Si53321 Data Sheet

Si53321
1 : 1 0 L OW J I T T E R LVPECL C LOCK B U F F E R
W I T H 2:1 I NPUT M UX (< 1.25 GH Z )
Features






10 LVPECL outputs

Ultra-low additive jitter: 45 fs rms typ 
Wide frequency range: dc to

1.25 GHz
Input compatible with LVPECL,

LVDS, CML, HCSL, LVCMOS
2:1 input mux
Low output-output skew: 25 ps (typ)
RoHS compliant, Pb-free
32-QFN, 32-eLQFP
Industrial temperature range:
–40 to +85°C
Footprint-compatible with
MC100LVEP111, CDCLVP111,
MAX9311, ICS853S111BI,
ICS85310-1
Applications
31
30
29
28
VDD
Q0
32
Q2
VDD
27
26
25
VDD
1
24
Q3
CLK_SEL
2
23
Q3
CLK0
3
CLK0
4
Exposed
GND Pad
22
Q4
21
Q4
20
Q5
NC
5
CLK1
6
19
Q5
CLK1
7
18
Q6
GND
8
17
Q6
VDD
9
10
11
12
13
14
15
16
VDD
Functional Block Diagram
Q7
The Si53321 is an ultra-low jitter ten output differential buffer. The Si53321
features a 2:1 input mux, making it ideal for redundant clocking applications. The
Si53321 utilizes Silicon Laboratories' advanced CMOS technology to fanout
clocks from dc to 1.25 GHz with guaranteed low additive jitter, low skew, and low
propagation delay variability. The Si53321 features minimal cross-talk and
provides superior supply noise rejection, simplifying low jitter clock distribution in
noisy environments.
Q0
Description
Q2
Pin Assignments (Top View)
Q7

Q1

Q1


Ordering Information:
See page 19.
Q8


Storage
Telecom
Industrial
Servers
Backplane clock distribution
Q8


Q9

High-speed clock distribution
Ethernet switch/router
Optical Transport Network (OTN)
SONET/SDH
PCI Express Gen 1/2/3
Q9

