Si53305 Data Sheet

Si53305
1 : 1 0 L OW J I T T E R U NIVERSAL B U FF E R /L EVEL
T RANSLATOR WITH 2 : 1 I NPUT M UX A N D I NDIVIDUAL OE
Features
Applications
Q6
Q6
VDDOB
CLK_SEL
Q5
Q5
34
37
36
35
38
39
OE7
SFOUT[1]
OE2
SFOUT[0]
1
33
2
32
OE1
3
31
OE8
Q2
4
30
Q2
5
29
Q7
Q7
GND
Q1
6
27
NC
Q8
Q1
8
26
Q8
Q0
Q0
9
25
10
24
Q9
Q9
11
23
GND
21
OE9
22
20
CLK1
OE6
17
28
19
18
OE0
GND
PAD
7
OE5
CLK1
The Si53305 is an ultra low jitter ten output differential buffer with pin-selectable
output clock signal format and individual OE. The Si53305 features a 2:1 mux with
glitchless switching, making it ideal for redundant clocking applications. The
Si53305 utilizes Silicon Laboratories' advanced CMOS technology to fanout
clocks from dc to 725 MHz with guaranteed low additive jitter, low skew, and low
propagation delay variability. The Si53305 features minimal cross-talk and
provides superior supply noise rejection, simplifying low jitter clock distribution in
noisy environments. Independent core and output bank supply pins provide
integrated level translation without the need for external circuitry.
40
Description
41

42

43


Si53305
44


Storage
Telecom
Industrial
Servers
Backplane clock distribution
16


12

Pin Assignments
High-speed clock distribution
Ethernet switch/router
Optical Transport Network (OTN)
SONET/SDH
PCI Express Gen 1/2/3
VDD
OE3

15

Ordering Information:
See page 30.
CLK0
OE4
VREF

VDDOA

Q3

Q3
Q4
Q4

Low output-output skew: <70 ps
Low propagation delay variation:
<400 ps
Independent VDD and VDDO :
1.8/2.5/3.3 V
Excellent power supply noise
rejection (PSRR)
Selectable LVCMOS drive strength to
tailor jitter and EMI performance
Small size: 44-QFN (7 mm x 7 mm)
RoHS compliant, Pb-free
Industrial temperature range:
–40 to +85 °C
14

10 differential or 20 LVCMOS outputs
Ultra-low additive jitter: 45 fs rms

Wide frequency range:
dc to 725 MHz

Any-format input with pin selectable
output formats: LVPECL, Low Power 
LVPECL, LVDS, CML, HCSL,
LVCMOS

2:1 mux with hot-swappable inputs
Glitchless input clock switching

(1 MHz to 725 MHz)

