PD - 97425 IRGP4069DPbF IRGP4069D-EPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • C Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction Temperature 175 °C 5 µS short circuit SOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (ON) Temperature Coefficient Tight Parameter Distribution Lead Free Package VCES = 600V IC(Nominal) = 35A tSC ≥ 5µs, TJ(max) = 175°C G VCE(on) typ. = 1.6V E n-channel C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation C GC E TO-247AC IRGP4069DPbF G Gate E GC TO-247AD IRGP4069D-EPbF C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 76 Continuous Collector Current 50 35 ICM Nominal Current Pulse Collector Current, VGE = 15V IC @ TC = 100°C INOMINAL 105 c ILM Clamped Inductive Load Current, VGE = 20V IF @ TC = 25°C Diode Continous Forward Current IF @ TC = 100°C IFM Diode Continous Forward Current Diode Maximum Forward Current d 140 VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 268 PD @ TC = 100°C Maximum Power Dissipation 134 TJ Operating Junction and TSTG Storage Temperature Range A 140 76 50 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter RθJC (IGBT) f f Min. Typ. Max. Units ––– ––– 0.56 °C/W ––– ––– 1.0 RθJC (Diode) Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 40 ––– 1 www.irf.com 10/2/09 IRGP4069DPbF/IRGP4069D-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage Min. Typ. Max. Units 600 — — V — 1.3 — — 1.6 1.85 — VCE(on) Collector-to-Emitter Saturation Voltage — 1.9 — 2.0 — VGE(th) Gate Threshold Voltage 4.0 — 6.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -18 — gfe ICES Forward Transconductance — 25 — Collector-to-Emitter Leakage Current — 1.0 70 — 770 — — 2.2 3.8 VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current — 1.4 — — — ±100 Conditions VGE = 0V, IC = 100µA e mV/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 35A, VGE = 15V, TJ = 25°C V IC = 35A, VGE = 15V, TJ V d d = 175°C d IC = 35A, VGE = 15V, TJ = 150°C VCE = VGE, IC = 1.0mA mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) VCE = 50V, IC = 35A, PW = 60µs S µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C V IF = 35A IF = 35A, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Total Gate Charge (turn-on) Min. Typ. Max. — 69 104 Qge Gate-to-Emitter Charge (turn-on) — 18 27 Qgc Gate-to-Collector Charge (turn-on) — 29 44 Eon Turn-On Switching Loss — 390 508 Eoff Turn-Off Switching Loss — 632 753 Etotal Total Switching Loss — 1022 1261 td(on) Turn-On delay time — 46 56 tr Rise time — 33 42 td(off) Turn-Off delay time — 105 117 tf Fall time — 44 54 Eon Turn-On Switching Loss — 1013 — Eoff Turn-Off Switching Loss — 929 — Etotal Total Switching Loss — 1942 — td(on) Turn-On delay time — 43 — tr Rise time — 35 — td(off) Turn-Off delay time — 127 — tf Fall time — 61 — Units Conditions IC = 35A nC VGE = 15V VCC = 400V IC = 35A, VCC = 400V, VGE = 15V µJ RG = 10Ω, L = 200µH, LS = 150nH, TJ = 25°C Energy losses include tail & diode reverse recovery IC = 35A, VCC = 400V, VGE = 15V ns RG = 10Ω, L = 200µH, LS = 150nH, TJ = 25°C IC = 35A, VCC = 400V, VGE=15V µJ RG=10Ω, L=200µH, LS=150nH, TJ = 175°C Energy losses include tail & diode reverse recovery IC = 35A, VCC = 400V, VGE = 15V ns RG = 10Ω, L = 200µH, LS = 150nH TJ = 175°C VGE = 0V Cies Input Capacitance — 2113 — Coes Output Capacitance — 197 — VCC = 30V Cres Reverse Transfer Capacitance — 65 — f = 1.0Mhz TJ = 175°C, IC = 140A RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V pF Rg = 10Ω, VGE = +20V to 0V SCSOA Short Circuit Safe Operating Area 5 — — µs VCC = 400V, Vp =600V Erec trr Reverse Recovery Energy of the Diode — 304 — µJ TJ = 175°C Diode Reverse Recovery Time — 120 — ns VCC = 400V, IF = 35A Irr Peak Reverse Recovery Current — 25 — A VGE = 15V, Rg = 10Ω, L =210µH, Ls = 150nH Rg = 10Ω, VGE = +15V to 0V Notes: VCC = 80% (VCES), VGE = 20V, L = 19µH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRGP4069DPbF/IRGP4069D-EPbF 80 300 70 250 60 200 Ptot (W) IC (A) 50 40 30 150 100 20 50 10 0 0 25 50 75 100 125 150 175 25 50 75 100 125 150 175 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 10 100 10µsec IC (A) IC (A) 100µsec 1msec DC 10 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 1 10 100 1000 10 100 VCE (V) VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =20V 140 140 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 80 VGE = 18V VGE = 15V VGE = 12V 120 100 ICE (A) ICE (A) 100 60 60 40 20 20 0 VGE = 10V VGE = 8.0V 80 40 0 0 2 4 6 VCE (V) 8 10 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = ≤60µs www.irf.com 1000 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = ≤60µs 3 IRGP4069DPbF/IRGP4069D-EPbF 140 140 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 80 100 IF (A) ICE (A) 100 120 60 60 40 40 20 20 0 -40°C 25°C 175°C 80 0 0 2 4 6 8 10 0.0 1.0 2.