Q1
Q1
Q2
Q2
VDD
25
24 Q3
2
23 Q3
CLK0
3
22 Q4
CLK0
4
NC
5
CLK1
6
19 Q5
CLK1
7
18 Q6
GND
8
Q4
Exposed
GND Pad
21 Q4
20 Q5
Q5
Q8
11
12
13
14
15
Q7
16
VDD
10
Q7
Q7
17 Q6
9
Q8
Q6
Q7
Q8
GND
26
CLK_SEL
Q6
CLK_SEL
27
Q8
CLK1
28
Q2
Q4
Q5
1
29
Q9
CLK1
30
1
Q9
0
31
VDD
Q3
CLK0
32
Q1
Q2
Q3
CLK0
Q0
Q1
VDD
VDD
Q0
Q0
Power
Supply
Filtering
VDD
Q0
Patents pending
Q9
Q9
Rev. 1.0 4/15
Copyright © 2015 by Silicon Laboratories
Si53321
Si53321
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.1. Universal, Any-Format Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2. Input Bias Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.3. Input Mux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.4. Output Clock Termination Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.5. AC Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.7. Input Mux Noise Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.8. Power Supply Noise Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Pin Description: 32-eLQFP, 32-QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1. 32-eLQFP Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2. 32-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
6.1. 32-eLQFP Package Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2. 32-QFN Package Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
7.1. Si53321 32-eLQFP Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2. Top Marking Explanation (32-eLQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3. Si53321 32-QFN Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4. Top Marking Explanation (32-QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
2
Rev. 1.0
Si53321
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Symbol
Ambient Operating
Temperature
Test Condition
TA
Supply Voltage Range
LVPECL
VDD
Min
Typ
Max
Unit
–40
—
85
°C
2.38
2.5
2.63
V
2.97
3.3
3.63
V
Table 2. Input Clock Specifications
(2.5 V  5%, or 3.3 V  10%, TA=–40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Differential Input Common
Mode Voltage
VCM
VDD = 2.5 V 5%, 3.3 V 10%
0.05
—
—
V
Differential Input Swing
(peak-to-peak)
VIN
0.2
—
2.2
V
LVCMOS Input High Voltage
VIH
VDD = 2.5 V 5%, 3.3 V 10%
VDD x 0.7
—
—
V
LVCMOS Input Low Voltage
VIL
VDD = 2.5 V 5%, 3.3 V 10%
—
—
VDD x 0.3
V
Input Capacitance
CIN
CLK0 and CLK1 pins with
respect to GND
—
5
—
pF
Table 3. DC Common Characteristics
(2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Symbol
Test Condition
Min
Typ
Max
Unit
Supply Current
IDD
Measured using accoupled termination
shown in Figure 6
—
440
—
mA
Input High Voltage
VIH
CLK_SEL
0.8 x VDD
—
—
V
Input Low Voltage
VIL
CLK_SEL
—
—
0.2 x VDD
V
Internal Pull-down
Resistor
RDOWN
CLK_SEL
—
25
—
k
Parameter
Rev. 1.0
3
Si53321
Table 4. Output Characteristics (LVPECL)
(VDD = 2.5 V ± 5%, or 3.3 V ± 10%,TA = –40 to 85 °C)
Parameter
Symbol
Output DC Common Mode
Voltage
Min
Typ
Max
Unit
VCOM
VDD – 1.595
—
VDD – 1.245
V
VSE
0.40
0.80
1.050
V
Single-Ended
Output Swing*
Test Condition
*Note: Unused outputs can be left floating. Do not short unused outputs to ground.
Table 5. AC Characteristics
(VDD = 2.5 V  5%, or 3.3 V 10%,TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
dc
—
1250
MHz
Frequency
F
Duty Cycle
DC
20/80% TR/TF<10% of period
(Differential input clock)
47
50
53
%
DC
20/80% TR/TF<10% of period
