Si53308

Si53308
D U A L 1 : 3 L O W - J ITT ER A N Y - F O R M A T B U F F E R / L E V E L
TR A N S L A T O R
Features







Two independent banks of 3
differential or 6 LVCMOS outputs
Ultra-low additive jitter: 45 fs rms
Wide frequency range: dc to
725 MHz
Any-format input with pin selectable
output formats: LVPECL, low power
LVPECL, LVDS, CML, HCSL,
LVCMOS
Synchronous output enable
Output clock division: /1, /2, /4
Low output-output skew: 25 ps






Loss of signal (LOS) monitors for
loss of input clock
Independent VDD and VDDO :
1.8/2.5/3.3 V
Selectable LVCMOS drive strength to
tailor jitter and EMI performance
Small size: 32-QFN (5 mm x 5 mm)
RoHS compliant, Pb-free
Industrial temperature range:
–40 to +85 °C
Ordering Information:
See page 29.
Applications
Yϭ
Yϭ
YϮ
YϮ
Yϯ
Yϯ
Yϰ
Yϰ
Ϯϲ
Ϯϱ
Ϯϳ
Ϯϴ
Ϯϵ
/s
^&Khd΀ϭ΁
^&Khd΀Ϭ΁
^&Khd΀ϭ΁
^&Khd΀Ϭ΁
YϬ
YϬ
'E
Yϱ
Yϱ
sK
s
sK
E
sZ&
&/.
>K^ϭ
K
K
><ϭ
><Ϭ
*1'
3$'
The Si53308 is an ultra low jitter dual 1:3 any-format buffer with pin-selectable
output clock signal format and divider selection. The Si53308 utilizes Silicon
Laboratories' advanced CMOS technology to fanout clocks from dc to 725 MHz
with guaranteed low additive jitter, low skew, and low propagation delay variability.
The Si53308 features minimal cross-talk and provides superior supply noise
rejection, simplifying low jitter clock distribution in noisy environments.
Independent core and output bank supply pins provide integrated level translation
without the need for external circuitry.
ϯϬ
Description
Pin Assignments
>K^Ϭ
><Ϭ

ϯϭ
Storage/Servers
Telecom
 Industrial
 SyncE, 1588
 Backplane clock distribution


ϯϮ
High-speed clock distribution
Ethernet switch/router
 Optical Transport Network (OTN)
 SONET/SDH
 PCI Express Gen 1/2/3

/s
Patents pending
Functional Block Diagram
VREF
Vref
Generator
Power
Supply
Filtering
DIVA
VDDOA
SFOUTA[1:0]
OEA
CLK0
Q0, Q1, Q2
DivA
CLK0
LOS0
LOS1
Q0, Q1, Q2
LOS
Monitor
DIVB
VDDOB
SFOUTB[1:0]
OEB
Q3, Q4, Q5
CLK1
DivB
CLK1
Rev. 1.0 3/16
Q3, Q4, Q5
Copyright © 2016 by Silicon Laboratories
Si53308
Si53308
2
Rev. 1.0
Si53308
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1. Universal, Any-Format Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Input Bias Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. Universal, Any-Format Output Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4. Synchronous Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5. Flexible Output Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6. Output Enable Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7. Loss of Signal (LOS) Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8. Power Supply (VDD and VDDOX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9. Output Clock Termination Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.10. AC Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12. Input Noise Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.13. Power Supply Noise Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3. Pin Description: 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1. 5x5 mm 32-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1. 5x5 mm 32-QFN Package Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1. Si53308 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Rev. 1.0
3
Si53308
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Ambient Operating
Temperature
Supply Voltage Range*
Output Buffer Supply
Voltage*
Symbol
Test Condition
Min
Typ
Max
Unit
–40
—
85
°C
1.71
1.8
1.89
V
2.38
2.5
2.63
V
2.97
3.3
3.63
V
LVPECL, low power LVPECL,
LVCMOS
2.38
2.5
2.63
V
2.97
3.3
3.63
V
HCSL
2.97
3.3
3.63
V
LVDS, CML, LVCMOS
1.71
1.8
1.89
V
2.38
2.5
2.63
V
2.97
3.3
3.63
V
2.38
2.5
2.63
V
2.97
3.3
3.63
V
2.97
3.3
3.63
V
TA
VDD
VDDOX
LVDS, CML
LVPECL, low power LVPECL
HCSL
*Note: Core supply VDD and output buffer supplies VDDO are independent. LVCMOS clock input is not supported for VDD =
1.8V but is supported for LVCMOS clock output for VDDOX = 1.8V. LVCMOS outputs at 1.5V and 1.2V can be
