PD - 9.1134 IRGBC40K-S INSULATED GATE BIPOLAR TRANSISTOR Features Short Circuit Rated UltraFast Fast IGBT C • Short circuit rated - 10µs @ 125°C, VGE = 15V • Switching-loss rating includes all "tail" losses • Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve VCES = 600V VCE(sat) ≤ 3.2V G @VGE = 15V, IC = 25A E n-channel Description Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications. These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability. SMD-220 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C I CM ILM tsc VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Short Circuit Withstand Time Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 42 25 84 84 10 ±20 15 160 65 -55 to +150 V A µs V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJA RθJA Wt Junction-to-Case Junction-to-Ambient, (PCB mount)** Junction-to-Ambient, typical socket mount Weight ** When mounted on 1" square PCB (FR-4 or G-10 Material) Min. Typ. Max. --------------------- ---------------2 (0.07) 0.77 40 80 ------ For recommended footprint and soldering techniques refer to application note #AN-994. Units °C/W g (oz) IRGBC40K-S Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 ---- ---V VGE = 0V, IC = 250µA Emitter-to-Collector Breakdown Voltage 20 ---- ---V VGE = 0V, IC = 1.0A ∆V (BR)CES/∆T J Temperature Coeff. of Breakdown Voltage---- 0.46 ---- V/°C VGE = 0V, IC = 1.0mA Collector-to-Emitter Saturation Voltage ---- 2.1 3.2 IC = 25A V GE = 15V VCE(on) ---- 2.8 ---V IC = 42A See Fig. 2, 5 ---- 2.5 ---IC = 25A, TJ = 150°C VGE(th) Gate Threshold Voltage 3.0 ---- 5.5 VCE = VGE, IC = 250µA ∆V GE(th)/∆T J Temperature Coeff. of Threshold Voltage ---- -13 ---- mV/°C VCE = VGE, IC = 250µA Forward Transconductance 7.0 14 ---S VCE = 100V, IC = 25A gfe ICES Zero Gate Voltage Collector Current ---- ---- 250 µA VGE = 0V, VCE = 600V ---- ---- 1000 VGE = 0V, VCE = 600V, TJ = 150°C IGES Gate-to-Emitter Leakage Current ---- ---- ±100 nA VGE = ±20V V(BR)CES V(BR)ECS Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Q gc t d(on) tr t d(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time t d(on) tr t d(off) tf Ets LE Cies Coes Cres Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. ------------------------------10 Typ. 61 13 22 35 27 160 130 0.52 1.2 1.7 ---- ---34 ---28 ---- 300 ---- 310 ---- 3.6 ---- 7.5 ---- 1500 ---- 190 ---17 Max. Units Conditions 92 IC = 25A 19 nC VCC = 400V See Fig. 8 33 VGE = 15V ---TJ = 25°C ---ns IC = 25A, VCC = 480V 240 VGE = 15V, RG = 10Ω 200 Energy losses include "tail" ------mJ See Fig. 9, 10, 11, 14 2.6 ---µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 10Ω, VCPK < 500V ---TJ = 150°C, ---ns IC = 25A, VCC = 480V ---VGE = 15V, RG = 10Ω ---Energy losses include "tail" ---mJ See Fig. 10, 14 ---nH Measured 5mm from package ---VGE = 0V ---pF VCC = 30V See Fig. 7 ---ƒ = 1.0MHz Notes: Repetitive rating; VGE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω, ( See fig. 13a ) Repetitive rating; pulse width limited by maximum junction temperature. Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. IRGBC40K-S 50 For both: 40 Load Current (A) Triangular wave: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 28W Clamp voltage: 80% of rated 30 Square wave: 60% of rated voltage 20 10 Ideal diodes A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK ) 1000 10 TJ = 150°C TJ = 25°C 1 VGE = 15V 20µs PULSE WIDTH A 0.1 0.1 1 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics 10 IC , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 100 TJ = 150°C 10 TJ = 25°C VCC = 100V 5µs PULSE WIDTH A 1 5 10 15 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 20 IRGBC40K-S 5.0 VGE = 15V VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 50 40 30 20 10 A 0 25 50 75 100 125 VGE = 15V 80µs PULSE WIDTH 3.0 I C = 25A 2.0 1.0 -60 150 I C = 50A 4.0 I C = 13A A -40 -20 0 20 40 60 80 100 120 140 160 TC, Case Temperature (°C) TC , Case Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 PDM 0.05 0.02 t SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 0.01 0.01 0.00001 1 /t 1 t 2 2 2. Peak TJ = PDM x Z thJC + T C 0.0001 0.001 0.01 0.1 1 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 10 IRGBC40K-S 2500 VGE , Gate-to-Emitter Voltage (V) 2000 C, Capacitance (pF) 20 V GE = 0V, f = 1MHz Cies = Cge + C gc , Cce SHORTED Cres = C gc Coes = C ce + C gc Cies 1500 C oes 1000 500 Cres A 0 1 10 VCE = 400V I C = 25A 16 12 8 4 A 0 100 0 20 VCE, Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 10 2.0 1.9 1.8 1.7 A 1.6 0 10 80 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage VCC = 480V VGE = 15V T C = 25°C I C = 25A 2.1 60 Qg , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 2.2 40 20 30 40 50 R G , Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance 60 I C = 50A I C = 25A I C = 13A 1 RG = 10Ω V GE = 15V V CC = 480V 0.1 -60 -40 -20 0 20 40 60 80 A 100 120 140 160 TC , Case Temperature (°C) Fig. 10 - Typical Switching Losses vs. Case Temperature IRGBC40K-S 1000 RG = 10Ω T C = 150°C VCC = 480V VGE = 15V 8 IC , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 10 6 4 2 100 A 0 0 10 20 30 40 50 VGE = 20V TJ = 125°C SAFE OPERATING AREA 10 A 1 1 60 10 100 VCE, Collector-to-Emitter Voltage (V) IC , Collector-to-Emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 4.69 (0.185) 4.20 (0.165) 10.54 (0.415) 10.29 (0.405) 1.32 (0.052) 1.22 (0.048) 1.40 (0.055) MAX. 4 15.49 (0.610) 14.73 (0.580) 10.67 (0.420) 9.91 (0.390) 1 2 2° 3 1.78 (0.070) 1.27 (0.050) 1.15 (0.045) MIN. 5° TYP. 2.79 (0.110) 2.29 (0.090) 1.40 (0.055) 1.15 (0.045) 0.64 (0.025) 0.46 (0.018) 0.010 (0.004) 0.93 (0.037) 0.69 (0.027) 2.89 (0.114) 2.64 (0.104) 2.54 (0.100) 5.08 (0.200) REF. OUTLINE SMD-220 Dimensions in Millimeters and (Inches) LEAD ASSIGNMENTS 1 - GATE 2 - COLLECTOR 3 - EMITTER 4 - COLLECTOR 1000 IRGBC40K-S L D.U.T. VC * 50V RL = 0 - 480V 1000V 480V 4 X IC@25°C 480µF 960V * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L Driver* D.U.T. VC Fig. 14a - Switching Loss Test Circuit 50V 1000V * Driver same type as D.U.T., VC = 480V 90% VC 10% Fig. 14b - Switching Loss Waveforms 90% t d(off) 10% I C 5% tf tr t d(on) t=5µs Eon Eoff Ets = (Eon +Eoff )