(Single-Ended input clock)
45
50
55
%
Minimum Input Clock
Slew Rate
SR
Required to meet prop delay and
additive jitter specifications
(20–80%)
0.75
—
—
V/ns
Output Rise/Fall Time
TR/TF
20–80%
—
—
350
ps
Minimum Input Pulse
Width
TW
360
—
—
ps
TPLH,
TPHL
600
800
1000
ps
Output to Output Skew1
TSK
—
25
60
ps
Part to Part Skew2
TPS
Differential
—
—
150
ps
PSRR
10 kHz sinusoidal noise
—
–65
—
dBc
100 kHz sinusoidal noise
—
–62.5
—
dBc
500 kHz sinusoidal noise
—
–60
—
dBc
1 MHz sinusoidal noise
—
–55
—
dBc
Note: 50% input duty cycle.
Duty Cycle
Note: 50% input duty cycle.
Propagation Delay
Power Supply Noise
Rejection3
Notes:
1. Output-to-output skew specified for outputs with identical configuration.
2. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and
equal load condition. Using the same type of inputs on each device, the outputs are measured at the differential cross
points.
3. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDD (3.3 V = 100 mVPP) and noise spur
amplitude measured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for further details.
4
Rev. 1.0
Si53321
Table 6. Additive Jitter, Differential Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
Differential
Clock Format
20%-80% Slew
Rate (V/ns)
Amplitude
VIN
(Single-Ended,
Peak-to-Peak)
Typ
Max
3.3
725
Differential
0.15
0.637
LVPECL
45
65
3.3
156.25
Differential
0.5
0.458
LVPECL
160
185
2.5
725
Differential
0.15
0.637
LVPECL
45
65
2.5
156.25
Differential
0.5
0.458
LVPECL
145
185
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. AC-coupled differential inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.
Table 7. Additive Jitter, Single-Ended Clock Input
VDD
Output
Input1,2
Freq
(MHz)
Clock Format
Amplitude
VIN
(single-ended,
peak to peak)
Additive Jitter
(fs rms, 12 kHz to
20 MHz)3
SE 20%-80%
Slew Rate
(V/ns)
Clock Format
Typ
Max
3.3
156.25
Single-ended
2.18
1
LVPECL
160
185
2.5
156.25
Single-ended
2.18
1
LVPECL
145
185
Notes:
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock
Buffer’s Additive Jitter Performance” for more information.
2. DC-coupled single-ended inputs.
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.
PSPL 5310A
CLK SYNTH
SMA103A
50
Si533xx
DUT
Balun
PSPL 5310A
CLKx
AG E5052 Phase Noise
Analyzer
50ohm
50
/CLKx
Balun
Figure 1. Differential Measurement Method Using a Balun
Rev. 1.0
5
Si53321
Table 8. Thermal Conditions
Parameter
Symbol
Test Condition
Value
Unit
32-eLQFP Thermal
Resistance, Junction to
Ambient
JA
Still air
54.9
°C/W
32-eLQFP Thermal
Resistance, Junction to
Case
JC
Still air
10.0
°C/W
32-QFN Thermal
Resistance, Junction to
Ambient
JA
Still air
99.6
°C/W
32-QFN Thermal
Resistance, Junction to
Case
JC
Still air
10.3
°C/W
Table 9. Absolute Maximum Ratings
Parameter
Min
Typ
Max
Unit
TS
–55
—
150
C
Supply Voltage
VDD
–0.5
—
3.8
V
Input Voltage
VIN
–0.5
—
VDD+
0.3
V
Output Voltage
VOUT
—
—
VDD+
0.3
V
ESD Sensitivity
HBM
2000
—
—
V
ESD Sensitivity
CDM
500
—
—
V
Peak Soldering Reflow
Temperature
TPEAK
—
—
260
C
—
—
125
C
Storage Temperature
Maximum Junction
Temperature
Symbol
Test Condition
HBM, 100 pF, 1.5 kΩ
Pb-Free; Solder reflow profile per
JEDEC J-STD-020
TJ
Note: Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation
specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended
periods may affect device reliability.
6