Individual output enable

Synchronous output enable
CLK0

13

Patents pending
Functional Block Diagram
VREF
Vref
Generator
Power
Supply
Filtering
VDDOA
OE[0:4]
Q0, Q1, Q2, Q3, Q4
CLK0
Q0, Q1, Q2, Q3, Q4
CLK0
SFOUT[1:0]
VDDOB
CLK1
OE[5:9]
CLK1
CLK_SEL
Rev. 1.0 9/15
Q5, Q6, Q7, Q8, Q9
Switching
Logic
Q5, Q6, Q7, Q8, Q9
Copyright © 2015 by Silicon Laboratories
Si53305
Si53305
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1. Universal, Any-Format Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. Input Bias Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. Voltage Reference (VREF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4. Universal, Any-Format Output Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5. Glitchless Clock Input Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6. Synchronous Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7. Input Mux and Output Enable Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8. Power Supply (VDD and VDDOX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9. Output Clock Termination Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.10. AC Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12. Input Mux Noise Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.13. Power Supply Noise Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3. Pin Description: 44-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1. 7x7 mm 44-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
6.1. 7x7 mm 44-QFN Package Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1. Si53305 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
2
Rev. 1.0
Si53305
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Ambient Operating
Temperature
Supply Voltage Range*
Output Buffer Supply
Voltage*
Symbol
Test Condition
Min
Typ
Max
Unit
–40
—
85
°C
1.71
1.8
1.89
V
2.38
2.5
2.63
V
2.97
3.3
3.63
V
LVPECL, low power LVPECL,
LVCMOS
2.38
2.5
2.63
V
2.97
3.3
3.63
V
HCSL
2.97
3.3
3.63
V
LVDS, CML, LVCMOS
1.71
1.8
1.89
V
2.38
2.5
2.63
V
2.97
3.3
3.63
V
2.38
2.5
2.63
V
2.97
3.3
3.63
V
2.97
3.3
3.63
V
TA
VDD
VDDOX
LVDS, CML
LVPECL, low power LVPECL
HCSL
*Note: Core supply VDD and output buffer supplies VDDO are independent. LVCMOS clock input is not supported for VDD =
1.8V but is supported for LVCMOS clock output for VDDOX = 1.8V. LVCMOS outputs at 1.5V and 1.2V can be
supported via a simple resistor divider network. See “2.9.1. LVCMOS Output Termination To Support 1.5V and 1.2V”
Table 2. Input Clock Specifications
(VDD=1.8 V  5%, 2.5 V  5%, or 3.3 V  10%, TA=–40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Differential Input Common
Mode Voltage
VCM
VDD = 2.5 V 5%, 3.3 V 10%
0.05
—
—
V
Differential Input Swing
(peak-to-peak)
VIN
0.2
—
2.2
V
LVCMOS Input High Voltage
VIH
VDD = 2.5 V 5%, 3.3 V 10%
VDD x 0.7
—
—
V
LVCMOS Input Low Voltage
VIL
VDD = 2.5 V 5%, 3.3 V 10%
—
—
VDD x
0.3
V
Input Capacitance
CIN
CLK0 and CLK1 pins with
respect to GND
—
5
—
pF
Rev. 1.0
3
Si53305
Table 3. DC Common Characteristics
(VDD = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Supply Current
Output Buffer
Supply Current
(Per Clock Output)
@100 MHz (diff)
@200 MHz (CMOS)
Symbol
Test Condition
Min
Typ
Max
Unit
—
65
100
mA
LVPECL (3.3 V)
—
35
—
mA
Low Power LVPECL (3.3 V)*
—
35
—
mA
LVDS (3.3 V)
—
20
—
mA
CML (3.3 V)
—
30
—
mA
HCSL, 100 MHz, 2 pF load (3.3 V)
—
35
—
mA
CMOS (1.8 V, SFOUT = Open/0),
per output, CL = 5 pF, 200 MHz
—
5
—
mA
CMOS (2.5 V, SFOUT = Open/0),
per output, CL = 5 pF, 200 MHz
—
8
—
mA
CMOS (3.3 V, SFOUT = 0/1),
per output, CL = 5 pF, 200 MHz
—
15
—
mA
IDD
IDDOX
Input Clock Voltage
Reference
VREF
VREF pin
IREF = +/-500 A
—
VDD/2
—
V
Input High Voltage
VIH
SFOUT, CLK_SEL, OEx
0.8 x
VDD
—
—
V
Input Mid Voltage
VIM
SFOUT, 3-level input pins
0.45 x
VDD
0.5 x
VDD
0.55 x
VDD
V
Input Low Voltage
VIL
SFOUT, CLK_SEL, OEx
—
—
0.2 x
VDD
V
Internal Pull-down
Resistor
RDOWN
CLK_SEL, SFOUT
—
25
—
k
RUP
OEx, SFOUT
—
25
—
k
Internal Pull-up
Resistor
*Note: Low-power LVPECL mode supports an output termination scheme that will reduce overall system power.
4
Rev. 1.0
Si53305
Table 4. Output Characteristics (LVPECL)
(VDDOX = 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Symbol
Output DC Common Mode
Voltage
Min
Typ
Max
Unit
VCOM
VDDOX – 1.595
—
VDDOX – 1.245
V
VSE
0.55
0.80
1.050
V
Single-Ended
Output Swing*
Test Condition
*Note: Unused outputs can be left floating. Do not short unused outputs to ground.
Table 5. Output Characteristics (Low Power LVPECL)
(VDDOX = 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Output DC Common
Mode Voltage
VCOM
RL = 100 across Qn and Qn
VDDOX – 1.895
