Si53325

Si53325
D UAL 1:5 L OW J I T T E R LVPECL C LOCK B U F F E R
(<1.25 GH Z )
Features





2 independant banks of LVPECL
outputs
Ultra-low additive jitter: 45 fs rms typ
Wide frequency range: dc to
1.25 GHz
Input compatible with LVPECL,
LVDS, CML, HCSL, LVCMOS
Low output-output skew: <25 ps typ
RoHS compliant, Pb-free
32-QFN, 32-eLQFP
 Industrial temperature range:
–40 to +85°C
 Footprint-compatible with
MC100LVEP210


Applications
High-speed clock distribution
Ethernet switch/router
 Optical Transport Network (OTN)
 SONET/SDH
 PCI Express Gen 1/2/3
Ordering Information:
See page 18.
Storage
Telecom
 Industrial
 Servers
 Backplane clock distribution




Pin Assignments
29
24
Q3
2
23
Q3
CLK0
3
CLK0
4
Exposed
GND
Pad
Q5
CLK1
7
18
Q6
GND
8
17
Q6
12
Q1
Q2
Q2
VDD
16
Q1
15
Q0
14
VDD
13
Q0
Q8
11
Q9
10
Q7
Q5
19
VDD
20
6
Q7
5
Q8
NC
VDD
32
31
30
29
28
27
26
25
VDD
1
24 Q3
NC
2
23 Q3
CLK0
3
CLK0
4
NC
5
CLK1
6
CLK1
7
GND
8
22 Q4
Exposed
GND
Pad
21 Q4
20 Q5
19 Q5
18 Q6
10
11
12
13
14
15
16
Q7
Q7
VDD
17 Q6
9
Q8
Q5, Q6, Q7, Q8, Q9
Q4
Q8
CLK1
Q4
21
CLK1
Q0, Q1, Q2, Q3, Q4
Q5, Q6, Q7, Q8, Q9
22
Q9
CLK1
25
NC
Power
Supply
Filtering
Q0, Q1, Q2, Q3, Q4
26
Q9
CLK0
27
VDD
CLK0
28
1
9
VDD
Q2
Q1
30
VDD
Q0
31
Q1
VDD
32
VDD
Q9
Functional Block Diagram
Q0
The Si53325 is an ultra low jitter dual 1:5 LVPECL buffer. The Si53325 utilizes
Silicon Laboratories' advanced CMOS technology to fanout clocks from dc to
1.25 GHz with guaranteed low additive jitter, low skew, and low propagation delay
variability. The Si53325 features minimal cross-talk and provides superior supply
noise rejection, simplifying low jitter clock distribution in noisy environments.
Q2
Si53325
Description
Patents pending
Rev. 1.0 7/15
Copyright © 2015 by Silicon Laboratories
Si53325
Si53325
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.1. Universal, Any-Format Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2. Input Bias Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.3. Output Clock Termination Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.4. AC Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.6. Power Supply Noise Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3. Pin Description: 32-eLQFP, 32-QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1. 32-eLQFP Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2. 32-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6.1. 32-eLQFP Package Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2. 32-QFN Package Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
7.1. Si53325 32-eLQFP Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2. Top Marking Explanation (32-eLQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.3. Si53325 32-QFN Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.4. Top Marking Explanation (32-QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
2
Rev. 1.0
Si53325
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Symbol
Ambient Operating
Temperature
Test Condition
TA
Supply Voltage Range
VDD
LVPECL
Min
Typ
Max
Unit
–40
—
85
°C
2.38
2.5
2.63
V
2.97
3.3
3.63
V
Table 2. Input Clock Specifications
(2.5 V  5%, or 3.3 V  10%, TA=–40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Differential Input Common
Mode Voltage
VCM
VDD = 2.5 V 5%, 3.3 V 10%
0.05
—
—
V
Differential Input Swing
(peak-to-peak)
VIN
0.2
—
2.2
V
LVCMOS Input High Voltage
VIH
VDD = 2.5 V 5%, 3.3 V 10%
VDD x 0.7
—
—
V
LVCMOS Input Low Voltage
VIL
VDD = 2.5 V 5%, 3.3 V 10%
—
—
VDD x 0.3
V
Input Capacitance
CIN
CLK0 and CLK1 pins with
respect to GND
—
5
—
pF
Table 3. DC Common Characteristics
(2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Supply Current
Symbol
Test Condition
Min
Typ
Max
Unit
IDD
Measured using accoupled termination
shown in Figure 6
—
440
—
mA
Rev. 1.0
3
Si53325
Table 4. Output Characteristics (LVPECL)
(VDD = 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Symbol
Output DC Common Mode
Voltage
Min
Typ
Max
Unit
VCOM
VDD – 1.595
—
VDD – 1.245
V
VSE
0.40
0.80
1.050
V
Single-Ended
Output Swing*
Test Condition
*Note: Unused outputs can be left floating. Do not short unused outputs to ground.
