IRG4PH50S-E Data Sheet (220 KB, EN)

PD -96225
IRG4PH50S-EPbF
Standard Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
Features
C
• Standard: Optimized for minimum saturation
voltage and low operating frequencies ( < 1kHz)
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
• Industry standard TO-247AC package
• Lead-Free
VCES =1200V
VCE(on) typ. = 1.47V
G
@VGE = 15V, IC = 33A
E
n-channel
Benefits
C
• Generation 4 IGBT's offer highest efficiency available
• IGBT's optimized for specified application conditions
• Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBT's
E
GC
TO-247AD
IRG4PH50S-EPbF
Absolute Maximum Ratings
Parameter
VCES
IC@ TC = 25°C
IC@ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC =25°
PD @ TC =100°
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
c
Units
Max.
1200
57
33
114
114
± 20
± 30
270
200
80
d
Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy
e
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
V
A
V
mJ
W
-55 to + 150
°C
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw.
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
—
—
0.64
—
0.24
—
—
—
40
—
6.0(0.21)
—
Units
°C/W
g (oz)
1
02/09/09
IRG4PH50S-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
1200 —
Emitter-to-Collector Breakdown Voltage „ 18
—
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
1.22
— 1.47
Collector-to-Emitter Saturation Voltage
— 1.75
VCE(ON)
— 1.55
VGE(th)
Gate Threshold Voltage
3.0
—
DVGE(th)/DTJ Temperature Coeff. of Threshold Voltage
—
-11
gfe
Forward Transconductance …
27
40
—
—
ICES
Zero Gate Voltage Collector Current
—
—
—
—
IGES
Gate-to-Emitter Leakage Current
—
—
V(BR)CES
V(BR)ECS
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
—
V
VGE = 0V, IC = 1.0 A
—
V/°C VGE = 0V, IC = 2.0 mA
1.7
IC = 33A
VGE = 15V
—
IC = 57A
See Fig.2, 5
V
—
IC = 33A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100V, IC = 33A
250
VGE = 0V, VCE = 1200V
µA
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
1000
VGE = 0V, VCE = 1200V, TJ = 150°C
±100
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Q gc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
167
25
55
32
29
845
425
1.80
19.6
21.4
32
30
1170
1000
37
13
3600
160
30
Max. Units
Conditions
251
IC = 33A
38
nC VCC = 400V
See Fig. 8
83
VGE = 15V
—
—
TJ = 25°C
ns
1268
IC = 33A, VCC = 960V
638
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail"
—
mJ See Fig. 9, 10, 14
44
—
TJ = 150°C,
—
IC = 33A, VCC = 960V
ns
—
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail"
—
mJ See Fig. 10,11,14
—
nH Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
Notes:
 Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0Ω,
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
… Pulse width 5.0µs, single shot.
(See fig. 13a)
ƒ Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4PH50S-EPbF
For both:
Load Current (A)
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink= 90°C
Gate drive as specified
Power Dissipation = 40W
60
40
Clamp voltage:
80% of rated
Square wave:
60% of rated
voltage
20
Ideal diodes
A
0
0.1
1
10
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C, Collector-to-Emitter Current (A)
TJ = 25 °C
I C , Collector-to-Emitter Current (A)
1000
1000
100
100
TJ = 150 °C
10
1
0.0
V GE = 15V
80µs PULSE WIDTH
1.0
2.0
3.0
4.0
5.0
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
TJ = 150 °C
TJ = 25 °C
10
1
V CC = 50V
5µs PULSE WIDTH
5
6
7
8
9
10
11
12
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PH50S-EPbF
2.5
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
60
50
40
30
20
10
0
25
50
75
100
125
150
VGE = 15V
80 us PULSE WIDTH
IC = 66 A
2.0
IC = 33 A
1.5
IC =16.5 A
1.0
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
0.001
0.00001
SINGLE PULSE
(THERMAL RESPONSE)
PDM
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH50S-EPbF
7000
Cies
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
6000
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
5000
4000
Coes
3000
2000
Cres
1000
0
1
10
15
10
5
0
100
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
1000
V CC = 960V
V GE = 15V
TJ = 25 °C
I C = 33A
23.0
22.0
0
10
20
30
40
, Gate Resistance (Ohm)
RR
GG, Gate Resistance ( Ω )
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
25
50
75
100
125
150
175
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
24.0
21.0
0
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
25.0
VCC = 400V
I C = 33A
50
5Ω
RG = 15Ω
5Ohm
VGE = 15V
VCC = 960V
IC = 66 A
100
IC = 33 A
IC = 16.5 A
10
1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PH50S-EPbF
RG
TJ
VCC
100
VGE
1000
= 55Ohm
Ω
= 150 ° C
= 960V
= 15V
I C , Collector Current (A)
Total Switching Losses (mJ)
120
VGE = 20V
T J = 125 oC
100
80
60
40
10
20
0
0
10
20
30
40
50
60
I C , Collector Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
70
1
SAFE OPERATING AREA
1
10
100
1000
10000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Reverse Bias SOA
www.irf.com
IRG4PH50S-EPbF
L
D.U.T.
VC *
50V
RL =
1000V
480µF
960V
0-960V
c
960V
4 X IC@25°C
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
Driver*
VC
D.U.T.
Loss Test Circuit
50V
1000V
c
d
Fig. 14a - Switching
e
* Driver same type
as D.U.T., VC = ----V
Fig. 14b - Switching Loss
Waveforms
www.irf.com
7
IRG4PH50S-EPbF
TO-247AD Package Outline (Dimensions are shown in millimeters (inches))
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/2009
8
www.irf.com