supported via a simple resistor divider network. See “2.9.1. LVCMOS Output Termination To Support 1.5 V and 1.2 V”
Table 2. Input Clock Specifications
(VDD=1.8 V  5%, 2.5 V  5%, or 3.3 V  10%, TA=–40 to 85 °C)
Parameter
Symbol
Differential Input Common
Mode Voltage
Min
Typ
Max
Unit
VCM
0.05
—
—
V
Differential Input Swing
(peak-to-peak)
VIN
0.2
—
2.2
V
LVCMOS Input High Voltage
VIH
VDD = 2.5 V 5%, 3.3 V 10%
VDD x 0.7
—
—
V
LVCMOS Input Low Voltage
VIL
VDD = 2.5 V 5%, 3.3 V 10%
—
—
VDD x
0.3
V
Input Capacitance
CIN
CLK0 and CLK1 pins with
respect to GND
—
5
—
pF
4
Test Condition
Rev. 1.0
Si53308
Table 3. DC Common Characteristics
(VDD = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Supply Current
Output Buffer
Supply Current
(Per Clock Output)
@100 MHz (diff)
@200 MHz (CMOS)
Symbol
Test Condition
Min
Typ
Max
Unit
—
65
100
mA
LVPECL (3.3 V)
—
35
—
mA
Low Power LVPECL (3.3 V)*
—
35
—
mA
LVDS (3.3 V)
—
20
—
mA
CML (3.3 V)
—
35
—
mA
HCSL, 100 MHz, 2 pF load (3.3 V)
—
35
—
mA
CMOS (1.8 V, SFOUT = Open/0),
per output, CL = 5 pF, 200 MHz
—
5
—
mA
CMOS (2.5 V, SFOUT = Open/0),
per output, CL = 5 pF, 200 MHz
—
8
—
mA
CMOS (3.3 V, SFOUT = 0/1),
per output, CL = 5 pF, 200 MHz
—
15
—
mA
IDD
IDDOX
Voltage Reference
VREF
VREF pin
–500 A < IREF < 500 A
—
VDD/2
—
V
Input High Voltage
VIH
SFOUTx, DIVx
CLK_SEL, OEx
0.8 x
VDD
—
—
V
Input Mid Voltage
VIM
SFOUTx, DIVx
3-level input pins
0.45 x
VDD
0.5 x
VDD
0.55 x
VDD
V
Input Low Voltage
VIL
SFOUTx, DIVx
CLK_SEL, OEx
—
—
0.2 x
VDD
V
Output Voltage High
(LOSx)
VOH
IDD = –1 mA
0.8xVDD
—
—
V
Output Voltage Low
(LOSx)
VOL
IDD = 1 mA
—
—
0.2xVDD
V
RDOWN
CLK_SEL, DIVx, SFOUTx
—
25
—
k
RUP
OEx, DIVx, SFOUTx
—
25
—
k
Internal Pull-down
Resistor
Internal Pull-up
Resistor
*Note: Low-power LVPECL mode supports an output termination scheme that will reduce overall system power.
Rev. 1.0
5
Si53308
Table 4. Output Characteristics (LVPECL)
(VDDOX = 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Symbol
Output DC Common Mode
Voltage
Min
Typ
Max
Unit
VCOM
VDDOX – 1.595
—
VDDOX – 1.245
V
VSE
0.55
0.80
1.050
V
Single-Ended
Output Swing*
Test Condition
*Note: Unused outputs can be left floating. Do not short unused outputs to ground.
Table 5. Output Characteristics (Low Power LVPECL)
(VDDOX = 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Output DC Common
Mode Voltage
VCOM
RL = 100 across Qn and Qn
VDDOX – 1.895
VSE
RL = 100 across Qn and Qn
0.25
Single-Ended
Output Swing
Typ
0.60
Max
Unit
VDDOX – 1.275
V
0.85
V
Table 6. Output Characteristics—CML
(VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Single-Ended Output
Swing
VSE
Terminated as shown in Figure 8
(CML termination).
300
400
550
mV
Table 7. Output Characteristics—LVDS
(VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Single-Ended Output
Swing
VSE
RL = 100 Ω across QN and QN
247
—
490
mV
Output Common
Mode Voltage
(VDDO = 2.5 V or
3.3V)
VCOM1
VDDOX = 2.38 to 2.63 V, 2.97 to
3.63 V, RL = 100 Ω across QN
and QN
1.10
1.25
1.35
V
Output Common
Mode Voltage
(VDDO = 1.8 V)
VCOM2
VDDOX = 1.71 to 1.89 V,
RL = 100 Ω across QN
and QN
0.85
0.97
1.25
V
6
Rev. 1.0
Si53308
Table 8. Output Characteristics—LVCMOS
(VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Output Voltage High*
Output Voltage Low*
Test Condition
Min
Typ
Max
Unit
VOH
0.75 x VDDOX
—
—
V
VOL
—
—
0.25 x VDDOX
V
*Note: IOH and IOL per the Output Signal Format Table for specific VDDOX and SFOUTX settings.
All LVCMOS outputs are in-phase.
Table 9. Output Characteristics—HCSL
(VDDOX = 3.3 V ± 10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output Voltage High
VOH
RL = 50 Ω to GND
550
700
900
mV
Output Voltage Low
VOL
RL = 50 Ω to GND
–150
0
150
mV
Single-Ended
Output Swing
VSE
RL = 50 Ω to GND
550
700
850
mV
Crossing Voltage
VC
RL = 50 Ω to GND
250
350
550
mV
Table 10. AC Characteristics
(VDD = VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)1
Parameter
LOSx Clear Time
LOSx Activation Time
Frequency
Duty Cycle
Note: 50% input duty cycle.