Table 5. AC Characteristics
(VDD = 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
dc
—
1250
MHz
Frequency
F
Duty Cycle
DC
20/80% TR/TF<10% of period
(Differential input clock)
47
50
53
%
DC
20/80% TR/TF<10% of period
(Single-Ended input clock)
45
50
55
%
Minimum Input Clock
Slew Rate
SR
Required to meet prop delay and
additive jitter specifications
(20–80%)
0.75
—
—
V/ns
Output Rise/Fall Time
TR/TF
20–80%
—
—
350
ps
Minimum Input Pulse
Width
TW
360
—
—
ps
TPLH,
TPHL
600
800
1000
ps
Output to Output Skew1
TSK
—
25
60
ps
Part to Part Skew2
TPS
Differential
—
—
150
ps
PSRR
10 kHz sinusoidal noise
—
–65
—
dBc
100 kHz sinusoidal noise
—
–62.5
—
dBc
500 kHz sinusoidal noise
—
–60
—
dBc
1 MHz sinusoidal noise
—
–55
—
dBc
Note: 50% input duty cycle.
Duty Cycle
Note: 50% input duty cycle.
Propagation Delay
Power Supply Noise
Rejection3
Notes:
1. Output-to-output skew specified for outputs with identical configuration.
2. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and
equal load condition. Using the same type of inputs on each device, the outputs are measured at the differential cross
points.
3. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDD (3.3 V = 100 mVPP) and noise spur
amplitude measured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for further details.
4
Rev. 1.0
Si53325
Table 6. Additive Jitter, Differential Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Amplitude
VIN
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
Differential
Clock Format
20%-80% Slew
Rate (V/ns)
(Single-Ended,
Peak-to-Peak)
Typ
Max
3.3
725
Differential
0.15
0.637
LVPECL
45
65
3.3
156.25
Differential
0.5
0.458
LVPECL
160
185
2.5
725
Differential
0.15
0.637
LVPECL
45
65
2.5
156.25
Differential
0.5
0.458
LVPECL
145
185
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. AC-coupled differential inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.
Table 7. Additive Jitter, Single-Ended Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Amplitude
VIN
(single-ended,
peak to peak)
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
SE 20%-80%
Slew Rate
(V/ns)
Clock Format
Typ
Max
3.3
156.25
Single-ended
2.18
1
LVPECL
160
185
2.5
156.25
Single-ended
2.18
1
LVPECL
145
185
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. DC-coupled single-ended inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.
PSPL 5310A
CLK SYNTH
SMA103A
50
Si533xx
DUT
Balun
PSPL 5310A
CLKx
AG E5052 Phase Noise
Analyzer
50ohm
/CLKx
50
Balun
Figure 1. Differential Measurement Method Using a Balun
Rev. 1.0
5
Si53325
Table 8. Thermal Conditions
Parameter
Symbol
Test Condition
Value
Unit
32-eLQFP Thermal
Resistance, Junction to
Ambient
JA
Still air
54.9
°C/W
32-eLQFP Thermal
Resistance, Junction to
Case
JC
Still air
10.0
°C/W
32-QFN Thermal
Resistance, Junction to
Ambient
JA
Still air
99.6
°C/W
32-QFN Thermal
Resistance, Junction to
Case
JC
Still air
10.3
°C/W
Table 9. Absolute Maximum Ratings
Parameter
Min
Typ
Max
Unit
TS
–55
—
150
C
Supply Voltage
VDD
–0.5
—
3.8
V
Input Voltage
VIN
–0.5
—
VDD+
0.3
V
Output Voltage
VOUT
—
—
VDD+
0.3
V
ESD Sensitivity
HBM
—
—
2000
V
ESD Sensitivity
CDM
—
—
500
V
Peak Soldering Reflow
Temperature
TPEAK
—
—
260
C
—
—
125
C
Storage Temperature
Maximum Junction
Temperature
Symbol
Test Condition
HBM, 100 pF, 1.5 kΩ
Pb-Free; Solder reflow profile per
JEDEC J-STD-020
TJ
Note: Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation
specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended
periods may affect device reliability.
