PD - 97406A IRG7PSH73K10PbF INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • • • • • VCES = 1200V C Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction Temperature 175 °C 10 μS short Circuit SOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (ON) Temperature Coefficient Tight Parameter Distribution Lead Free Package IC(Nominal) = 75A tSC ≥ 10μs, TJ(max) =175°C G E VCE(on) typ. = 2.0V n-channel C E C G Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation Super-247 G G a te C C o lle c to r E E m itte r Absolute Maximum Ratings Parameter Max. Units V Continuous Collector Current 1200 220 IC @ TC = 100°C Continuous Collector Current 130 INOMINAL Nominal Current 75 ICM Pulse Collector Current, VGE=15V 225 VCES Collector-to-Emitter Voltage IC @ TC = 25°C c d ILM Clamped Inductive Load Current, VGE=20V VGE Continuous Gate-to-Emitter Voltage PD @ TC = 25°C Maximum Power Dissipation 1150 PD @ TC = 100°C Maximum Power Dissipation 580 TJ Operating Junction and TSTG Storage Temperature Range A 300 V ±30 W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter g RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) 1 g Min. Typ. Max. ––– ––– 0.13 ––– 0.24 ––– ––– 40 ––– Units °C/W www.irf.com 9/8/10 IRG7PSH73K10PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage VGE(th) ΔVGE(th)/ΔTJ gfe ICES Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current IGES Gate-to-Emitter Leakage Current Min. Typ. Max. Units 1200 — — — — 5.0 — — — — — — 1.58 2.0 2.50 2.60 — -18 53 1.0 2340 — — V VGE = 0V, IC = 250μA — V/°C VGE = 0V, IC = 5.0mA (25°C-175°C) 2.3 IC = 75A, VGE = 15V, TJ = 25°C — V IC = 75A, VGE = 15V, TJ = 150°C — IC = 75A, VGE = 15V, TJ = 175°C 7.5 V VCE = VGE, IC = 3.5mA — mV/°C VCE = VGE, IC = 3.5mA (25°C - 175°C) — S VCE = 50V, IC = 75A, PW = 80μs 25 VGE = 0V, VCE = 1200V, TJ = 25°C μA — VGE = 0V, VCE = 1200V, TJ = 175°C ±400 nA VGE = ±30V Conditions f e e e f Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Parameter — — — — — — — — — — — — — — — — — — — — 360 87 180 7.7 4.6 12.3 63 118 267 114 11 7.4 18.4 62 110 330 237 9450 340 230 540 130 270 8.7 5.6 14.3 81 138 291 134 — — — — — — — — — — RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 10 — — nC mJ e Conditions IC = 75A VGE = 15V VCC = 600V IC = 75A, VCC = 600V, VGE = 15V RG = 4.7Ω, L = 200μH, TJ = 25°C e Energy losses include tail & diode reverse recovery e ns IC = 75A, VCC = 600V, VGE = 15V RG = 4.7Ω, L = 200μH, TJ = 25°C mJ IC = 75A, VCC = 600V, VGE=15V RG=4.7Ω, L=200μH, TJ = 175°C e Energy losses include tail & diode reverse recovery ns pF μs IC = 75A, VCC = 600V, VGE=15V RG = 4.7Ω, L = 200μH TJ = 175°C e VGE = 0V VCC = 30V f = 1.0Mhz IC = 300A VCC = 960V, Vp =1200V Rg = 4.7Ω, VGE = +20V to 0V, TJ =175°C VCC = 600V, Vp =1200V ,TJ = 150°C Rg = 4.7Ω, VGE = +15V to 0V Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) VCC = 80% (VCES), VGE = 20V, L = 20μH, RG = 5.0Ω. Pulse width ≤ 400μs; duty cycle ≤ 2%. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRG7PSH73K10PbF 100 For both: Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 164W Load Current ( A ) 80 60 Square wave: 40 60% of rated voltage I 20 Ideal diodes 0 0.1 1 10 100 f , Frequency ( kHz ) 240 1200 200 1000 160 800 Ptot (W) IC, Collector Current (A) Fig. 1 - Typical Load Current vs. Frequency 120 600 80 400 40 200 0 0 25 50 75 100 125 150 0 175 25 50 75 100 125 150 175 TC (°C) TC, Case Temperature (°C) Fig. 2 - Maximum DC Collector Current vs. Case Temperature Fig. 3 - Power Dissipation vs. Case Temperature 1000 1000 100 10 100 IC (A) IC (A) 10 μs 100 μs 1ms 1 10 DC 0.1 1 10 100 1000 VCE (V) Fig. 4 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V www.irf.com 10000 1 10 100 1000 10000 VCE (V) Fig. 5 - Reverse Bias SOA TJ = 175°C; VGE =20V 3 IRG7PSH73K10PbF 400 400 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 300 ICE (A) ICE (A) 300 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 200 200 100 100 0 0 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 VCE (V) 10 12 14 16 18 20 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 25 400 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 VCE (V) ICE (A) 300 200 15 ICE = 38A ICE = 75A ICE = 150A 10 100 5 0 0 2 4 6 8 0 10 12 14 16 18 20 5 VCE (V) 25 20 20 ICE = 38A ICE = 75A ICE = 150A VCE (V) VCE (V) 25 10 5 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C 15 ICE = 38A ICE = 75A ICE = 150A 10 5 0 5 10 15 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C 4 15 VGE (V) Fig. 8 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80μs 15 10 20 0 5 10 15 20 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C www.irf.com IRG7PSH73K10PbF 40000 ICE, Collector-to-Emitter Current (A) 400 TJ = 25°C TJ = 175°C EON 30000 Energy (μJ) 300 200 100 20000 EOFF 10000 0 4 6 8 10 12 14 0 16 40 VGE, Gate-to-Emitter Voltage (V) 60 80 100 120 140 160 I C (A) Fig. 12- Typ. Transfer Characteristics VCE = 50V; tp = 10μs Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200μH; VCE = 600V, RG = 5.0Ω; VGE = 15V 1000 25000 100 EON 20000 tF Energy (μJ) Swiching Time (ns) tdOFF tR tdON 15000 EOFF 10000 5000 10 20 40 60 80 100 120 140 0 160 0 IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200μH; VCE = 600V, RG = 5.0Ω; VGE = 15V 10000 30 40 50 RG (Ω) 450 40 35 tR 100 Time (μs) 1000 tF tdON 10 400 Isc Tsc 30 350 25 300 20 250 15 200 10 150 100 5 0 10 20 30 40 50 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200μH; VCE = 600V, ICE = 75A; VGE = 15V Current (A) Swiching Time (ns) 20 Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200μH; VCE = 600V, ICE = 75A; VGE = 15V tdOFF www.irf.com 10 8 10 12 14 16 18 VGE (V) Fig. 17 - VGE vs. Short Circuit Time VCC = 600V; TC = 150°C 5 IRG7PSH73K10PbF 100000 16 400V 14 600V 10000 Cies VGE (V) Capacitance (pF) 12 10 8 6 1000 4 Coes Cres 2 0 100 0 20 40 60 80 0 100 100 200 300 400 Q G, Total Gate Charge (nC) VCE (V) Fig. 19- Typical Gate Charge vs. VGE ICE = 75A; L = 330μH Fig. 18 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Thermal Response ( Z thJC ) 1 0.1 D = 0.50 0.20 0.01 0.10 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci τi/Ri 0.001 1E-005 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.0309 0.000104 0.0520 0.000868 0.0471 0.003620 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 R3 R3 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case 6 www.irf.com IRG7PSH73K10PbF L L DUT 0 80 V + VCC DUT - Vclamped Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit DIODE CLAMP L VCC DUT / DRIVER VCC Rg Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R = VCC ICM C force 100K D1 DUT Rg VCC 22K C sense 0.0075μ G force DUT E sense E force Fig.C.T.5 - Resistive Load Circuit www.irf.com Fig.C.T.6 - BVCES Filter Circuit 7 IRG7PSH73K10PbF 700 600 90% ICE VCE (V) 500 400 900 160 800 140 700 120 600 120 100 500 100 400 80 80 300 60 10% VCE 200 10% ICE 100 0 40 200 20 100 -100 -4 -2 0 2 4 6 10% tes t current 90% test current 60 40 20 0 Eon Loss -100 10 12 140 10% VCE 0 -20 8 160 TEST CURRENT tr 300 0 Eoff Loss 180 ICE (A) 800 180 VCE (V) tf ICE (A) 900 -20 -3 -2 -1 0 1 2 3 4 5 6 7 time(μs) time (μs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 800 800 700 700 VCE 600 600 500 ICE 400 400 300 300 200 200 100 100 0 Ice (A) Vce (V) 500 0 -100 -100 -10 -5 0 5 10 15 20 Time (uS) Fig. WF3 - Typ. S.C. Waveform @ TJ = 150°C using Fig. CT.3 8 www.irf.com IRG7PSH73K10PbF Case Outline and Dimensions — Super-247 Super-247 (TO-274AA) Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFPS37N50A 719C 17 89 ASSEMBLY LOT CODE Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 7 = 1997 WEEK 19 LINE C TOP Super-247 package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/10 www.irf.com 9