Rev. 1.0
Si53321
2. Functional Description
The Si53321 is a low jitter, low skew 1:10 differential buffer with an integrated 2:1 input mux. The device has a
universal input that accepts most common differential or LVCMOS input signals. A clock select pin is used to select
the active input clock. The selected clock input is routed to ten high-performance, low-jitter outputs.
2.1. Universal, Any-Format Input
The universal input stage enables simple interfacing to a wide variety of clock formats, including LVPECL, lowpower LVPECL, LVCMOS, LVDS, HCSL, and CML. Tables 10 and 11 summarize the various ac- and dc-coupling
options supported by the device. For the best high-speed performance, the use of differential formats is
recommended. For both single-ended and differential input clocks, the fastest possible slew rate is recommended
as low slew rates can increase the noise floor and degrade jitter performance. Though not required, a minimum
slew rate of 0.75 V/ns is recommended for differential formats and 1.0 V/ns for single-ended formats. See “AN766:
Understanding and Optimizing Clock Buffer’s Additive Jitter Performance” for more information.
Table 10. LVPECL, LVCMOS, and LVDS Input Clock Options
LVPECL
LVCMOS
LVDS
AC-Couple
DC-Couple
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
N/A
N/A
No
No
Yes
No
2.5/3.3 V
Yes
Yes
No
Yes
Yes
Yes
Table 11. HCSL and CML Input Clock Options
HCSL
CML
AC-Couple
DC-Couple
AC-Couple
DC-Couple
1.8 V
No
No
Yes
No
2.5/3.3 V
Yes (3.3 V)
Yes (3.3 V)
Yes
No
0.1 µF
Si533xx
CLKx
100 
/CLKx
0.1 µF
Figure 2. Differential HCSL, LVPECL, Low-Power LVPECL, LVDS, CML AC-Coupled Input
Termination
VDD
1 k
VDD = 3.3 V or 2.5 V
VDD
Si533xx
CMOS
Driver
CLKx
50
/CLKx
Rs
VTERM = VDD/2
1 k
VREF
Figure 3. LVCMOS DC-Coupled Input Termination
Rev. 1.0
7
Si53321
VDD
DC Coupled LVPECL Termination Scheme 1
R1
VDD
R1
VDD = 3.3V or 2.5V
Si533xx
CLKx
50
“Standard”
LVPECL
Driver
/CLKx
50
R2
VTERM = VDD – 2V
R1 // R2 = 50 Ohm
R2
3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm
2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm
DC Coupled LVPECL Termination Scheme 2
VDD
VDD = 3.3V or 2.5V
Si533xx
50
“Standard”
LVPECL
Driver
CLKx
/CLKx
50
50
50
VTERM = VDD – 2V
DC Coupled LVDS Termination
VDD
VDD = 3.3V or 2.5V
Si533xx
CLKx
50
Standard
LVDS
Driver
/CLKx
50
100
DC Coupled HCSL Source Termination Scheme
VDD
= 3.3V
33
Si533xx
50
Standard
HCSL Driver
VDD
CLKx
/CLKx
33
50
50
50
Note: 33 Ohm series termination is optional depending on the location of the receiver.
Figure 4. Differential DC-Coupled Input Terminations
8
Rev. 1.0
Si53321
2.2. Input Bias Resistors
Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected.
The non-inverting input is biased with a 18.75 k pull-down to GND and a 75 k pull-up to VDD. The inverting input
is biased with a 75 k pull-up to VDD.
VDD
RPU
RPU
+
RPD
CLK0 or
CLK1
–
RPU = 75 k
RPD = 18.75 k
Figure 5. Input Bias Resistors
2.3. Input Mux
The Si53321 provides two clock inputs for applications that need to select between one of two clock sources. The
CLK_SEL pin selects the active clock input. The table below summarizes the input and output clock based on the
input mux and output enable pin settings.
Table 12. Input Mux Logic
CLK_SEL
CLK0
CLK1
Q1
Q
L
L
X
L
H
L
H
X
H
L
H
X
L
L
H
H
X
H
H
L
Notes:
1. On the next negative transition of CLK0 or CLK1.
Rev. 1.0
9
Si53321
2.4. Output Clock Termination Options
The recommended output clock termination options are shown below. Unused outputs should be left unconnected.
VDDO
DC Coupled LVPECL Termination Scheme 1
R1
R1
VDDO = 3.3V or 2.5V
Si533xx
VDD = VDDO
50
Q
LVPECL
Receiver
Qn
50
R2
VTERM = VDDO – 2V
R1 // R2 = 50 Ohm
R2
3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm
2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm
DC Coupled LVPECL Termination Scheme 2
VDDO = 3.3V or 2.5V
Si533xx
VDD = VDDO
50
Q
LVPECL
Receiver
Qn
50
50
50
VTERM = VDDO – 2V
VDDO
AC Coupled LVPECL Termination Scheme 1
R1
VDDO = 3.3V or 2.5V
Si533xx
R1
0.1 uF
VDD = 3.3V or 2.5V
50
Q
LVPECL
Receiver
Qn
50
0.1 uF
Rb
R2
Rb
R2
VBIAS = VDD – 1.3V
R1 // R2 = 50 Ohm
3.3V LVPECL: R1 = 82.5 Ohm, R2 = 127 Ohm, Rb = 120 Ohm
2.5V LVPECL: R1 = 62.5 Ohm, R2 = 250 Ohm, Rb = 90 Ohm
AC Coupled LVPECL Termination Scheme 2
V DDO = 3.3V or 2.5V
Si533xx
0.1 uF
V DD = 3.3V or 2.5V
50
Q
LVPECL
Receiver
Qn
50
0.1 uF
Rb
50
Rb
50
V BIAS = V DD – 1.3 V
3.3V LVPECL: Rb = 120 Ohm
2.5V LVPECL: Rb = 90 Ohm
Figure 6. LVPECL Output Termination
10
Rev. 1.0
Si53321
2.5. AC Timing Waveforms
TPHL
TSK
CLK
QN
VPP/2
Q
VPP/2
QM
VPP/2
VPP/2
TPLH
TSK
Propagation Delay
Output-Output Skew
TF
Q
80% VPP
20% VPP
80% VPP
Q
20% VPP
TR
Rise/Fall Time
Figure 7. AC Waveforms
Rev. 1.0
11
Si53321
2.6. Typical Phase Noise Performance
Each of the following three figures shows three phase noise plots superimposed on the same diagram.
Source Jitter: Reference clock phase noise.
Total Jitter (SE): Combined source and clock buffer phase noise measured as a single-ended output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz.
Total Jitter (Diff): Combined source and clock buffer phase noise measured as a differential output to the phase
noise analyzer and integrated from 12 kHz to 20 MHz. The differential measurement as shown in each figure is
made using a balun. See Figure 1 on page 5.
Note: To calculate the total RMS phase jitter when adding a buffer to your clock tree, use the root-sum-square (RSS).
The total jitter is a measure of the source plus the buffer's additive phase jitter. The additive jitter (rms) of the buffer
can then be calculated (via root-sum-square addition).
Figure 8. Source Jitter (156.25 MHz)
12
Rev. 1.0
Si53321
Figure 9. Single-Ended Total Jitter (312.5 MHz)
Rev. 1.0
13
Si53321
Figure 10. Differential Total Jitter (625 MHz)
14
Rev. 1.0
Si53321
2.7. Input Mux Noise Isolation
The input clock mux is designed to minimize crosstalk between the CLK0 and CLK1. This improves phase jitter
performance when clocks are present at both the CLK0 and CLK1 inputs. Figure 11 below is a measurement the
input mux’s noise isolation.
LVPECL [email protected];
Selected clk is active
Unselected clk is static
Mux Isolation = 61dB
LVPECL [email protected];
Selected clk is static
Unselected clk is active
Figure 11. Input Mux Noise Isolation
2.8. Power Supply Noise Rejection
The device supports on-chip supply voltage regulation to reject noise present on the power supply, simplifying low
jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs and
SoCs and may reduce board-level filtering requirements. For more information, see “AN491: Power Supply
Rejection for Low Jitter Clocks”.
Rev. 1.0
15