Symbol
Test Condition
Min
Typ
Max
Unit
TLOSCLR
1 MHz  F < 100 MHz
—
Tper+15
—
ns
F > 100 MHz
—
25
—
ns
TLOSACT
1 MHz  F  725 MHz
—
15
—
µs
F
LVPECL, low power LVPECL, LVDS,
CML, HCSL
dc
—
725
MHz
LVCMOS
dc
—
200
MHz
200 MHz, 20/80%TR/TF<10% of
period (LVCMOS)
(12 mA drive)
40
50
60
%
20/80% TR/TF<10% of period
(Differential)
48
50
52
%
DC
Notes:
1. See the Output Characteristics tables for operating voltage specifications for various outputs formats.
2. When using the on-chip clock divider, a minimum input clock slew rate of 30 mV/ns is required.
3. HCSL measurements were made with receiver termination. See Figure 8 on page 19.
4. Output to Output skew specified for outputs with an identical configuration.
5. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and
equal load condition. Using the same type of inputs on each device, the outputs are measured at the differential cross
points.
6. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDDOX (3.3 V = 100 mVPP) and noise spur
amplitude measured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for further details.
Rev. 1.0
7
Si53308
Table 10. AC Characteristics (Continued)
(VDD = VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)1
Symbol
Test Condition
Min
Typ
Max
Unit
Minimum Input Clock
Slew Rate2
SR
Required to meet prop delay and
additive jitter specifications
(20–80%)
0.75
—
—
V/ns
Output Rise/Fall Time
TR/TF
LVDS, 20/80%
—
—
325
ps
LVPECL, 20/80%
VDDOX = 2.5 V, 3.3 V
—
—
350
ps
HCSL3, 20/80%
VDDOX = 3.3 V
—
—
280
ps
CML, 20/80%
—
—
350
ps
Low-Power LVPECL, 20/80%
VDDOX = 2.5 V, 3.3 V
—
—
325
ps
LVCMOS 200 MHz, 20/80%,
2 pF load
—
—
750
ps
500
—
—
ps
Parameter
Minimum Input Pulse
Width
Propagation Delay
Output Enable Time
Output Disable Time
Output to Output Skew4
Part to Part Skew5
TW
TPLH,
TPHL
LVCMOS (12mA drive with no load)
1250
2000
2750
ps
LVPECL, LVDS
600
800
1000
ps
TEN
F = 1 MHz
—
2500
—
ns
F = 100 MHz
—
30
—
ns
F = 725 MHz
—
5
—
ns
F = 1 MHz
—
2000
—
ns
F = 100 MHz
—
30
—
ns
F = 725 MHz
—
5
—
ns
LVCMOS (12 mA drive to no load)
—
50
120
ps
LVPECL
VDDOX = 2.5 V, 3.3 V
—
35
70
ps
LVDS
—
35
70
ps
Differential
—
—
150
ps
TDIS
TSK
TPS
Notes:
1. See the Output Characteristics tables for operating voltage specifications for various outputs formats.
2. When using the on-chip clock divider, a minimum input clock slew rate of 30 mV/ns is required.
3. HCSL measurements were made with receiver termination. See Figure 8 on page 19.
4. Output to Output skew specified for outputs with an identical configuration.
5. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and
equal load condition. Using the same type of inputs on each device, the outputs are measured at the differential cross
points.
6. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDDOX (3.3 V = 100 mVPP) and noise spur
amplitude measured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for further details.
8
Rev. 1.0
Si53308
Table 10. AC Characteristics (Continued)
(VDD = VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)1
Parameter
Power Supply Noise
Rejection6
Symbol
Test Condition
Min
Typ
Max
Unit
PSRR
10 kHz sinusoidal noise
—
–65
—
dBc
100 kHz sinusoidal noise
—
–63
—
dBc
500 kHz sinusoidal noise
—
–60
—
dBc
1 MHz sinusoidal noise
—
–55
—
dBc
Notes:
1. See the Output Characteristics tables for operating voltage specifications for various outputs formats.
2. When using the on-chip clock divider, a minimum input clock slew rate of 30 mV/ns is required.
3. HCSL measurements were made with receiver termination. See Figure 8 on page 19.
4. Output to Output skew specified for outputs with an identical configuration.
5. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and
equal load condition. Using the same type of inputs on each device, the outputs are measured at the differential cross
points.
6. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDDOX (3.3 V = 100 mVPP) and noise spur
amplitude measured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for further details.
Table 11. Additive Jitter, Differential Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Amplitude
VIN
(Single-Ended,
Peak-to-Peak)
Differential
Clock Format
20%-80% Slew
Rate (V/ns)
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
Typ
Max
3.3
725
Differential
0.15
0.637
LVPECL
45
65
3.3
725
Differential
0.15
0.637
LVDS
50
65
3.3
156.25
Differential
0.5
0.458
LVPECL
160
185
3.3
156.25
Differential
0.5
0.458
LVDS
150
200
2.5
725
Differential
0.15
0.637
LVPECL
45
65
2.5
725
Differential
0.15
0.637
LVDS
50
65
2.5
156.25
Differential
0.5
0.458
LVPECL
145
185
2.5
156.25
Differential
0.5
0.458
LVDS
145
195
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. AC-coupled differential inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.