6
Rev. 1.0
Si53325
2. Functional Description
The Si53325 is an ultra low jitter dual 1:5 LVPECL buffer. The device has a universal input that accepts most
common differential or LVCMOS input signals.
2.1. Universal, Any-Format Input
The universal input stage enables simple interfacing to a wide variety of clock formats, including LVPECL, lowpower LVPECL, LVCMOS, LVDS, HCSL, and CML. Tables 10 and 11 summarize the various ac- and dc-coupling
options supported by the device. For the best high-speed performance, the use of differential formats is
recommended. For both single-ended and differential input clocks, the fastest possible slew rate is recommended
as low slew rates can increase the noise floor and degrade jitter performance. Though not required, a minimum
slew rate of 0.75 V/ns is recommended for differential formats and 1.0 V/ns for single-ended formats. See “AN766:
Understanding and Optimizing Clock Buffer’s Additive Jitter Performance” for more information.
Table 10. LVPECL, LVCMOS, and LVDS Input Clock Options
LVPECL
LVCMOS
LVDS
AC-Couple
DC-Couple
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
N/A
N/A
No
No
Yes
No
2.5/3.3 V
Yes
Yes
No
Yes
Yes
Yes
Table 11. HCSL and CML Input Clock Options
HCSL
CML
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
No
No
Yes
No
2.5/3.3 V
Yes (3.3 V)
Yes (3.3 V)
Yes
No
0.1 µF
Si533xx
CLKx
100 
/CLKx
0.1 µF
Figure 2. Differential HCSL, LVPECL, Low-Power LVPECL, LVDS, CML AC-Coupled Input
Termination
VDD
1 k
VDD = 3.3 V or 2.5 V
VDD
Si533xx
CMOS
Driver
CLKx
50
/CLKx
Rs
VTERM = VDD/2
1 k
VREF
Figure 3. LVCMOS DC-Coupled Input Termination
Rev. 1.0
7
Si53325
VDD
DC Coupled LVPECL Termination Scheme 1
R1
VDD
R1
VDD = 3.3V or 2.5V
Si533xx
CLKx
50
“Standard”
LVPECL
Driver
/CLKx
50
R2
VTERM = VDD – 2V
R1 // R2 = 50 Ohm
R2
3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm
2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm
DC Coupled LVPECL Termination Scheme 2
VDD
VDD = 3.3V or 2.5V
Si533xx
50
“Standard”
LVPECL
Driver
CLKx
/CLKx
50
50
50
VTERM = VDD – 2V
DC Coupled LVDS Termination
VDD
VDD = 3.3V or 2.5V
Si533xx
CLKx
50
Standard
LVDS
Driver
/CLKx
50
100
DC Coupled HCSL Source Termination Scheme
VDD
= 3.3V
33
Si533xx
50
Standard
HCSL Driver
VDD
CLKx
/CLKx
33
50
50
50
Note: 33 Ohm series termination is optional depending on the location of the receiver.
Figure 4. Differential DC-Coupled Input Terminations
8
Rev. 1.0
Si53325
2.2. Input Bias Resistors
Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected.
The non-inverting input is biased with a 18.75 k pull-down to GND and a 75 k pull-up to VDD. The inverting input
is biased with a 75 k pull-up to VDD.
VDD
RPU
RPU
+
RPD
–
CLK0 or
CLK1
RPU = 75 k
RPD = 18.75 k
Figure 5. Input Bias Resistors
Rev. 1.0
9
Si53325
2.3. Output Clock Termination Options
The recommended output clock termination options are shown below. Unused outputs should be left unconnected.