Si53321
VDD
Q0
Q0
Q1
Q1
Q2
Q2
VDD
3. Pin Description: 32-eLQFP, 32-QFN
32
31
30
29
28
27
26
25
VDD
1
24
Q3
CLK_SEL
2
23
Q3
CLK0
3
22
Q4
CLK0
4
21
Q4
NC
5
20
Q5
CLK1
6
19
Q5
CLK1
7
18
Q6
GND
8
17
Q6
13
Q8
Q8
14
15
16
VDD
12
Q7
11
Q7
10
Q9
VDD
9
Q9
Exposed
GND Pad
VDD
Q0
Q0
Q1
Q1
Q2
Q2
VDD
Figure 12. 32-eLQFP Pin Diagram (Top View)
32
31
30
29
28
27
26
25
VDD
1
24 Q3
CLK_SEL
2
23 Q3
CLK0
3
22 Q4
CLK0
4
NC
5
CLK1
6
19 Q5
CLK1
7
18 Q6
GND
8
17 Q6
Exposed
GND Pad
21 Q4
9
10
11
12
13
14
15
16
VDD
Q9
Q9
Q8
Q8
Q7
Q7
VDD
20 Q5
Figure 13. 32-QFN Pin Diagram (Top View)
16
Rev. 1.0
Si53321
Table 13. Si53321 32-eLQFP and 32-QFN Pin Descriptions
Pin #
Name
Type*
Description
1
VDD
P
Core voltage supply.
Bypass with 1.0 F capacitor and place as close to the VDD pin as possible.
2
CLK_SEL
I
Mux input select pin (LVCMOS).
When CLK_SEL is high, CLK1 is selected.
When CLK_SEL is low, CLK0 is selected.
CLK_SEL contains an internal pull-down resistor.
3
CLK0
I
Input clock 0.
4
CLK0
I
Input clock 0 (complement)
When CLK0 is driven by a single-ended input, connect CLK0 to an appropriate
bias voltage (e.g., for a CMOS input apply VDD/2).
5
NC
6
CLK1
I
Input clock 1.
7
CLK1
I
Input clock 1 (complement)
When CLK1 is driven by a single-ended input, connect CLK1 to an appropriate
bias voltage (e.g., for a CMOS input apply VDD/2).
8
GND
GND
9
VDD
P
Core voltage supply.
Bypass with 1.0 µF capacitor and place as close to the VDD pin as possible.
10
Q9
O
Output clock 9 (complement).
11
Q9
O
Output clock 9.
12
Q8
O
Output clock 8 (complement).
13
Q8
O
Output clock 8.
14
Q7
O
Output clock 7 (complement).
15
Q7
O
Output clock 7.
16
VDD
P
Core voltage supply.
Bypass with 1.0 µF capacitor and place as close to the VDD pin as possible.
17
Q6
O
Output clock 6 (complement).
18
Q6
O
Output clock 6.
19
Q5
O
Output clock 5 (complement).
20
Q5
O
Output clock 5.
21
Q4
O
Output clock 4 (complement).
22
Q4
O
Output clock 4.
23
Q3
O
Output clock 3 (complement).
No connect. Leave this pin unconnected.
Ground.
Rev. 1.0
17
Si53321
Table 13. Si53321 32-eLQFP and 32-QFN Pin Descriptions (Continued)
Pin #
Name
Type*
Description
24
Q3
O
Output clock 3.
25
VDD
P
Core voltage supply.
Bypass with 1.0 µF capacitor and place as close to the VDD pin as possible.
26
Q2
O
Output clock 2 (complement).
27
Q2
O
Output clock 2.
28
Q1
O
Output clock 1 (complement).
29
Q1
O
Output clock 1.
30
Q0
O
Output clock 0 (complement).
31
Q0
O
Output clock 0.
32
VDD
P
Core voltage supply.
Bypass with 1.0 µF capacitor and place as close to the VDD pin as possible.
GND
Pad
Exposed
ground
pad
GND
Ground Pad - Power supply ground and thermal relief.
The exposed ground pad is thermally connected to the die to improve the heat
transfer out of the package. The ground pad must be connected to GND to ensure
device specifications are met.
*Pin types are: I = input, O = output, P = power, GND = ground.
18
Rev. 1.0
Si53321
4. Ordering Guide
Part Number
Package
PB-Free, ROHS-6
Temperature
Si53321-B-GQ
32-eLQFP
Yes
–40 to 85 C
SI53321-B-GM
32-QFN
Yes
–40 to 85 C
Rev. 1.0
19
Si53321
5. Package Outline
5.1. 32-eLQFP Package Diagram
Figure 14. Si53321 32-eLQFP Package Diagram
Table 14. Package Dimensions
Dimension
Min
Nom
Max
Dimension
Min
Nom
A
—
—
1.60
E1
A1
0.05
—
0.15
E2
1.87
1.92
1.97
A2
1.35
1.40
1.45
L
0.45
0.60
0.75
b
0.30
0.37
0.45