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 20 20 18 18 16 16 14 14 ICE = 18A VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = ≤60µs ICE = 35A 10 ICE = 70A 8 12 ICE = 18A ICE = 35A 10 ICE = 70A 8 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 140 IC, Collector-to-Emitter Current (A) 18 16 14 VCE (V) 15 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C 12 ICE = 18A ICE = 35A ICE = 70A 10 8 6 4 2 120 TJ = 25°C 100 80 T J = 175°C 60 40 20 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C 4 4.0 VF (V) VCE (V) 12 3.0 20 4 5 6 7 8 9 10 11 12 13 14 VGE, Gate-to-Emitter Voltage (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 60µs www.irf.com IRGP4069DPbF/IRGP4069D-EPbF 4000 1000 3500 2500 Swiching Time (ns) Energy (µJ) 3000 EON 2000 1500 EOFF tdOFF 100 tF 1000 tdON 500 tR 0 10 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 IC (A) IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V 3000 Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V 1000 2500 Swiching Time (ns) Energy (µJ) EON 2000 EOFF 1500 tdOFF 100 tF tdON 1000 tR 500 10 0 25 50 75 100 0 10 30 40 50 RG (Ω) Rg (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 210µH; VCE = 400V, ICE = 35A; VGE = 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 210µH; VCE = 400V, ICE = 35A; VGE = 15V 35 26 RG = 10Ω 30 24 22 RG = 22Ω 25 IRR (A) IRR (A) 20 RG = 47Ω 20 20 18 15 16 RG = 100Ω 10 14 10 20 30 40 50 60 IF (A) Fig. 17 - Typ. Diode IRR vs. IF TJ = 175°C www.irf.com 70 0 20 40 60 80 100 RG (Ω) Fig. 18 - Typ. Diode IRR vs. RG TJ = 175°C 5 IRGP4069DPbF/IRGP4069D-EPbF 26 2500 24 2250 22 2000 70A QRR (nC) IRR (A) 10Ω 20 47Ω 18 16 1250 14 1000 300 400 500 600 22Ω 1750 1500 200 35A 18A 100Ω 100 200 300 400 500 600 700 800 900 700 diF /dt (A/µs) diF /dt (A/µs) Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 35A; TJ = 175°C 300 20 400 RG = 10Ω Isc 350 15 Time (µs) Energy (µJ) RG = 47Ω 200 10 150 5 75 RG = 100Ω 150 0 0 100 10 20 30 40 50 60 8 70 10 12 16 18 Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C Fig. 21 - Typ. Diode ERR vs. IF TJ = 175°C 10000 VGE, Gate-to-Emitter Voltage (V) 16 Cies Capacitance (pF) 14 VGE (V) IF (A) 1000 Coes 100 Cres VCES = 400V VCES = 300V 14 12 10 8 6 4 2 0 10 0 100 200 300 400 VCE (V) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 Current (A) 250 225 Tsc RG = 22Ω 300 500 0 10 20 30 40 50 60 70 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 35A; L = 740µH www.irf.com IRGP4069DPbF/IRGP4069D-EPbF 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τ2 τ1 τ3 τ2 τ4 τ3 τ4 Ci= τi/Ri Ci i/Ri 1E-005 τi (sec) Ri (°C/W) τC τ 0.01041 0.000006 0.15911 0.000142 0.23643 0.002035 0.15465 0.013806 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R4 R4 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.1 0.01 0.001 0.0001 1E-006 0.20 0.10 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τ1 τ2 τ2 τ3 τ3 τ4 τ4 0.01716 τi (sec) 0.000031 0.35875 0.000517 0.41334 0.004192 0.20121 0.024392 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 Ri (°C/W) τC τ Ci= τi/Ri Ci i/Ri 1E-005 R4 R4 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGP4069DPbF/IRGP4069D-EPbF L L DUT 0 VCC 80 V + - 1K DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC -5V VCC DUT / DRIVER DUT VCC Rg SCSOA Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= VCC ICM 100K D1 DUT Rg 22K C sense VCC G force DUT 0.0075µF E sense E force Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.6 - BVCES Filter Circuit www.irf.com IRGP4069DPbF/IRGP4069D-EPbF tf 400 600 50 500 40 400 30 300 200 20 V CE (V) 300 ICE (A) VCE (V) 90% ICE 40 30 90% test current 200 10 5% ICE 0 0 -10 0 0.5 1 1.5 2 -10 6.4 6.6 7 7.2 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 700 40 QRR 30 Vce (V) 10 0 10% Peak IRR Peak IRR 350 ICE 600 t RR 20 V F (V) 6.8 time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 -20 -30 -0.3 0 -100 time(µs) -10 10 Eon Loss Eoff Loss -100 -0.5 20 5% V CE 10% test current 100 0 50 tr 5% V CE 100 60 TEST CURRENT 300 500 250 400 200 VCE 300 150 200 100 100 50 0 -0.2 -0.1 0 0.1 0.2 0 -100 -4.5 -50 0.5 5.5 10.5 time (µS) Time (uS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 www.irf.com ICE (A) 500 60 ICE (A) 600 9 IRGP4069DPbF/IRGP4069D-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5)3( + '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRGP4069DPbF/IRGP4069D-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/09 www.irf.com 11