VSE
RL = 100 across Qn and Qn
0.25
Single-Ended
Output Swing
Typ
0.60
Max
Unit
VDDOX – 1.275
V
0.85
V
Table 6. Output Characteristics—CML
(VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Single-Ended Output
Swing
VSE
Terminated as shown in Figure 9
(CML termination).
300
400
550
mV
Rev. 1.0
5
Si53305
Table 7. Output Characteristics—LVDS
(VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Single-Ended Output
Swing
VSE
RL = 100 Ω across QN and QN
247
—
490
mV
Output Common
Mode Voltage
(VDDO = 2.5 V or
3.3V)
VCOM1
VDDOX = 2.38 to 2.63 V, 2.97 to
3.63 V, RL = 100 Ω across QN
and QN
1.10
1.25
1.35
V
Output Common
Mode Voltage
(VDDO = 1.8 V)
VCOM2
VDDOX = 1.71 to 1.89 V,
RL = 100 Ω across QN
and QN
0.85
0.97
1.25
V
Table 8. Output Characteristics—LVCMOS
(VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Output Voltage High*
Output Voltage Low*
Test Condition
Min
Typ
Max
Unit
VOH
0.75 x VDDOX
—
—
V
VOL
—
—
0.25 x VDDOX
V
*Note: IOH and IOL per the Output Signal Format Table for specific VDDOX and SFOUT settings.
Table 9. Output Characteristics—HCSL
(VDDOX = 3.3 V ± 10%, TA = –40 to 85 °C))
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output Voltage High
VOH
RL = 50 Ω to GND
550
700
900
mV
Output Voltage Low
VOL
RL = 50 Ω to GND
–150
0
150
mV
Single-Ended
Output Swing
VSE
RL = 50 Ω to GND
550
700
850
mV
Crossing Voltage
VC
RL = 50 Ω to GND
250
350
550
mV
6
Rev. 1.0
Si53305
Table 10. AC Characteristics
(VDD = VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Frequency
Duty Cycle
Note: 50% input duty cycle.
Symbol
Test Condition
Min
Typ
Max
Unit
F
LVPECL, low power LVPECL, LVDS,
CML, HCSL
(Glitchless switching to a min of 1
MHz)
dc
—
725
MHz
LVCMOS
(Glitchless switching to a min of 1
MHz)
dc
—
200
MHz
200 MHz, 20/80%TR/TF<10% of
period (LVCMOS)
(12 mA drive)
40
50
60
%
20/80% TR/TF<10% of period
(Differential)
48
50
52
%
DC
Minimum Input Clock
Slew Rate1
SR
Required to meet prop delay and
additive jitter specifications
(20–80%)
0.75
—
—
V/ns
Output Rise/Fall Time
TR/TF
LVDS, 20/80%
—
—
325
ps
LVPECL, 20/80%
—
—
350
ps
HCSL1, 20/80%
—
—
280
ps
CML, 20/80%
—
—
350
ps
Low-Power LVPECL, 20/80%
—
—
325
ps
LVCMOS 200 MHz, 20/80%,
2 pF load
—
—
750
ps
500
—
—
ps
LVCMOS (12mA drive with no load)
1250
2000
2750
ps
LVPECL
600
800
1000
ps
LVDS
600
800
1000
ps
F = 1 MHz
—
2500
—
ns
F = 100 MHz
—
30
—
ns
F = 725 MHz
—
5
—
ns
Minimum Input Pulse
Width
Propagation Delay
Output Enable Time
TW
TPLH,
TPHL
TEN
Notes:
1. HCSL measurements were made with receiver termination. See Figure 9 on page 19.
2. Output to Output skew specified for outputs with an identical configuration.
3. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and
equal load condition. Using the same type of inputs on each device, the outputs are measured at the differential cross
points.
4. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDDOX (3.3 V = 100 mVPP) and noise spur
amplitude measured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for further details.
Rev. 1.0
7
Si53305
Table 10. AC Characteristics (Continued)
(VDD = VDDOX = 1.8 V 5%, 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Output Disable Time
Output to Output Skew2
Part to Part Skew
3
Power Supply Noise
Rejection4
Symbol
Test Condition
Min
Typ
Max
Unit
TDIS
F = 1 MHz
—
2000
—
ns
F = 100 MHz
—
30
—
ns
F = 725 MHz
—
5
—
ns
LVCMOS (12 mA drive to no load)
—
50
120
ps
LVPECL
—
35
70
ps
LVDS
—
35
70
ps
TPS
Differential
—
—
150
ps
PSRR
10 kHz sinusoidal noise
—
–63
—
dBc
100 kHz sinusoidal noise
—
–62
—
dBc
500 kHz sinusoidal noise
—
–58
—
dBc
1 MHz sinusoidal noise
—
–55
—
dBc
TSK
Notes:
1. HCSL measurements were made with receiver termination. See Figure 9 on page 19.
2. Output to Output skew specified for outputs with an identical configuration.
3. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and
equal load condition. Using the same type of inputs on each device, the outputs are measured at the differential cross
points.
4. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDDOX (3.3 V = 100 mVPP) and noise spur
amplitude measured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for further details.
8
Rev. 1.0
Si53305
Table 11. Additive Jitter, Differential Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Amplitude
VIN
(Single-Ended,
Peak-to-Peak)
Differential
Clock Format
20%-80% Slew
Rate (V/ns)
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
Typ
Max
3.3
725
Differential
0.15
0.637
LVPECL
45
65
3.3
725
Differential
0.15
0.637
LVDS
50
65
3.3
156.25
Differential
0.5
0.458
LVPECL
160
185
3.3
156.25
Differential
0.5
0.458
LVDS
150
200
2.5