Rev. 1.0
9
Si53308
Table 12. Additive Jitter, Single-Ended Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Amplitude
VIN
(single-ended,
peak to peak)
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
SE 20%-80%
Slew Rate
(V/ns)
Clock Format
Typ
Max
3.3
200
Single-ended
1.70
1
LVCMOS4
120
160
3.3
156.25
Single-ended
2.18
1
LVPECL
160
185
3.3
156.25
Single-ended
2.18
1
LVDS
150
200
3.3
156.25
Single-ended
2.18
1
LVCMOS4
130
180
2.5
200
Single-ended
1.70
1
LVCMOS5
120
160
2.5
156.25
Single-ended
2.18
1
LVPECL
145
185
2.5
156.25
Single-ended
2.18
1
LVDS
145
195
2.5
156.25
Single-ended
2.18
1
LVCMOS5
140
180
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. DC-coupled single-ended inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1. LVCMOS jitter is measured
single-ended.
4. Drive Strength: 12 mA, 3.3 V (SFOUT = 11).
5. Drive Strength: 9 mA, 2.5 V (SFOUT = 11).
PSPL 5310A
CLK SYNTH
SMA103A
50
Si53308
DUT
Balun
PSPL 5310A
CLKx
AG E 5052 Phase Noise
Analyzer
50ohm
50
CLKx
Balun
Figure 1. Differential Measurement Method Using a Balun
10
Rev. 1.0
Si53308
Table 13. Thermal Conditions
Parameter
Symbol
Test Condition
Value
Unit
Thermal Resistance,
Junction to Ambient
JA
Still air
49.6
°C/W
Thermal Resistance,
Junction to Case
JC
Still air
32.3
°C/W
Table 14. Absolute Maximum Ratings
Parameter
Symbol
Storage Temperature
Min
Typ
Max
Unit
TS
–55
—
150
C
Supply Voltage
VDD
–0.5
—
3.8
V
Input Voltage
VIN
–0.5
—
VDD+ 0.3
V
Output Voltage
VOUT
—
—
VDD+ 0.3
V
ESD Sensitivity
HBM
—
—
2000
V
ESD Sensitivity
CDM
—
—
500
V
Peak Soldering
Reflow Temperature
TPEAK
—
—
260
C
—
—
125
C
Maximum Junction
Temperature
Test Condition
HBM, 100 pF, 1.5 k
Pb-Free; Solder reflow profile
per JEDEC J-STD-020
TJ
Note: Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation
specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Rev. 1.0
11
Si53308
2. Functional Description
The Si53308 is a low-jitter, low-skew, dual 1:3 differential output buffer. The device has a universal input that
accepts most common differential or LVCMOS input signals. Each output bank features control pins to select signal
format, output enable, output divider setting and LVCMOS drive strength.
VREF
Vref
Generator
Power
Supply
Filtering
DIVA
VDDOA
SFOUTA[1:0]
OEA
CLK0
Q0, Q1, Q2
DivA
CLK0
LOS0
LOS1
Q0, Q1, Q2
LOS
Monitor
DIVB
VDDOB
SFOUTB[1:0]
OEB
Q3, Q4, Q5
CLK1
DivB
Q3, Q4, Q5
CLK1
Figure 2. Functional Block Diagram
12
Rev. 1.0
Si53308
2.1. Universal, Any-Format Input
The Si53308 has a universal input stage that enables simple interfacing to a wide variety of clock formats, including
LVPECL, low-power LVPECL, LVCMOS, LVDS, HCSL, and CML. Tables 15 and 16 summarize the various ac- and
dc-coupling options supported by the device. For the best high-speed performance, the use of differential formats
is recommended. For both single-ended and differential input clocks, the fastest possible slew rate is
recommended as low slew rates can increase the noise floor and degrade jitter performance. Though not required,
a minimum slew rate of 0.75 V/ns is recommended for differential formats and 1.0 V/ns for single-ended formats.
See “AN766: Understanding and Optimizing Clock Buffer’s Additive Jitter Performance” for more information.
Table 15. LVPECL, LVCMOS, and LVDS
LVPECL
LVCMOS
LVDS
AC-Couple
DC-Couple
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
N/A
N/A
N/A
N/A
Yes
No
2.5/3.3 V
Yes
Yes
No
Yes
Yes
Yes
Table 16. HCSL and CML
HCSL
CML
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
N/A
N/A
Yes
No
2.5/3.3 V
Yes
Yes
Yes
No
0. 1 µF
Si53308
CLKx
100 
CLKx
0. 1 µF
Figure 3. Differential HCSL, LVPECL, Low-Power LVPECL, LVDS, CML AC-Coupled Input
Termination
VDD
1 k
VDDO = 3. 3 V or2. 5 V
VDD
Si53308
CMOS
Driver
CLKx
50
CLKx
Rs
1 k
V TERM = VDD/2
Figure 4. LVCMOS DC-Coupled Input Termination
Rev. 1.0
13
Si53308
VDDO
DC Coupled LVPECL Termination Scheme 1
R1
VDD
R1
VDDO = 3.3V or 2.5V
Si53308
CLKx
50
“Standard”
LVPECL
Driver
CLKx
50
R2
VTERM = VDDO – 2V
R1 // R2 = 50 Ohm
R2
3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm
2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm
DC Coupled LVPECL Termination Scheme 2
VDD
VDDO = 3.3V or 2.5V
Si53308
50
“Standard”
LVPECL
Driver
CLKx
CLKx
50
50
50
VTERM = VDDO – 2V
DC Coupled LVDS Termination
VDD
VDDO = 3.3V or 2.5V
Si53308
CLKx
50
Standard
LVDS
Driver
100
CLKx
50
DC Coupled HCSL Source Termination Scheme
VDDO = 3.3V
33
Si53308
50
Standard
HCSL Driver
VDD
CLKx
CLKx
33
50
50
50
Note: 33 Ohm series termination is optional depending on the location of the receiver.
