PD - 95445A IRG4BC20UPbF UltraFast Speed IGBT INSULATED GATE BIPOLAR TRANSISTOR Features C UltraFast: optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 Industry standard TO-220AB package Lead-Free VCES = 600V VCE(on) typ. = 1.85V G @VGE = 15V, IC = 6.5A E n-channel Benefits Generation 4 IGBTs offer highest efficiency available IGBTs optimized for specified application conditions Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBTs TO-220AB Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. 600 13 6.5 52 52 ± 20 5.0 60 24 -55 to + 150 V A V mJ W 300 (0.063 in. (1.6mm from case ) 10 lbfin (1.1Nm) °C Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. 0.50 2.0 (0.07) 2.1 80 Units °C/W g (oz) 1 01/21/10 IRG4BC20UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 Emitter-to-Collector Breakdown Voltage 18 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage 0.69 1.85 VCE(ON) Collector-to-Emitter Saturation Voltage 2.27 1.87 VGE(th) Gate Threshold Voltage 3.0 ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage -11 gfe Forward Transconductance 1.4 4.3 ICES Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS Max. Units Conditions V VGE = 0V, IC = 250µA V VGE = 0V, IC = 1.0A V/°C VGE = 0V, IC = 1.0mA 2.1 IC = 6.5A VGE = 15V IC = 13A See Fig.2, 5 V IC = 6.5A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 6.5A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 n A VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units Conditions 27 41 IC = 6.5A 4.5 6.8 nC VCC = 400V See Fig. 8 10 16 VGE = 15V 21 13 TJ = 25°C ns 86 130 IC = 6.5A, VCC = 480V 120 180 VGE = 15V, RG = 50Ω 0.10 Energy losses include "tail" 0.12 mJ See Fig. 10, 11, 13, 14 0.22 0.4 20 TJ = 150°C, 14 IC = 6.5A, VCC = 480V ns 190 VGE = 15V, RG = 50Ω 140 Energy losses include "tail" 0.42 mJ See Fig. 13, 14 7.5 nH Measured 5mm from package 530 VGE = 0V 39 pF VCC = 30V See Fig. 7 7.4 = 1.0MHz Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 50Ω, (See fig. 13a) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4BC20UPbF 25 For both: Triangular wave: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified 20 I Load Current ( A ) Power Dissipation = 13W Clamp voltage: 80% of rated 15 Square wave: 60% of rated voltage 10 I 5 Ideal diodes A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 100 TJ = 25°C TJ = 150°C 10 1 VGE = 15V 20µs PULSE WIDTH 0.1 0.1 1 10 IC , Collector-to-Emitter Current (A) IC , Collector-to-Emitter Current (A) 100 TJ = 150°C 10 TJ = 25°C 1 V CC = 10V 5µs PULSE WIDTH A 0.1 4 6 8 10 VCE , Collector-to-Emitter Voltage (V) VGE , Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics www.irf.com A 12 3 IRG4BC20UPbF VGE = 15V Maximum DC Collector Current (A) 12 10 8 6 4 2 2.6 VCE , Collector-to-Emitter Voltage (V) 14 0 25 50 75 100 125 VGE = 15V 80µs PULSE WIDTH IC = 13A 2.2 1.8 IC = 6.5A 1.4 I C = 3.3A A 1.0 150 -60 TC , Case Temperature (°C) -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 PDM 0.05 0.1 0.02 0.01 t SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 0.01 0.00001 1 /t 1 t2 2 2. Peak TJ = P DM x Z thJC + T C 0.0001 0.001 0.01 0.1 1 10 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC20UPbF 800 Cies 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 1000 600 Coes 400 Cres 200 A 0 1 10 100 VCE, Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) VCC VGE TJ IC 16 12 8 4 A 0 0 5 10 15 20 25 30 Qg , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.23 VCE = 400V I C = 6.5A Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage = 480V = 15V = 25°C = 6.5A 0.22 0.21 A 0.20 0 10 20 30 40 50 60 R G , Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC20UPbF RG TJ V CC V GE 0.8 1000 = 50 Ω = 150°C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 1.0 0.6 0.4 0.2 A 0.0 0 2 4 6 8 10 12 I C , Collector-to-Emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 14 VGE = 20V GE TJ = 125°C 100 SAFE OPERATING AREA 10 1 0.1 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4BC20UPbF RL = VCC ICM L D.U.T. VC * 50V 1000V 0 - VCC c 480µF d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Pulsed Collector Current Test Circuit Fig. 13b - Pulsed Collector Fig. 13a - Clamped Inductive Current Test Circuit Load Test Circuit IC L Driver* D.U.T. VC Test Circuit 50V 1000V c Fig. 14a - Switching Loss d e * Driver same type as D.U.T., VC = 480V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% I C 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4BC20UPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information (;$03 /( 7+,6,6$1,5) /27&2'( $66( 0%/('2 1:: ,17+($66(0%/</,1(& Note: "P" in assembly line position indicates "Lead-Free" ,17(5 1$7,21$/ 5( &7,),(5 /2*2 $66( 0%/< /27&2'( 3$57180 %(5 '$7(&2'( <($5 :((. /,1(& Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/2010 8 www.irf.com