725
Differential
0.15
0.637
LVPECL
45
65
2.5
725
Differential
0.15
0.637
LVDS
50
65
2.5
156.25
Differential
0.5
0.458
LVPECL
145
185
2.5
156.25
Differential
0.5
0.458
LVDS
145
195
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. AC-coupled differential inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.
Rev. 1.0
9
Si53305
Table 12. Additive Jitter, Single-Ended Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Amplitude
VIN
(single-ended,
peak to peak)
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
SE 20%-80%
Slew Rate
(V/ns)
Clock Format
Typ
Max
3.3
200
Single-ended
1.70
1
LVCMOS4
120
160
3.3
156.25
Single-ended
2.18
1
LVPECL
160
185
3.3
156.25
Single-ended
2.18
1
LVDS
150
200
3.3
156.25
Single-ended
2.18
1
LVCMOS4
130
180
2.5
200
Single-ended
1.70
1
LVCMOS5
120
160
2.5
156.25
Single-ended
2.18
1
LVPECL
145
185
2.5
156.25
Single-ended
2.18
1
LVDS
145
195
2.5
156.25
Single-ended
2.18
1
LVCMOS5
140
180
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. DC-coupled single-ended inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.
4. Drive Strength: 12 mA, 3.3 V (SFOUT = 11). LVCMOS jitter is measured single-ended.
5. Drive Strength: 9 mA, 2.5 V (SFOUT = 11). LVCMOS jitter is measured single-ended.
PSPL 5310A
CLK SYNTH
SMA103A
50
Si53305
DUT
Balun
PSPL 5310A
CLKx
AG E5052 Phase Noise
Analyzer
50ohm
CLKx
50
Balun
Figure 1. Differential Measurement Method Using a Balun
10
Rev. 1.0
Si53305
Table 13. Thermal Conditions
Parameter
Symbol
Test Condition
Value
Unit
Thermal Resistance,
Junction to Ambient
JA
Still air
49.6
°C/W
Thermal Resistance,
Junction to Case
JC
Still air
32.3
°C/W
Table 14. Absolute Maximum Ratings
Parameter
Symbol
Storage Temperature
Min
Typ
Max
Unit
TS
–55
—
150
C
Supply Voltage
VDD
–0.5
—
3.8
V
Input Voltage
VIN
–0.5
—
VDD+ 0.3
V
Output Voltage
VOUT
—
—
VDD+ 0.3
V
ESD Sensitivity
HBM
—
—
2000
V
ESD Sensitivity
CDM
—
—
500
V
Peak Soldering
Reflow Temperature
TPEAK
—
—
260
C
—
—
125
C
Maximum Junction
Temperature
Test Condition
HBM, 100 pF, 1.5 k
Pb-Free; Solder reflow profile
per JEDEC J-STD-020
TJ
Note: Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation
specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Rev. 1.0
11
Si53305
2. Functional Description
The Si53305 is a low jitter, low skew 1:10 differential buffer with an integrated 2:1 input mux and individual OE
control. The device has a universal input that accepts most common differential or LVCMOS input signals. A clock
select pin is used to select the active input clock. The Si53305 features two control pins to select the signal format
and LVCMOS drive strength settings. In addition, each clock output has an independent OE pin for individual clock
enable/disable.
2.1. Universal, Any-Format Input
The universal input stage enables simple interfacing to a wide variety of clock formats, including LVPECL, lowpower LVPECL, LVCMOS, LVDS, HCSL, and CML. Tables 15 and 16 summarize the various ac- and dc-coupling
options supported by the device. For the best high-speed performance, the use of differential formats is
recommended. For both single-ended and differential input clocks, the fastest possible slew rate is recommended
as low slew rates can increased the noise floor and degrade jitter performance. Though not required, a minimum
slew rate of 0.75 V/ns is recommended for differential formats and 1.0 V/ns for single-ended formats. See “AN766:
Understanding and Optimizing Clock Buffer’s Additive Jitter Performance” for more information.
Table 15. LVPECL, LVCMOS, and LVDS Input Clock Options
LVPECL
LVCMOS
LVDS
AC-Couple
DC-Couple
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
N/A
N/A
No
No
Yes
No
2.5/3.3 V
Yes
Yes
No
Yes
Yes
Yes
Table 16. HCSL and CML Input Clock Options
HCSL
CML
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
No
No
Yes
No
2.5/3.3 V
Yes (3.3 V)
Yes (3.3 V)
Yes
No
0.1 µF
Si53305
CLKx
100 
CLKx
0.1 µF
Figure 2. Differential HCSL, LVPECL, Low-Power LVPECL, LVDS, CML AC-Coupled Input
Termination
VDD
1 k
VDDO= 3.3 V or 2.5 V
CMOS
Driver
CLKx
50
VDD
Si53305
CLKx
Rs
VTERM = VDD/2
1 k
VREF
Figure 3. LVCMOS DC-Coupled Input Termination
12
Rev. 1.0
Si53305
VDDO
DC Coupled LVPECL Termination Scheme 1
R1
VDD
R1
VDDO = 3.3 V or 2.5 V
Si 53305
“Standard”
LVPECL
Driver
CLKx
50
CLKx
50
R2
VTERM = VDDO – 2V
R1 // R2 = 50 Ohm
R2
3.3 V LVPECL: R1 = 127 Ohm, R2 = 82. 5 Ohm
2.5 V LVPECL: R1 = 250 Ohm, R2 = 62. 5 Ohm
DC Coupled LVPECL Termination Scheme 2
VDD
VDDO = 3.3 V or 2.5 V
Si 53305
50
“Standard”
LVPECL
Driver
CLKx
CLKx
50
50
50
VTERM = VDDO – 2V
DC Coupled LVDS Termination
VDD
VDDO = 3.3 V or 2.5 V