0
3.5
7
c
0.09
—
0.20
aaa
0.20
7.00 BSC
D
9.00 BSC
bbb
0.20
D1
7.00 BSC
ccc
0.10
ddd
0.20
eee
0.05
D2
1.87
1.92
e
0.80 BSC
E
9.00 BSC
1.97
Max
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC MS-026.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
20
Rev. 1.0
Si53321
5.2. 32-QFN Package Diagram
Figure 15. Si53321 32-QFN Package Diagram
Table 15. Package Dimensions
MIN
NOM
MAX
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
b
0.18
0.25
0.30
c
0.20
0.25
0.30
Dimension
D
D2
5.00 BSC
2.00
2.15
e
0.50 BSC
E
5.00 BSC
2.30
E2
2.00
2.15
2.30
L
0.30
0.40
0.50
aaa
0.10
bbb
0.10
ccc
0.08
ddd
0.10
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220.
4. Recommended card reflow profile is per the JEDEC Solid State Outline MO-220.
Rev. 1.0
21
Si53321
6. PCB Land Pattern
6.1. 32-eLQFP Package Land Pattern
Figure 16. Si53321 32-eLQFP Package Land Pattern
Table 16. PCB Land Pattern
Dimension
Min
Max
C1
8.40
8.50
C2
8.40
8.50
D1
1.84
2.00
D2
1.84
2.00
E
0.80 BSC
X1
0.40
0.50
Y1
1.25
1.35
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design
1. All metal pads are to be non-solder mask defined (NSMD). Clearance
between the solder mask and the metal pad is to be 60 m minimum, all
the way around the pad.
Stencil Design
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal
walls should be used to assure good solder paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for all
perimeter pads.
4. A single 1.5 x 1.5 mm stencil aperture should be used for the center
ground pad to achieve between 50-60% solder coverage.
Card Assembly
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
22
Rev. 1.0
Si53321
6.2. 32-QFN Package Land Pattern
Figure 17. Si53321 32-QFN Package Land Pattern
Rev. 1.0
23
Si53321
Table 17. PCB Land Pattern
Dimension
Min
Max
Dimension
Min
Max
C1
4.52
4.62
X2
2.20
2.30
C2
4.52
4.62
Y1
0.59
0.69
Y2
2.20
2.30
E
X1
0.50 BSC
0.20
0.30
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to
be 60 m minimum, all the way around the pad.
Stencil Design
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder
paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
4. A 2x2 array of 0.75 mm square openings on 1.15 mm pitch should be used for the center ground pad.
Card Assembly
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
24
Rev. 1.0
Si53321
7. Top Markings
7.1. Si53321 32-eLQFP Top Marking
7.2. Top Marking Explanation (32-eLQFP)
Mark Method:
Laser
Font Size:
1.9 Point (26 mils)
Right-Justified
Line 1 Marking: Device Part Number
53321-B-GQ
Line 2 Marking: YY = Year
WW = Work Week
Corresponds to the year and work
week of the mold date.
TTTTTT = Mfg Code
Line 3 Marking: Circle = 1.3 mm Diameter
Center-Justified
Country of Origin
ISO Code Abbreviation
Rev. 1.0
Manufacturing Code from the
Assembly Purchase Order form.
“e3” Pb-Free Symbol
TW
25
Si53321
7.3. Si53321 32-QFN Top Marking
7.4. Top Marking Explanation (32-QFN)
26
Mark Method:
Laser
Font Size:
2.0 Point (28 mils)
Center-Justified
Line 1 Marking: Device Part Number
53321
Line 2 Marking: Device Revision/Type
B-GM
Line 3 Marking: TTTTTT = Mfg Code
Manufacturing Code from the
Assembly Purchase Order form.
Line 4 Marking
Circle = 0.50 mm Diameter
Lower-Left Justified
Pin 1 Identifier
YY = Year
WW = Work Week
Corresponds to the year and work
week of the mold date.
Rev. 1.0
Si53321
DOCUMENT CHANGE LIST
Revision 0.4 to 1.0












Update operating conditions, including LVCMOS and
HCSL voltage support.
Removed voltage reference feature.
Updated Table 2, “Input Clock Specifications,” on
page 3.
Updated Table 3, “DC Common Characteristics,” on
page 5.
Updated Table 4, “Output Characteristics
(LVPECL),” on page 6.
Updated Table 10, “AC Characteristics,” on page 7.
Updated output voltage specifications
Improved data for additive jitter specifications.
Improved typical phase noise plots.
Updated input/output termination recommendations.
Improved performance specifications with more
detail.
Added pin type description to the pin descriptions
table
Rev. 1.0
27
Si53321
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
28
Rev. 1.0