'
B1&
569'$'
B1&
-7',
9&&3
966
0$,1B3:5
B2.
1&$'
966
966
$'
/('B
/('B
6'3B
3(B567B
1
-7'2
-706
-7&.
966
1&$&
966
966
$&
966
966
966
966
966
966
966
966
966
966
966
966
$%
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
<
966
966
966
966
966
966
966
966
966
966
3(7BB3
3(7BB
1
:
966
966
966
966
966
966
966
9&&3
9&&3
966
966
966
9
966
966
966
966
966
966
966
9&&3
9&&3
966
966
966
966
966
966
966
966
966
966
966
966
966
7
9&&3
9&&3
966
966
966
966
966
966
966
966
3(7BB3
3(7BB
1
5
9&&3
9&&3
966
9&&3
9&&3
966
966
9&&3
9&&3
966
966
966
3
966
9&&3
966
9&&3
9&&3
966
966
9&&3
9&&3
966
569'$&
B1&
3(5BB 3(5BB
3
1
3(5BB 3(5BB
3
1
3(B&/. 3(B&/.
B3
B1
$$
8
1
82575 Gigabit Ethernet Controller Datasheet
Figure 10.
82575 Visual Pin Assignment Part 4 (Top View)
569'0 B1&
966
9&&3
966
9&&3
9&&3
966
966
9&&3
9&&3
9&&3
9&&3
966
9&&3
9&&3
966
966
9&&3
9&&3
966
569'0B1&
966
3(5BB 3
966
3(B5&2 03
9&&3
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
9&&3
9&&3
966
3(7BB3
966
966
966
966
966
966
966
9&&3
9&&3
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
966
3(7BB3
966
966
966
966
966
966
966
966
966
966
966
966
569'%
B1&
569'%
B1&
569'%
B1&
'(9B2))B1
50,,B&/.B287
1&%
966
966
6'3B
569'$
B1&
50,,B&56B'9
966
966
966
65'6B6,*B' 65'6B6,*B'
(7
(7
50,,B5;'B
50,,B7;B(1
569'$
B1&
50,,B7;'>@
50,,B5;'B
50,,B&/.B,1
9&&3
/
3(5BB 1
9&&3
50,,B7;'>@
0
.
3(5BB3
966
3(7BB1
966
-
+
*
3(5BB1
)
966
3(7BB 1
(
'
&
#
$
§§
63