Si 53305
CLKx
50
Standard
LVDS
Driver
CLKx
50
100
DC Coupled HCSL Termination Scheme
VDDO = 3.3V
Standard
HCSL Driver
VDD
33
Si 53305
50
CLKx
CLKx
33
50
50
50
Note: 33 Ohm series termination is optional depending on the location of the receiver.
Figure 4. Differential DC-Coupled Input Terminations
Rev. 1.0
13
Si53305
2.2. Input Bias Resistors
Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected.
The noninverting input is biased with a 18.75 k pulldown to GND and a 75 k pullup to VDD. The inverting input is
biased with a 75 k pullup to VDD.
VDD
RPU
RPU
+
RPD
CLK0 or
CLK1
–
RPU = 75 kohm
RPD = 18.75 kohm
Figure 5. Input Bias Resistors
2.3. Voltage Reference (VREF)
The VREF pin is used to bias the input receiver as shown in Figure 6 when a single-ended input clock (such as
LVCMOS) is used. Note that VREF=VDD/2 and should be compatible with the VCM rating of the single-ended input
clock driving the CLK0 or CLK1 inputs. To optimize jitter and duty cycle performance, use the circuit in Figure 3.
VREF pin should be left floating when differential clocks are used.
VDDO = 3.3 V or 2.5 V
CLKx
50
Si53305
Rs
CLKx
VREF
100 nF
Figure 6. Using Voltage Reference with Single-Ended Input Clock
14
Rev. 1.0
Si53305
2.4. Universal, Any-Format Output Buffer
The highly flexible output drivers support a wide range of clock signal formats, including LVPECL, low power
LVPECL, LVDS, CML, HCSL, and LVCMOS. SFOUT[1] and SFOUT[0] are 3-level inputs that can be pin-strapped
to select the Bank A and Bank B clock signal formats. This feature enables the device to be used for format
translation in addition to clock distribution, minimizing the number of unique buffer part numbers required in a
typical application and simplifying design reuse. For EMI reduction applications, four LVCMOS drive strength
options are available for each VDDO setting.
Table 17. Output Signal Format Selection
SFOUT[1]
SFOUT[0]
VDDOX = 3.3 V
VDDOX = 2.5 V
VDDOX = 1.8 V
Open*
Open*
LVPECL
LVPECL
N/A
0
0
LVDS
LVDS
LVDS
0
1
LVCMOS, 24 mA drive LVCMOS, 18 mA drive
LVCMOS, 12 mA drive
1
0
LVCMOS, 18 mA drive LVCMOS, 12 mA drive
LVCMOS, 9 mA drive
1
1
LVCMOS, 12 mA drive LVCMOS, 9 mA drive
LVCMOS, 6 mA drive
Open*
0
LVCMOS, 6 mA drive
LVCMOS, 4 mA drive
LVCMOS, 2 mA drive
Open*
1
LVPECL low power
LVPECL low power
N/A
0
Open*
CML
CML
CML
1
Open*
HCSL
N/A
N/A
*Note: SFOUT[1] and SFOUT[0] are 3-level input pins. Tie low for “0” setting. Tie high for “1” setting. When left open,
the pin floats to VDD/2.
Rev. 1.0
15
Si53305
2.5. Glitchless Clock Input Switching
The input clock mux features glitchless switching between two valid input clocks. Figure 7 illustrates that switching
between input clocks does not generate runt pulses or glitches at the output.
CLK1
CLK0
CLK_SEL
Note 1
Note 2
Note 3
Qn
Notes:
1. Qn continues with CLK0 for 2-3 falling edges of CLK0.
2. Qn is disabled low for 2-3 falling edges of CLK1 .
3. Qn starts on the first rising edge after 1 + 2.
Figure 7. Glitchless Input Clock Switch
Glitchless switching between 2 input clocks that are up to 10x different in frequency and between 1 MHz and 725
MHz is supported. When a switchover to a new clock is made, the output will disable low after two or three clock
cycles of the previously-selected input clock. The outputs will remain low for up to three clock cycles of the newlyselected clock, after which the outputs will start from the newly-selected input. In the case a switchover to an
absent clock is made, the output will glitchlessly stop low and wait for edges of the newly selected clock. A
switchover from an absent clock to a live clock will also be glitchless. Note that the CLK_SEL input should not be
toggled faster than 1/250th the frequency of the slower input clock.
2.6. Synchronous Output Enable
This buffer features a synchronous output enable (disable) feature. Output enable is sampled and synchronized on
the falling edge of the input clock. This feature prevents runt pulses from being generated when the outputs are
enabled or disabled.
When OE is low, Q is held low and Q is held high for differential output formats. For LVCMOS output format
options, both Q and Q are held low when OE is set low. The device outputs are enabled when the output enable pin
is unconnected. See Table 10, “AC Characteristics,” on page 7 for output enable and output disable times.
2.7. Input Mux and Output Enable Logic
Two clock inputs for applications that need to select between one of two clock sources. The CLK_SEL pin selects
the active clock input. The table below summarizes the input and output clock based on the input mux and output
