PD - 95641A IRG4BC30KPbF Short Circuit Rated UltraFast IGBT INSULATED GATE BIPOLAR TRANSISTOR Features High short circuit rating optimized for motor control, tsc =10µs, @360V VCE (start), TJ = 125°C, VGE = 15V Combines low conduction losses with high switching speed Latest generation design provides tighter parameter distribution and higher efficiency than previous generations Lead-Free C VCES = 600V VCE(on) typ. = 2.21V G @VGE = 15V, IC = 16A E n-channel Benefits As a Freewheeling Diode we recommend our HEXFREDTM ultrafast, ultrasoft recovery diodes for minimum EMI / Noise and switching losses in the Diode and IGBT Latest generation 4 IGBTs offer highest power density motor controls possible This part replaces the IRGBC30K and IRGBC30M devices TO-220AB Absolute Maximum Ratings Parameter V CES IC @ TC = 25°C IC @ TC = 100°C ICM ILM tsc VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Short Circuit Withstand Time Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 28 16 56 56 10 ±20 260 100 42 -55 to +150 V A µs V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbfin (1.1Nm) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. 0.5 1.44 1.2 80 Units °C/W g 1 02/04/10 IRG4BC30KPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 Emitter-to-Collector Breakdown Voltage 18 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage 0.54 2.21 2.21 VCE(ON) Collector-to-Emitter Saturation Voltage 2.88 2.36 VGE(th) Gate Threshold Voltage 3.0 ∆V GE(th)/∆TJ Temperature Coeff. of Threshold Voltage -12 gfe Forward Transconductance 5.4 8.1 ICES Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS Max. Units Conditions V VGE = 0V, IC = 250µA V VGE = 0V, IC = 1.0A V/°C VGE = 0V, IC = 1.0mA IC = 14A VGE = 15V 2.7 IC = 16A V IC = 28A See Fig.2, 5 IC = 16A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 16A 250 VGE = 0V, VCE = 600V 2.0 µA VGE = 0V, VCE = 10V, TJ = 25°C 1100 VGE = 0V, VCE = 600V, TJ = 150°C ±100 n A VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets Eon Eoff Ets LE Cies Coes Cres Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. 10 Typ. 67 11 25 26 28 130 120 0.36 0.51 0.87 25 29 190 190 1.2 0.26 0.36 0.62 7.5 920 110 27 Max. Units Conditions 100 IC = 16A 16 nC VCC = 400V See Fig.8 37 VGE = 15V TJ = 25°C ns 200 IC = 16A, VCC = 480V 170 VGE = 15V, RG = 23Ω Energy losses include "tail" mJ See Fig. 9,10,14 1.3 µs VCC = 400V, TJ = 125°C VGE = 15V, RG = 23Ω , VCPK < 500V TJ = 150°C, IC = 16A, VCC = 480V ns VGE = 15V, RG = 23Ω Energy losses include "tail" mJ See Fig. 11,14 TJ = 25°C, VGE = 15V, RG = 23Ω IC = 14A, VCC = 480V Energy losses include "tail" nH Measured 5mm from package VGE = 0V pF VCC = 30V See Fig. 7 = 1.0MHz Details of note through are on the last page 2 www.irf.com IRG4BC30KPbF 35 For both: 30 Load Current ( A ) Triangular wave: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified 25 I Clamp voltage: 80% of rated Power Dissipation = 21W 20 Square wave: 60% of rated voltage 15 I 10 Ideal diodes 5 A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 o C TJ = 150 o C 10 1 0.1 V GE = 15V 20µs PULSE WIDTH 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 oC 10 TJ = 25 oC 1 0.1 V CC = 50V 5µs PULSE WIDTH 5 10 15 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC30KPbF 4.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 30 25 20 15 10 5 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) VGE = 15V 80 us PULSE WIDTH IC = 32 A 3.0 IC = 16 A 2.0 IC = 8.0A 8A 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 JunctionTemperature Temperature ( °C) TTJJ, ,Junction ( °C ) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 PDM 0.10 0.1 0.01 0.00001 0.05 0.02 0.01 t1 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC30KPbF 1500 VGE , Gate-to-Emitter Voltage (V) 1200 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc Cies 900 600 Coes 300 VCC = 400V I C = 16A 16 12 8 4 Cres 0 1 10 0 100 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 10 V CC = 480V V GE = 15V TJ = 25 ° C I C = 16A 0 10 20 30 40 RG , Gate Resistance (Ohm) Ω Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 40 60 80 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 1.0 0.5 20 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 1.5 0 50 RG = Ohm 23Ω VGE = 15V VCC = 480V IC = 32 A IC = 16 A 1 IC = 8.0A 8A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC30KPbF RG TJ VCC 3.2 VGE 100 Ω = 23 Ohm = 150° C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 4.0 2.4 1.6 0.8 0.0 0 8 16 24 32 I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 40 VGE = 20V T J = 125 oC 10 1 SAFE OPERATING AREA 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4BC30KPbF RL = VCC ICM L D.U.T. VC * 50V 1000V 0 - VCC c 480µF d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Pulsed Collector Current Test Circuit Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L Driver* D.U.T. VC Test Circuit 50V 1000V c Fig. 14a - Switching Loss d e * Driver same type as D.U.T., VC = 480V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% I C 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4BC30KPbF Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω, (See fig. 13a) Repetitive rating; pulse width limited by maximum junction temperature. Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& Note: "P" in assembly line position indicates "Lead-Free" ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/2010 8 www.irf.com