VDDO
DC Coupled LVPECL Termination Scheme 1
R1
R1
VDDO = 3.3V or 2.5V
Si533xx
VDD = VDDO
50
Q
LVPECL
Receiver
Qn
50
R2
VTERM = VDDO – 2V
R1 // R2 = 50 Ohm
R2
3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm
2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm
DC Coupled LVPECL Termination Scheme 2
VDDO = 3.3V or 2.5V
Si533xx
VDD = VDDO
50
Q
LVPECL
Receiver
Qn
50
50
50
VTERM = VDDO – 2V
VDDO
AC Coupled LVPECL Termination Scheme 1
R1
VDDO = 3.3V or 2.5V
Si533xx
R1
0.1 uF
VDD = 3.3V or 2.5V
50
Q
LVPECL
Receiver
Qn
50
0.1 uF
Rb
R2
Rb
R2
VBIAS = VDD – 1.3V
R1 // R2 = 50 Ohm
3.3V LVPECL: R1 = 82.5 Ohm, R2 = 127 Ohm, Rb = 120 Ohm
2.5V LVPECL: R1 = 62.5 Ohm, R2 = 250 Ohm, Rb = 90 Ohm
AC Coupled LVPECL Termination Scheme 2
V DDO = 3.3V or 2.5V
Si533xx
0.1 uF
V DD = 3.3V or 2.5V
50
Q
LVPECL
Receiver
Qn
50
0.1 uF
Rb
Rb
50
50
V BIAS = V DD – 1.3 V
3.3V LVPECL: Rb = 120 Ohm
2.5V LVPECL: Rb = 90 Ohm
Figure 6. LVPECL Output Termination
10
Rev. 1.0
Si53325
2.4. AC Timing Waveforms
TPHL
TSK
CLK
QN
VPP/2
Q
VPP/2
QM
VPP/2
VPP/2
TPLH
TSK
Propagation Delay
Output-Output Skew
TF
Q
80% VPP
20% VPP
80% VPP
Q
20% VPP
TR
Rise/Fall Time
Figure 7. AC Waveforms
Rev. 1.0
11
Si53325
2.5. Typical Phase Noise Performance
Each of the following three figures shows three phase noise plots superimposed on the same diagram.
Source Jitter: Reference clock phase noise.
Total Jitter (SE): Combined source and clock buffer phase noise measured as a single-ended output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz.
Total Jitter (Diff): Combined source and clock buffer phase noise measured as a differential output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz. The differential measurement as shown in each figure is
made using a balun. See Figure 1 on page 5.
Note: To calculate the total RMS phase jitter when adding a buffer to your clock tree, use the root-sum-square (RSS).
The total jitter is a measure of the source plus the buffer's additive phase jitter. The additive jitter (rms) of the buffer
can then be calculated (via root-sum-square addition).
Figure 8. Source Jitter (156.25 MHz)
12
Rev. 1.0
Si53325
Figure 9. Single-Ended Total Jitter (312.5 MHz)
Rev. 1.0
13
Si53325
Figure 10. Differential Total Jitter (625 MHz)
2.6. Power Supply Noise Rejection
The device supports on-chip supply voltage regulation to reject noise present on the power supply, simplifying low
jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs and
SoCs and may reduce board-level filtering requirements. For more information, see “AN491: Power Supply
Rejection for Low Jitter Clocks”.
14
Rev. 1.0
Si53325
Q3
Q3
Q4
Q4
Q5
Q5
Q6
Q6
3. Pin Description: 32-eLQFP, 32-QFN
24
23
22
21
20
19
18
17
VDD
25
16
VDD
Q2
26
15
Q7
Q2
27
14
Q7
Q1
28
13
Q8
Q1
29
12
Q8
Q0
30
11
Q9
Q0
31
10
Q9
VDD
32
9
VDD
6
7
CLK1
8
GND
5
CLK1
4
CLK0
VDD
3
CLK0
2
NC
1
NC
Exposed
GND
Pad
VDD
Q0
Q0
Q1
Q1
Q2
Q2
VDD
Figure 11. 32-eLQFP Pin Diagram (Top View)
32
31
30
29
28
27
26
25
VDD
1
24 Q3
NC
2
23 Q3
CLK0
3
22 Q4
CLK0
4
NC
5
CLK1
6
CLK1
7
18 Q6
GND
8
17 Q6
Exposed
GND
Pad
21 Q4
20 Q5
9
10
11
12
13
14
15
16
VDD
Q9
Q9
Q8
Q8
Q7
Q7
VDD
19 Q5
Figure 12. 32-QFN Pin Diagram (Top View)
Rev. 1.0
15
Si53325
Table 12. Si53325 32-eLQFP and 32-QFN Pin Descriptions
16
Pin #
Name
Type*
Description
1
VDD
P
Core voltage supply.