enable pin settings.
16
Rev. 1.0
Si53305
Table 18. Input Mux and Output Enable Logic
CLK_SEL
CLK0
CLK1
OE1
Q2
L
L
X
H
L
L
H
X
H
H
H
X
L
H
L
H
X
H
H
H
X
X
X
L
L3
Notes:
1. Output enable active high
2. On the next negative transition of CLK0 or CLK1.
3. Single-end: Q = low, Q = low
Differential: Q = low, Q = high
2.8. Power Supply (VDD and VDDOX)
The device includes separate core (VDD) and output driver supplies (VDDOX). This feature allows the core to
operate at a lower voltage than VDDO, reducing current consumption in mixed supply applications. The core VDD
supports 3.3 V, 2.5 V, or 1.8 V. Each output bank has its own VDDOX supply, supporting 3.3 V, 2.5 V, or 1.8 V.
Rev. 1.0
17
Si53305
2.9. Output Clock Termination Options
The recommended output clock termination options are shown below.
VDDO
DC Coupled LVPECL Termination Scheme 1
R1
R1
VDDO = 3.3V or 2.5V
Si53305
VDD = VDDO
50
Q
LVPECL
Receiver
Qn
50
R2
VTERM = VDDO – 2V
R1 // R2 = 50 Ohm
R2
3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm
2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm
DC Coupled LVPECL Termination Scheme 2
VDDO = 3.3V or 2.5V
Si53305
VDD = VDDO
50
Q
LVPECL
Receiver
Qn
50
50
50
VTERM = VDDO – 2V
VDDO
AC Coupled LVPECL Termination Scheme 1
R1
VDDO = 3.3V or 2.5V
Si53305
R1
0.1 uF
VDD = 3.3V or 2.5V
50
Q
LVPECL
Receiver
Qn
50
0.1 uF
Rb
R2
Rb
R2
VBIAS = VDD – 1.3V
R1 // R2 = 50 Ohm
3.3V LVPECL: R1 = 82.5 Ohm, R2 = 127 Ohm, Rb = 120 Ohm
2.5V LVPECL: R1 = 62.5 Ohm, R2 = 250 Ohm, Rb = 90 Ohm
AC Coupled LVPECL Termination Scheme 2
V DDO = 3.3V or 2.5V
Si53305
0.1 uF
VDD = 3.3V or 2.5V
50
Q
LVPECL
Receiver
Qn
50
0.1 uF
Rb
Rb
50
50
V BIAS = V DD – 1.3 V
3.3V LVPECL: Rb = 120 Ohm
2.5V LVPECL: Rb = 90 Ohm
Figure 8. LVPECL Output Termination
18
Rev. 1.0
Si53305
DC Coupled LVDS and Low-Power LVPECL Termination
VDDO = 3.3 V or 2.5 V, or 1.8 V (LVDS only)
Si53305
VDD
50
Q
Standard
LVDS
Receiver
Qn
50
100
AC Coupled LVDS and Low-Power LVPECL Termination
VDDO = 3.3 V or 2.5 V or 1.8 V (LVDS only)
Si53305
0.1 uF
VDD
50
Q
Standard
LVDS
Receiver
Qn
50
0.1 uF
100
AC Coupled CML Termination
VDDO = 3.3V or 2.5V or 1.8V
Si53305
0.1 uF
VDD
50
Q
Standard
CML
Receiver
100
Qn
50
0.1 uF
DC Coupled HCSL Receiver Termination
VDDO = 3.3V
Si53305
VDD
50
Q
Standard
HCSL
Receiver
Qn
50
50
50
DC Coupled HCSL Source Termination
VDDO = 3.3V
Si53305
VDD
42.2
50
Q
Qn
42.2
50
86.6
Standard
HCSL
Receiver
86.6
Figure 9. LVDS, CML, HCSL, and Low-Power LVPECL Output Termination
Rev. 1.0
19
Si53305
CMOS
Receivers
Si53305
CMOS Driver
Rs
Zout
Zo
50
Figure 10. LVCMOS Output Termination
Table 19. Recommended LVCMOS RS Series Termination
SFOUT[1]
SFOUT[0]
RS (ohms)
3.3 V
2.5 V
1.8 V
0
1
33
33
33
1
0
33
33
33
1
1
33
33
0
Open
0
0
0
0
2.9.1. LVCMOS Output Termination To Support 1.5V and 1.2V
LVCMOS clock outputs are natively supported at 1.8V, 2.5V, and 3.3V. However, 1.2V and 1.5V LVCMOS clock
outputs can be supported via a simple resistor divider network that will translate the buffer’s 1.8V output to a lower
voltage as shown in Figure 11 below.
VDDOx= 1.8V
R1
50
R2
LVCMOS
1.5V LVCMOS: R1 = 43 ohms, R2 = 300 ohms, IOUT = 12mA
1.2V LVCMOS: R1 = 58 ohms, R2 = 150 ohms, IOUT = 12mA
R1
50
R2
Figure 11. 1.5V and 1.2V LVCMOS Low-Voltage Output Termination
20
Rev. 1.0
Si53305
2.10. AC Timing Waveforms
TPHL
TSK
VPP/2
CLK
Q
VPP/2
QN
QM
VPP/2
VPP/2
TPLH
TSK
Propagation Delay
Output-Output Skew
TF
Q
80% VPP
20% VPP
80% VPP
20% VPP
Q
Rise/Fall Time
TR
Figure 12. AC Waveforms
Rev. 1.0
21
Si53305
2.11. Typical Phase Noise Performance
Each of the following three figures shows three phase noise plots superimposed on the same diagram.
Source Jitter: Reference clock phase noise.
Total Jitter (SE): Combined source and clock buffer phase noise measured as a single-ended output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz.
Total Jitter (Diff): Combined source and clock buffer phase noise measured as a differential output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz. The differential measurement as shown in each figure is
made using a balun. See Figure 1 on page 10.
Note: To calculate the total RMS phase jitter when adding a buffer to your clock tree, use the root-sum-square (RSS).
The total jitter is a measure of the source plus the buffer's additive phase jitter. The additive jitter (rms) of the buffer
can then be calculated (via root-sum-square addition).
Figure 13. Source, Additive, and Total Jitter (156.25 MHz)
Table 20. Source, Additive, and Total Jitter (156.25 MHz)
22
Frequency
(MHz)
Diff’l Input
Slew Rate
(V/ns)
Source
Jitter
(fs)
Total Jitter
(SE)
(fs)
Additive Jitter