Figure 5. Differential DC-Coupled Input Terminations
14
Rev. 1.0
Si53308
2.2. Input Bias Resistors
Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected.
The noninverting input is biased with a 18.75 k pulldown to GND and a 75 k pullup to VDD. The inverting input is
biased with a 75 k pullup to VDD.
VDD
RPU
RPU
+
CLK0 or
CLK1
RPD
–
RPU = 75 k
RPD = 18.75 k
Figure 6. Input Bias Resistors
2.3. Universal, Any-Format Output Buffer
The Si53308 has highly flexible output drivers that support a wide range of clock signal formats, including LVPECL,
low power LVPECL, LVDS, CML, HCSL, and LVCMOS. SFOUTX[1] and SFOUTX[0] are 3-level inputs that can be
pin-strapped to select the Bank A or Bank B clock signal formats. This feature enables the device to be used for
format translation in addition to clock distribution, minimizing the number of unique buffer part numbers required in
a typical application and simplifying design reuse. For EMI reduction applications, four LVCMOS drive strength
options are available for each VDDO setting.
Table 17. Output Signal Format Selection
SFOUTX[1]
SFOUTX[0]
VDDOX = 3.3 V
VDDOX = 2.5 V
VDDOX = 1.8 V
Open*
Open*
LVPECL
LVPECL
N/A
0
0
LVDS
LVDS
LVDS
0
1
LVCMOS, 24 mA drive
LVCMOS, 18 mA drive
LVCMOS, 12 mA drive
1
0
LVCMOS, 18 mA drive
LVCMOS, 12 mA drive
LVCMOS, 9 mA drive
1
1
LVCMOS, 12 mA drive
LVCMOS, 9 mA drive
LVCMOS, 6 mA drive
Open*
0
LVCMOS, 6 mA drive
LVCMOS, 4 mA drive
LVCMOS, 2 mA drive
Open*
1
LVPECL low power
LVPECL low power
N/A
0
Open*
CML
CML
CML
1
Open*
HCSL
N/A
N/A
*Note: SFOUTX are 3-level input pins. Tie low for “0” setting. Tie high for “1” setting. When left open, the pin is internally
biased to VDD/2.
Rev. 1.0
15
Si53308
2.4. Synchronous Output Enable
The Si53308 features a synchronous output enable (disable) feature for input frequencies between 1 MHz and
725 MHz. Output enable is sampled and synchronized on the falling edge of the input clock. This feature prevents
runt pulses from being generated when the outputs are enabled or disabled.
When OE is low, Q is held low and Q is held high for differential output formats. For LVCMOS output format
options, both Q and Q are held low when OE is set low. The device outputs are enabled when the output enable pin
is unconnected. See Table 10 for output enable and output disable times.
2.5. Flexible Output Divider
The Si53308 provides optional clock division in addition to clock distribution. The divider setting for each bank of
output clocks is selected via 3-level control pins as shown in the table below. Leaving the DIVx pins open will force
a divider value of 1 which is the default mode of operation.
Note: When using the on-chip clock divider, a minimum input clock slew rate of 30 mV/ns is required.
Table 18. Post Divider Selection
DIVx
Divider Value
Open*
1 (default)
0
2
1
4
*Note: DIVx are 3-level input pins. Tie low for “0” setting. Tie high for “1” setting. When left open, the pin is internally biased to
VDD/2.
2.6. Output Enable Logic
Each 1:3 output has an independent clock input (CLK0/CLK1) and an output enable pin. Table 19 summarizes the
input and output clock based upon the state of the input clock and the OE pin.
Table 19. Input Clock and Output Enable Logic
CLK
OE1
Q2
L
H
L
H
H
H
X
L
L3
Notes:
1. Output enable active high.
2. On the next negative transition of CLK0 or CLK1.
3. Single-end: Q = low, Q = low.
Differential: Q = low, Q = high.
16
Rev. 1.0
Si53308
2.7. Loss of Signal (LOS) Indicator
The LOS0 and LOS1 indicators are used to check for the presence of input clocks CLK0 and CLK1, respectively,
for input frequencies between 1 MHz and 725 MHz. The LOS0 and LOS1 pins are checked prior to selecting that
clock input or are polled to check for the presence of the currently selected input clock. In the event that an input
clock is not present, the associated LOSx pin will assume a logic high (LOSx = 1) state. When a clock is present at
the associated input clock pin, the LOSx pin will assume a logic low (LOSx = 0) state.
Note: LOS has a lower frequency specification (1 MHz).
