PD - 95641A
IRG4BC30KPbF
Short Circuit Rated
UltraFast IGBT
INSULATED GATE BIPOLAR TRANSISTOR
Features
High short circuit rating optimized for motor control,
tsc =10µs, @360V VCE (start), TJ = 125°C,
VGE = 15V
Combines low conduction losses with high
switching speed
Latest generation design provides tighter parameter
distribution and higher efficiency than previous
generations
Lead-Free
C
VCES = 600V
VCE(on) typ. = 2.21V
G
@VGE = 15V, IC = 16A
E
n-channel
Benefits
As a Freewheeling Diode we recommend our
HEXFREDTM ultrafast, ultrasoft recovery diodes for
minimum EMI / Noise and switching losses in the
Diode and IGBT
Latest generation 4 IGBTs offer highest power
density motor controls possible
This part replaces the IRGBC30K and IRGBC30M
devices
TO-220AB
Absolute Maximum Ratings
Parameter
V CES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
tsc
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
28
16
56
56
10
±20
260
100
42
-55 to +150
V
A
µs
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbfin (1.1Nm)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
0.5
1.44
1.2
80
Units
°C/W
g
1
02/04/10
IRG4BC30KPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
600
Emitter-to-Collector Breakdown Voltage 18
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
0.54
2.21
2.21
VCE(ON)
Collector-to-Emitter Saturation Voltage
2.88
2.36
VGE(th)
Gate Threshold Voltage
3.0
∆V GE(th)/∆TJ Temperature Coeff. of Threshold Voltage
-12
gfe
Forward Transconductance
5.4
8.1
ICES
Zero Gate Voltage Collector Current
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
V(BR)ECS
Max. Units
Conditions
V
VGE = 0V, IC = 250µA
V
VGE = 0V, IC = 1.0A
V/°C VGE = 0V, IC = 1.0mA
IC = 14A
VGE = 15V
2.7
IC = 16A
V
IC = 28A
See Fig.2, 5
IC = 16A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
mV/°C VCE = VGE, IC = 250µA
S
VCE = 100V, IC = 16A
250
VGE = 0V, VCE = 600V
2.0
µA VGE = 0V, VCE = 10V, TJ = 25°C
1100
VGE = 0V, VCE = 600V, TJ = 150°C
±100 n A VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
Eon
Eoff
Ets
LE
Cies
Coes
Cres
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
10
Typ.
67
11
25
26
28
130
120
0.36
0.51
0.87
25
29
190
190
1.2
0.26
0.36
0.62
7.5
920
110
27
Max. Units
Conditions
100
IC = 16A
16
nC
VCC = 400V
See Fig.8
37
VGE = 15V
TJ = 25°C
ns
200
IC = 16A, VCC = 480V
170
VGE = 15V, RG = 23Ω
Energy losses include "tail"
mJ
See Fig. 9,10,14
1.3
µs
VCC = 400V, TJ = 125°C
VGE = 15V, RG = 23Ω , VCPK < 500V
TJ = 150°C,
IC = 16A, VCC = 480V
ns
VGE = 15V, RG = 23Ω
Energy losses include "tail"
mJ
See Fig. 11,14
TJ = 25°C, VGE = 15V, RG = 23Ω
IC = 14A, VCC = 480V
Energy losses include "tail"
nH
Measured 5mm from package
VGE = 0V
pF
VCC = 30V
See Fig. 7
= 1.0MHz
Details of note through
are on the last page
2
www.irf.com
IRG4BC30KPbF
35
For both:
30
Load Current ( A )
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
25
I
Clamp voltage:
80% of rated
Power Dissipation = 21W
20
Square wave:
60% of rated
voltage
15
I
10
Ideal diodes
5
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 o C
TJ = 150 o C
10
1
0.1
V GE = 15V
20µs PULSE WIDTH
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 oC
10
TJ = 25 oC
1
0.1
V CC = 50V
5µs PULSE WIDTH
5
10
15
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC30KPbF
4.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
30
25
20
15
10
5
0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
VGE = 15V
80 us PULSE WIDTH
IC = 32 A
3.0
IC = 16 A
2.0
IC = 8.0A
8A
1.0
-60 -40 -20
0
20
40
60
80 100 120 140 160
JunctionTemperature
Temperature
( °C)
TTJJ, ,Junction
( °C
)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
PDM
0.10
0.1
0.01
0.00001
0.05
0.02
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC30KPbF
1500
VGE , Gate-to-Emitter Voltage (V)
1200
C, Capacitance (pF)
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
Cies
900
600
Coes
300
VCC = 400V
I C = 16A
16
12
8
4
Cres
0
1
10
0
100
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
V CC = 480V
V GE = 15V
TJ = 25 ° C
I C = 16A
0
10
20
30
40
RG , Gate Resistance (Ohm)
Ω
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
60
80
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
1.0
0.5
20
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
1.5
0
50
RG = Ohm
23Ω
VGE = 15V
VCC = 480V
IC = 32 A
IC = 16 A
1
IC = 8.0A
8A
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC30KPbF
RG
TJ
VCC
3.2 VGE
100
Ω
= 23
Ohm
= 150° C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
4.0
2.4
1.6
0.8
0.0
0
8
16
24
32
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
40
VGE = 20V
T J = 125 oC
10
1
SAFE OPERATING AREA
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4BC30KPbF
RL = VCC
ICM
L
D.U.T.
VC *
50V
1000V
0 - VCC
c
480µF
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Pulsed Collector Current
Test Circuit
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
Driver*
D.U.T.
VC
Test Circuit
50V
1000V
c
Fig. 14a - Switching Loss
d
e
* Driver same type
as D.U.T., VC = 480V
c
d
90%
e
VC
10%
90%
Fig. 14b - Switching Loss
t d(off)
10%
I C 5%
Waveforms
tf
tr
t d(on)
t=5µs
E on
E off
E ts = (Eon +Eoff )
www.irf.com
7
IRG4BC30KPbF
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω,
(See fig. 13a)
Repetitive rating; pulse width limited by maximum
junction temperature.
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2010
8
www.irf.com