(SE)
(fs)
Total Jitter
(Diff’l)
(fs)
Additive Jitter
(Diff’l)
(fs)
156.25
1.0
38.2
147.8
142.8
118.3
112.0
Rev. 1.0
Si53305
Figure 14. Source, Additive, and Total Jitter (312.5 MHz)
Table 21. Source, Additive, and Total Jitter (312.5 MHz)
Frequency
(MHz)
Diff’l Input
Slew Rate
(V/ns)
Source
Jitter
(fs)
Total Jitter
(SE)
(fs)
Additive Jitter
(SE)
(fs)
Total Jitter
(Diff’l)
(fs)
Additive Jitter
(Diff’l)
(fs)
312.5
1.0
33.10
94.39
88.39
83.80
76.99
Rev. 1.0
23
Si53305
Figure 15. Source, Additive, and Total Jitter (625 MHz)
Table 22. Source, Additive, and Total Jitter (625 MHz)
24
Frequency
(MHz)
Diff’l Input
Slew Rate
(V/ns)
Source
Jitter
(fs)
Total Jitter
(SE)
(fs)
Additive Jitter
(SE)
(fs)
Total Jitter
(Diff’l)
(fs)
Additive Jitter
(Diff’l)
(fs)
625
1.0
23.4
56.5
51.5
58.5
53.6
Rev. 1.0
Si53305
2.12. Input Mux Noise Isolation
The buffer’s input clock mux is designed to minimize crosstalk between the CLK0 and CLK1. This improves phase
jitter performance when clocks are present at both the CLK0 and CLK1 inputs. Figure 16 below is a measurement
the input mux’s noise isolation.
LVPECL [email protected];
Selected clk is active
Unselected clk is static
Mux Isolation = 61dB
LVPECL [email protected];
Selected clk is static
Unselected clk is active
Figure 16. Input Mux Noise Isolation
2.13. Power Supply Noise Rejection
The device supports on-chip supply voltage regulation to reject noise present on the power supply, simplifying low
jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs and
SoCs and may reduce board-level filtering requirements. For more information, see “AN491: Power Supply
Rejection for Low Jitter Clocks”.
Rev. 1.0
25
Si53305
Q3
Q3
Q4
Q4
CLK_SEL
Q5
Q5
Q6
Q6
VDDOB
41
39
38
36
34
42
35
43
37
44
40
VDDOA
3. Pin Description: 44-Pin QFN
OE2
SFOUT[0]
1
33
2
32
OE7
SFOUT[1]
OE1
3
31
OE8
Q2
4
30
Q2
5
29
Q7
Q7
GND
6
Q1
7
Q1
Q0
Q0
23
OE9
22
GND
21
20
CLK1
OE6
19
28
OE5
CLK1
VREF
18
11
17
Q9
16
24
15
Q9
10
CLK0
OE4
25
CLK0
Q8
9
14
26
13
8
OE3
NC
Q8
12
27
VDD
OE0
GND
PAD
Table 23. Pin Description
Pin #
Name
1
OE2
2
SFOUT[0]
3
OE1
4
Q2
Output clock 2 (complement).
5
Q2
Output clock 2.
6
GND
26
Description
Output enable-Output 2.
When OE2 = high, the Q2 is enabled.
When OE2 = low, Q2 is held low, and Q2 is held high for differential formats.
For LVCMOS, both Q2 and Q2 are held low when OE2 is set low.
OE2 contains an internal pull-up resistor.
Output signal format control pin [0].
Three-level input control. Internally biased at VDD/2. Can be left floating or tied to
ground or VDD.
Output enable-Output 1.
When OE1 = high, the Q1 is enabled.
When OE1 = low, Q1 is held low, and Q1 is held high for differential formats.
For LVCMOS, both Q1 and Q1 are held low when OE1 is set low.
OE1 contains an internal pull-up resistor.
Ground.
Rev. 1.0
Si53305
Table 23. Pin Description (Continued)
Pin #
Name
Description
7
Q1
Output clock 1 (complement).
8
Q1
Output clock 1.
9
Q0
Output clock 0 (complement).
10
Q0
Output clock 0.
11
OE0
Output enable-Output 0.
When OE0 = high, Q0 and Q0 outputs are enabled.
When OE0 = low, Q0 is held low, and Q0 is held high for differential formats.
For LVCMOS, both Q0 and Q0 are held low when OE0 is set low.
OE0 contains an internal pull-up resistor.
12
VDD
Core voltage supply.
Bypass with 1 µF capacitor placed as close to the VDD pin as possible.
13
OE3
Output Enable 3.
When OE3 = high, Q3 and Q3 outputs are enabled.
When OE3 = low, Q3 is held low, and Q3 is held high for differential formats.
For LVCMOS, both Q3 and Q3 are held low when OE3 is set low.
OE3 contains an internal pull-up resistor.
14
CLK0
Input clock 0.
15
CLK0
Input clock 0 (complement).
When CLK0 is driven by a single-ended LVCMOS input, connect CLK0 to VDD/2.
16
OE4
Output Enable 4.
When OE4 = high, Q4 and Q4 outputs are enabled.
When OE4 = low, Q4 is held low, and Q4 is held high for differential formats.
For LVCMOS, both Q4 and Q4 are held low when OE4 is set low.
OE4 contains an internal pull-up resistor.
17
VREF
Reference voltage for single-ended CMOS clocks.
VREF is an output voltage and is equal to VDD/2. See “2.3. Voltage Reference (VREF)”
for more details.
18
OE5
Output Enable 5.
When OE5 = high, Q5 and Q5 outputs are enabled.
When OE5 = low, Q5 is held low, and Q5 is held high for differential formats.
For LVCMOS, both Q5 and Q5 are held low when OE5 is set low.
OE5 contains an internal pull-up resistor.
19
CLK1
Input clock 1.
20
CLK1
Input clock 1 (complement).
When CLK1 is driven by a single-ended LVCMOS input, connect CLK1 to VDD/2.
Rev. 1.0
27
Si53305
Table 23. Pin Description (Continued)
Pin #
Name
21
OE6
Output Enable 6.