2.8. Power Supply (VDD and VDDOX)
The device includes separate core (VDD) and output driver supplies (VDDOX). This feature allows the core to
operate at a lower voltage than VDDO, reducing current consumption in mixed supply applications. The core VDD
supports 3.3 V, 2.5 V, or 1.8 V. Each output bank has its own VDDOX supply, supporting 3.3 V, 2.5 V, or 1.8 V.
VDDOA is the power supply for Q0, Q0, Q1, Q1, Q2, Q2 and VDDOB is the power supply for Q3, Q3, Q4, Q4, Q5,
Q5, as shown in Figure 2, “Functional Block Diagram,”.
Rev. 1.0
17
Si53308
2.9. Output Clock Termination Options
The recommended output clock termination options are shown below. Unused outputs can be left floating. Do not
short unused outputs to ground.
VDDO
DC Coupled LVPECL Termination Scheme 1
R1
R1
VDDO = 3.3V or 2.5V
Si53308
VDD = VDDO
50
Q
LVPECL
Receiver
Qn
50
R2
VTERM = VDDO – 2V
R1 // R2 = 50 Ohm
R2
3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm
2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm
DC Coupled LVPECL Termination Scheme 2
VDDO = 3.3V or 2.5V
Si53308
VDD = VDDO
50
Q
LVPECL
Receiver
Qn
50
50
50
VTERM = VDDO – 2V
VDDO
AC Coupled LVPECL Termination Scheme 1
R1
VDDO = 3.3V or 2.5V
Si53308
R1
0.1 uF
VDD = 3.3V or 2.5V
50
Q
LVPECL
Receiver
Qn
50
0.1 uF
Rb
R2
Rb
VBIAS = VDD – 1.3V
R1 // R2 = 50 Ohm
R2
3.3V LVPECL: R1 = 82.5 Ohm, R2 = 127 Ohm, Rb = 120 Ohm
2.5V LVPECL: R1 = 62.5 Ohm, R2 = 250 Ohm, Rb = 90 Ohm
AC Coupled LVPECL Termination Scheme 2
VDDO = 3.3V or 2.5V
Si53308
0.1 uF
VDD = 3.3V or 2.5V
50
Q
LVPECL
Receiver
Qn
50
0.1 uF
Rb
50
Rb
50
VBIAS = VDD – 1.3 V
3.3V LVPECL: Rb = 120 Ohm
2.5V LVPECL: Rb = 90 Ohm
Figure 7. LVPECL Output Termination
18
Rev. 1.0
Si53308
DC Coupled LVDS and Low-Power LVPECL Termination
VDDO = 3.3 V, 2.5 V, or 1.8 V (LVDS only)
Si53308
VDD
50
Q
LVDS
Receiver
100
Qn
50
AC Coupled LVDS and Low-Power LVPECL Termination
VDDO = 3.3 V or 2.5 V or 1.8 V (LVDS only)
Si53308
0.1 uF
VDD
50
Q
LVDS
Receiver
100
Qn
50
0.1 uF
AC Coupled CML Termination
VDDO = 3.3V or 2.5V or 1.8V
Si53308
0.1 uF
VDD
50
Q
CML
Receiver
100
Qn
50
0.1 uF
DC Coupled HCSL Receiver Termination
VDDO = 3.3V
Si53308
VDD
50
Q
Standard
HCSL
Receiver
Qn
50
50
50
DC Coupled HCSL Optimized Source Termination
VDDO = 3.3V
Si53308
VDD
42.2
50
Q
Qn
42.2
50
86.6
Standard
HCSL
Receiver
86.6
Figure 8. LVDS, CML, HCSL, and Low-Power LVPECL Output Termination
Rev. 1.0
19
Si53308
CMOS
Receivers
Si53308
CMOS Driver
Zo
Rs
Zout
50
Figure 9. LVCMOS Output Termination
Table 20. Recommended LVCMOS RS Series Termination
SFOUTX[1]
SFOUTX[0]
RS (ohms)
3.3 V
2.5 V
1.8 V
0
1
33
33
33
1
0
33
33
33
1
1
33
33
0
Open
0
0
0
0
2.9.1. LVCMOS Output Termination To Support 1.5 V and 1.2 V
LVCMOS clock outputs are natively supported at 1.8, 2.5, and 3.3 V. However, 1.2 V and 1.5 V LVCMOS clock
outputs can be supported via a simple resistor divider network that will translate the buffer’s 1.8 V output to a lower
voltage, as shown in Figure 10 below.
VDDOx = 1.8 V
Si53308
VDD
R1
50
Q
Qn
R1
50
R2
LVCMOS
Receiver
R2
1.5 V LVCMOS: R1 = 43 ohms, R2 = 300 ohms, IOUT = 12mA
1.2 V LVCMOS: R1 = 58 ohms, R2 = 150 ohms, IOUT = 12mA
Figure 10. 1.5 V and 1.2 V LVCMOS Low-Voltage Output Termination
20
Rev. 1.0
Si53308
2.10. AC Timing Waveforms
TPHL
TSK
VPP/2
CLK
Q
VPP/2
QN
QM
VPP/2
VPP/2
TPLH
TSK
Propagation Delay
Output-Output Skew
TF
Q
80% VPP
20% VPP
80% VPP
20% VPP
Q
Rise/Fall Time
TR
Figure 11. AC Waveforms
Rev. 1.0
21
Si53308
2.11. Typical Phase Noise Performance
Each of the following three figures shows three phase noise plots superimposed on the same diagram.