Bypass with 1.0 F capacitor and place as close to the VDD pin as possible.
2
NC
—
No connect. Leave this pin unconnected.
3
CLK0
I
Input clock 0.
4
CLK0
I
Input clock 0 (complement).
5
NC
—
6
CLK1
I
Input clock 1.
7
CLK1
I
Input clock 1 (complement).
8
GND
GND
9
VDD
P
Core voltage supply.
Bypass with 1.0 µF capacitor and place as close to the VDD pin as possible.
10
Q9
O
Output clock 9 (complement).
11
Q9
O
Output clock 9.
12
Q8
O
Output clock 8 (complement).
13
Q8
O
Output clock 8.
14
Q7
O
Output clock 7 (complement).
15
Q7
O
Output clock 7.
16
VDD
P
Core voltage supply.
Bypass with 1.0 µF capacitor and place as close to the VDD pin as possible.
17
Q6
O
Output clock 6 (complement).
18
Q6
O
Output clock 6.
19
Q5
O
Output clock 5 (complement).
20
Q5
O
Output clock 5.
21
Q4
O
Output clock 4 (complement).
22
Q4
O
Output clock 4.
23
Q3
O
Output clock 3 (complement).
24
Q3
O
Output clock 3.
25
VDD
P
Core voltage supply.
Bypass with 1.0 µF capacitor and place as close to the VDD pin as possible.
26
Q2
O
Output clock 2 (complement).
No connect. Leave this pin unconnected.
Ground.
Rev. 1.0
Si53325
Table 12. Si53325 32-eLQFP and 32-QFN Pin Descriptions (Continued)
Pin #
Name
Type*
Description
27
Q2
O
Output clock 2.
28
Q1
O
Output clock 1 (complement).
29
Q1
O
Output clock 1.
30
Q0
O
Output clock 0 (complement).
31
Q0
O
Output clock 0.
32
VDD
P
Core voltage supply.
Bypass with 1.0 µF capacitor and place as close to the VDD pin as possible.
33
Exposed
ground pad
GND
Ground Pad.
The exposed ground pad is thermally connected to the die to improve the
heat transfer out of the package. The ground pad must be connected to GND
to ensure device
specifications are met.
*Pin types are: I = input, O = output, P = power, GND = ground.
Rev. 1.0
17
Si53325
4. Ordering Guide
18
Part Number
Package
PB-Free, ROHS-6
Temperature
Si53325-B-GQ
32-eLQFP
Yes
–40 to 85 C
Si53325-B-GM
32-QFN
Yes
–40 to 85 C
Rev. 1.0
Si53325
5. Package Outline
5.1. 32-eLQFP Package Diagram
Figure 13. Si53325 32-eLQFP Package Diagram
Table 13. Package Dimensions
Dimension
Min
Nom
Max
Dimension
Min
Nom
A
—
—
1.60
E1
A1
0.05
—
0.15
E2
1.87
1.92
1.97
A2
1.35
1.40
1.45
L
0.45
0.60
0.75
b
0.30
0.37
0.45

0
3.5
7
c
0.09
—
0.20
aaa
0.20
7.00 BSC
D
9.00 BSC
bb
0.20
D1
7.00 BSC
ccc
0.10
dddd
0.20
eee
0.05
D2
1.87
1.92
e
0.80 BSC
E
9.00 BSC
1.97
Max
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC MS-026.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
Rev. 1.0
19
Si53325
5.2. 32-QFN Package Diagram
Figure 14. Si53325 32-QFN Package Diagram
Table 14. Package Dimensions
MIN
NOM
MAX
A
0.80
0.85
1.00
A1
0.00
0.02
0.05
b
0.18
0.25
0.30
c
0.20
0.25
0.30
Dimension
D
D2
5.00 BSC
2.00
2.15
e
0.50 BSC
E
5.00 BSC
2.30
E2
2.00
2.15
2.30
L
0.30
0.40
0.50
aaa
0.10
bbb
0.10
ccc
0.08
ddd
0.10
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220.