When OE6 = high, Q6 and Q6 outputs are enabled.
When OE6 = low, Q6 is held low, and Q6 is held high for differential formats.
For LVCMOS, both Q6 and Q6 are held low when OE6 is set low.
OE6 contains an internal pull-up resistor.
22
GND
Ground.
23
OE9
Output Enable 9.
When OE9 = high, Q9 and Q9 outputs are enabled.
When OE9 = low, Q9 is held low, and Q9 is held high for differential formats.
For LVCMOS, both Q9 and Q9 are held low when OE9 is set low.
OE9 contains an internal pull-up resistor.
24
Q9
Output clock 9 (complement).
25
Q9
Output clock 9.
26
Q8
Output clock 8 (complement).
27
Q8
Output clock 8.
28
NC
No connect.
29
Q7
Output clock 7 (complement).
30
Q7
Output clock 7.
31
OE8
32
SFOUT[1]
33
OE7
34
VDDOB
35
Q6
Output clock 6 (complement).
36
Q6
Output clock 6.
37
Q5
Output clock 5 (complement).
38
Q5
Output clock 5.
28
Description
Output Enable 8.
When OE8 = high, Q8 and Q8 outputs are enabled.
When OE8 = low, Q8 is held low, and Q8 is held high for differential formats.
For LVCMOS, both Q8 and Q8 are held low when OE8 is set low.
OE8 contains an internal pull-up resistor.
Output signal format control pin [1].
Three-level input control. Internally biased at VDD/2. Can be left floating or tied to
ground or VDD.
Output Enable 7.
When OE7 = high, Q7 and Q7 outputs are enabled.
When OE7 = low, Q7 is held low, and Q7 is held high for differential formats.
For LVCMOS, both Q7 and Q7 are held low when OE7 is set low.
OE7 contains an internal pull-up resistor.
Output Clock Voltage Supply—Bank B (Outputs: Q5 to Q9).
Bypass with a 1µF capacitor placed as close to the pin as possible.
Rev. 1.0
Si53305
Table 23. Pin Description (Continued)
Pin #
Name
Description
39
CLK_SEL
40
Q4
Output clock 4 (complement).
41
Q4
Output clock 4.
42
Q3
Output clock 3 (complement).
43
Q3
Output clock 3.
44
VDDOA
GND
Pad
GND
MUX input select pin (LVCMOS).
Clock inputs are switched without the introduction of glitches.
When CLK_SEL is high, CLK1 is selected.
When CLK_SEL is low, CLK0 is selected.
CLK_SEL contains an internal pull-down resistor.
Output Voltage Supply—Bank A (Outputs: Q0 to Q4).
Bypass with a 1µF capacitor placed as close to the pin as possible.
Ground Pad
Power supply ground and thermal relief.
Rev. 1.0
29
Si53305
4. Ordering Guide
30
Part Number
Package
PB-Free, ROHS-6
Temperature
Si53305-B-GM
44-QFN
Yes
–40 to 85 C
Rev. 1.0
Si53305
5. Package Outline
5.1. 7x7 mm 44-QFN Package Diagram
Figure 17. Si53305 7x7 mm 44-QFN Package Diagram
Rev. 1.0
31
Si53305
Table 24. Package Diagram Dimensions
Dimension
Min
Nom
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
b
0.18
0.25
0.30
D
D2
7.00 BSC
2.65
2.80
e
0.50 BSC
E
7.00 BSC
2.95
E2
2.65
2.80
2.95
L
0.30
0.40
0.50
aaa
—
—
0.10
bbb
—
—
0.10
ccc
—
—
0.08
ddd
—
—
0.10
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small
Body Components.
32
Rev. 1.0
Si53305
6. PCB Land Pattern
6.1. 7x7 mm 44-QFN Package Land Pattern
Figure 18. Si53305 7x7 mm 44-QFN Package Land Pattern
Table 25. PCB Land Pattern
Dimension
Min
Max
Dimension
Min
Max
C1
6.80
6.90
X2
2.85
2.95
C2
6.80
6.90
Y1
0.75
0.85
Y2
2.85
2.95
E
X1
0.50 BSC
0.20
0.30
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to
be 60 m minimum, all the way around the pad.
Stencil Design
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder
paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
4. A 2x2 array of 1.0 mm square openings on 1.45 mm pitch should be used for the center ground pad.
Card Assembly
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
Rev. 1.0
33
Si53305
7. Top Marking
7.1. Si53305 Top Marking
7.2. Top Marking Explanation
Mark Method:
Laser
Font Size:
1.9 Point (26 mils)
Right-Justified
Line 1 Marking: Device Part Number
53305-B-GM
Line 2 Marking: YY = Year
WW = Work Week
Assigned by Assembly Supplier.
Corresponds to the year and work
week of the mold date.
TTTTTT = Mfg Code
Line 3 Marking: Circle = 1.3 mm Diameter
Center-Justified
Line 4 Marking
34
Manufacturing Code from the
Assembly Purchase Order form.
“e3” Pb-Free Symbol
Country of Origin
ISO Code Abbreviation
TW
Circle = 0.75 mm Diameter
Filled
Pin 1 Identification
Rev. 1.0
Si53305
DOCUMENT CHANGE LIST
Revision 0.4 to 1.0







Updated frequency spec from 1MHz to dc.
Updated operating conditions, including LVCMOS
and HCSL voltage support.
Updated tables 1-11.
Updated section 2.1-2.12 text descriptions and
diagrams.
Improved data for additive jitter specifications.
Improved typical phase noise plots.
Improved performance specifications with more
detail.
Rev. 1.0
35
Si53305
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
36
Rev. 1.0