Source Jitter: Reference clock phase noise.
Total Jitter (SE): Combined source and clock buffer phase noise measured as a single-ended output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz.
Total Jitter (Diff'l): Combined source and clock buffer phase noise measured as a differential output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz. The differential measurement as shown in each figure is
made using a balun. See Figure 1 on page 10.
Note: To calculate the total RMS phase jitter when adding a buffer to your clock tree, use the root-sum-square (RSS).
The total jitter is a measure of the source plus the buffer's additive phase jitter. The additive jitter (rms) of the buffer
can then be calculated (via root-sum-square addition).
Important: See
AN925 for additional
information on the
dependence of
measured additive
jitter on the input
source jitter.
Figure 12. Source Jitter (156.25 MHz)
Table 21. Source Jitter (156.25 MHz)
Frequency
(MHz)
Diff’l Input
Slew Rate
(V/ns)
Source Jitter
(fs)
Total Jitter
(SE)
(fs)
Additive Jitter
(SE)
(fs)
Total Jitter
(Diff’l)
(fs)
Additive Jitter
(Diff’l)
(fs)
156.25
1.0
38.2
147.8
142.8
118.3
112.0
22
Rev. 1.0
Si53308
Figure 13. Single-Ended Total Jitter (312.5 MHz)
Table 22. Single-Ended Total Jitter (312.5 MHz)
Frequency
(MHz)
Diff’l Input
Slew Rate
(V/ns)
Source Jitter
(fs)
Total Jitter
(SE)
(fs)
Additive Jitter
(SE)
(fs)
Total Jitter
(Diff’l)
(fs)
Additive Jitter
(Diff’l)
(fs)
312.5
1.0
33.1
94.4
88.4
83.8
77.0
Rev. 1.0
23
Si53308
Figure 14. Differential Total Jitter (625 MHz)
Table 23. Single-Ended Total Jitter (312.5 MHz)
Frequency
(MHz)
Diff’l Input
Slew Rate
(V/ns)
Source Jitter
(fs)
Total Jitter
(SE)
(fs)
Additive Jitter
(SE)
(fs)
Total Jitter
(Diff’l)
(fs)
Additive Jitter
(Diff’l)
(fs)
625
1.0
23.4
56.5
51.5
58.5
53.6
24
Rev. 1.0
Si53308
2.12. Input Noise Isolation
Figure 15. Input Noise Isolation
2.13. Power Supply Noise Rejection
The device supports on-chip supply voltage regulation to reject noise present on the power supply, simplifying low
jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs and
SoCs and may reduce board-level filtering requirements. For more information, see “AN491: Power Supply
Rejection for Low Jitter Clocks”.
Rev. 1.0
25
Si53308
Yϭ
YϮ
YϮ
Yϯ
Yϯ
Yϰ
Yϰ
Ϯϵ
Ϯϳ
Ϯϲ
Ϯϱ
ϯϭ
Ϯϴ
ϯϮ
ϯϬ
Yϭ
3. Pin Description: 32-Pin QFN
/s
^&Khd΀ϭ΁
^&Khd΀Ϭ΁
/s
^&Khd΀ϭ΁
^&Khd΀Ϭ΁
YϬ
YϬ
'E
Yϱ
Yϱ
sK
s
sK
E
sZ&
>K^ϭ
&/.
K
K
><ϭ
><Ϭ
>K^Ϭ
><Ϭ
*1'
3$'
Table 24. Pin Descriptions
Pin
Name
Type*
Description
1
DIVA
I
Output divider control pin for Bank A.
Three-level input control. Internally biased at VDD/2. Can be left floating or
tied to ground or VDD.
2
SFOUTA[1]
I
Output signal format control pin for Bank A.
Three-level input control. Internally biased at VDD/2. Can be left floating or
tied to ground or VDD.
3
SFOUTA[0]
I
Output signal format control pin for Bank A.
Three-level input control. Internally biased at VDD/2. Can be left floating or
tied to ground or VDD.
4
Q0
O
Output clock 0 (complement).
5
Q0
O
Output clock 0.
6
GND
GND
7
VDD
P
Ground.
Core voltage supply.
Bypass with 1.0 µF capacitor and place close to the VDD pin as possible.
*Note: Pin types are: I = input, O = output, P = power, GND = ground.
26
Rev. 1.0
Si53308
Table 24. Pin Descriptions (Continued)
Pin
Name
Type*
Description
8
NC
I
No connect.
9
LOS0
O
The LOS0 status pin indicates whether a clock is present (LOS0 = 0) or not
present (LOS0 = 1) at the CLK0 pin.
10
CLK0
I
Input clock 0.
11
CLK0
I
Input clock 0 (complement).
When CLK0 is driven by a single-ended input, connect CLK0 to VDD/2.
12
OEA
I
Output enable—Bank A.
When OE = high, the Bank A outputs are enabled.
When OE = low, Q is held low and Q is held high for differential formats.
For LVCMOS, both Q and Q are held low when OE is set low.