4. Recommended card reflow profile is per the JEDEC Solid State Outline MO-220.
20
Rev. 1.0
Si53325
6. PCB Land Pattern
6.1. 32-eLQFP Package Land Pattern
Figure 15. Si53325 32-eLQFP Package Land Pattern
Table 15. PCB Land Pattern
Dimension
Min
Max
C1
8.40
8.50
C2
8.40
8.50
D1
1.84
2.00
D2
1.84
2.00
E
0.80 BSC
X1
0.40
0.50
Y1
1.25
1.35
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design
1. All metal pads are to be non-solder mask defined (NSMD). Clearance
between the solder mask and the metal pad is to be 60 m minimum, all
the way around the pad.
Stencil Design
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal
walls should be used to assure good solder paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for all
perimeter pads.
4. A single 1.5 x 1.5 mm stencil aperture should be used for the center
ground pad to achieve between 50-60% solder coverage.
Card Assembly
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
Rev. 1.0
21
Si53325
6.2. 32-QFN Package Land Pattern
Figure 16. Si53325 32-QFN Package Land Pattern
Table 16. PCB Land Pattern
Dimension
Min
Max
Dimension
Min
Max
C1
4.52
4.62
X2
2.20
2.30
C2
4.52
4.62
Y1
0.59
0.69
Y2
2.20
2.30
E
X1
0.50 BSC
0.20
0.30
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to
be 60 m minimum, all the way around the pad.
Stencil Design
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder
paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
4. A 2x2 array of 0.75 mm square openings on 1.15 mm pitch should be used for the center ground pad.
Card Assembly
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
22
Rev. 1.0
Si53325
Rev. 1.0
23
Si53325
7. Top Markings
7.1. Si53325 32-eLQFP Top Marking
7.2. Top Marking Explanation (32-eLQFP)
Mark Method:
Laser
Font Size:
1.9 Point (26 mils)
Right-Justified
Line 1 Marking: Device Part Number
53325-B-GQ
Line 2 Marking: YY = Year
WW = Work Week
Assigned by Assembly Supplier.
Corresponds to the year and work
week of the mold date.
TTTTTT = Mfg Code
Line 3 Marking: Circle = 1.3 mm Diameter
Center-Justified
Country of Origin
ISO Code Abbreviation
24
Rev. 1.0
Manufacturing Code from the
Assembly Purchase Order form.
“e3” Pb-Free Symbol
TW
Si53325
7.3. Si53325 32-QFN Top Marking
7.4. Top Marking Explanation (32-QFN)
Mark Method:
Laser
Font Size:
2.0 Point (28 mils)
Center-Justified
Line 1 Marking: Device Part Number
53325
Line 2 Marking: Device Revision/Type
B-GM
Line 3 Marking: TTTTTT = Mfg Code
Manufacturing Code from the
Assembly Purchase Order form.
Line 4 Marking
Circle = 0.50 mm Diameter
Lower-Left Justified
Pin 1 Identifier
YY = Year
WW = Work Week
Assigned by the Assembly House.
Corresponds to the year and work
week of the mold date.
Rev. 1.0
25
Si53325
DOCUMENT CHANGE LIST
Revision 0.4 to 1.0













26
Update operating conditions, including LVCMOS and
HCSL voltage support.
Removed voltage reference feature.
Updated Table 2, “Input Clock Specifications,” on
page 3.
Updated Table 3, “DC Common Characteristics,” on
page 3.
Updated Table 4, “Output Characteristics
(LVPECL),” on page 4.
Updated Table 10, “LVPECL, LVCMOS, and LVDS
Input Clock Options,” on page 7.
Updated output voltage specifications.
Improved data for additive jitter specifications.
Improved typical phase noise plots.
Updated input/output termination recommendations.
Improved performance specifications with more
detail.
Added pin type description to the pin descriptions
table.
Updated ESD specifications.
Rev. 1.0
ClockBuilder Pro
One-click access to Timing tools,
documentation, software, source
code libraries & more. Available for
Windows and iOS (CBGo only).
www.silabs.com/CBPro
Timing Portfolio
www.silabs.com/timing
SW/HW
Quality
Support and Community
www.silabs.com/CBPro
www.silabs.com/quality
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com