OEA contains an internal pull-up resistor.
13
OEB
I
Output enable—Bank B.
When OE = high, the Bank B outputs are enabled.
When OE = low, Q is held low and Q is held high for differential formats.
For LVCMOS, both Q and Q are held low when OE is set low.
OEB contains an internal pull-up resistor.
14
CLK1
I
Input clock 1.
15
CLK1
I
Input clock 1 (complement).
When CLK1 is driven by a single-ended input, connect CLK1 to VDD/2.
16
LOS1
O
The LOS1 status pin indicates whether a clock is present (LOS1 = 0) or not
present (LOS1 = 1) at the CLK1 pin.
17
VREF
O
Reference voltage.
18
VDDOA
P
Output Clock Voltage Supply—Bank A (Outputs: Q0 to Q2).
Bypass with 1.0 µF capacitor and place as close to the VDDOA pin as
possible.
19
VDDOB
P
Output Clock Voltage Supply—Bank B (Outputs: Q3 to Q5).
Bypass with 1.0 µF capacitor and place as close to the VDDOB pin as
possible.
20
Q5
O
Output clock 5 (complement).
21
Q5
O
Output clock 5.
22
SFOUTB[0]
I
Output signal format control pin for Bank B.
Three-level input control. Internally biased at VDD/2. Can be left floating or
tied to ground or VDD.
23
SFOUTB[1]
I
Output signal format control pin for Bank B.
Three-level input control. Internally biased at VDD/2. Can be left floating or
tied to ground or VDD.
*Note: Pin types are: I = input, O = output, P = power, GND = ground.
Rev. 1.0
27
Si53308
Table 24. Pin Descriptions (Continued)
Pin
Name
Type*
Description
24
DIVB
I
Output divider control pin for Bank B.
Three-level input control. Internally biased at VDD/2. Can be left floating or
tied to ground or VDD.
25
Q4
O
Output clock 4 (complement).
26
Q4
O
Output clock 4.
27
Q3
O
Output clock 3 (complement).
28
Q3
O
Output clock 3.
29
Q2
O
Output clock 2 (complement).
30
Q2
O
Output clock 2.
31
Q1
O
Output clock 1 (complement).
32
Q1
O
Output clock 1.
GND
Pad
GND
GND
Ground Pad.
Power supply ground and thermal relief.
*Note: Pin types are: I = input, O = output, P = power, GND = ground.
28
Rev. 1.0
Si53308
4. Ordering Guide
Part Number
Package
PB-Free, ROHS-6
Temperature
Si53308-B-GM
32-QFN
Yes
–40 to 85 C
Si53301/4-EVB
NA
Yes
–40 to 85 C
Rev. 1.0
29
Si53308
5. Package Outline
5.1. 5x5 mm 32-QFN Package Diagram
Figure 16. Si53308 5x5 mm 32-QFN Package Diagram
Table 25. Package Dimensions
Dimension
Min
Nom
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
b
0.18
0.25
0.30
D
D2
5.00 BSC
2.00
2.15
e
0.50 BSC
E
5.00 BSC
E2
2.00
2.15
2.30
L
0.30
0.40
0.50
aaa
0.10
bbb
0.10
ccc
0.08
ddd
0.10
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220.
30
2.30
Rev. 1.0
Si53308
6. PCB Land Pattern
6.1. 5x5 mm 32-QFN Package Land Pattern
Figure 17. Si53308 5x5 mm 32-QFN Package Land Pattern
Table 26. PCB Land Pattern
Dimension
Min
Max
Dimension
Min
Max
C1
4.52
4.62
X2
2.20
2.30
C2
4.52
4.62
Y1
0.59
0.69
Y2
2.20
2.30
E
X1
0.50 BSC
0.20
0.30
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to
be 60 m minimum, all the way around the pad.
Stencil Design
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder
paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
7. A 2x2 array of 0.75 mm square openings on 1.15 mm pitch should be used for the center ground pad.
Card Assembly
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
Rev. 1.0
31
Si53308
7. Top Marking
7.1. Si53308 Top Marking
7.2. Top Marking Explanation
Mark Method:
Laser
Font Size:
2.0 Point (28 mils)
Center-Justified
Line 1 Marking:
Device Part Number
53308
Line 2 Marking:
Device Revision/Type
B-GM
Line 3 Marking:
TTTTTT = Mfg Code
Manufacturing Code.
Line 4 Marking
Circle = 0.5 mm Diameter
Lower-Left Justified
Pin 1 Identifier
YY = Year
WW = Work Week
Corresponds to the year and work week of the
mold date.
32
Rev. 1.0
Si53308
DOCUMENT CHANGE LIST
Revision 0.9 to Revision 1.0
March 3, 2016




Updated Functional Block Diagram.
Updated Table 3, Table 10, and Table 17.
Updated Table 24, “Pin Descriptions,” on page 26.
Updated Figure 10.
Rev. 1.0
33
ClockBuilder Pro
One-click access to Timing tools,
documentation, software, source
code libraries & more. Available for
Windows and iOS (CBGo only).
www.silabs.com/CBPro
Timing Portfolio
www.silabs.com/timing
SW/HW
www.silabs.com/CBPro
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com