IRF IRGB4061DPBF

PD - 97189B
IRGB4061DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
•
•
•
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 175 °C
5 μS short circuit SOA
Square RBSOA
100% of the parts tested for 4X rated current (ILM)
Positive VCE (ON) Temperature co-efficient
Ultra fast soft Recovery Co-Pak Diode
Tight parameter distribution
Lead Free Package
C
VCES = 600V
IC = 18A, TC = 100°C
tSC ≥ 5μs, TJ(max) = 175°C
G
VCE(on) typ. = 1.65V
E
n-channel
Benefits
C
• High Efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
• Rugged transient Performance for increased reliability
• Excellent Current sharing in parallel operation
• Low EMI
E
C
G
TO-220AB
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
36
IC @ TC = 100°C
Continuous Collector Current
18
ICM
ILM
Pulse Collector Current
Clamped Inductive Load Current
IF @ TC = 25°C
Diode Continous Forward Current
IF @ TC = 100°C
IFM
Diode Continous Forward Current
Diode Maximum Forward Current
VGE
Continuous Gate-to-Emitter Voltage
±20
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
206
PD @ TC = 100°C
Maximum Power Dissipation
103
TJ
Operating Junction and
TSTG
Storage Temperature Range
72
c
72
A
36
18
e
72
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.73
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
2.00
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.50
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
80
–––
1
www.irf.com
09/06/07
IRGB4061DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
ΔV(BR)CES/ΔTJ
Temperature Coeff. of Breakdown Voltage
—
0.40
—
—
1.65
1.95
—
2.05
—
—
2.15
—
4.0
—
6.5
VCE(on)
VGE(th)
Collector-to-Emitter Saturation Voltage
Gate Threshold Voltage
Max. Units
ΔVGE(th)/ΔTJ
Threshold Voltage temp. coefficient
—
-18
—
gfe
ICES
Forward Transconductance
—
12
—
Collector-to-Emitter Leakage Current
—
2.0
25
—
550
—
—
2.30
3.30
—
1.6
—
—
—
±100
VFM
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
Conditions
VGE = 0V, IC = 100μA
Ref.Fig
f
CT6
V/°C VGE = 0V, IC = 1mA (25°C-175°C)
IC = 18A, VGE = 15V, TJ = 25°C
V
CT6
5,6,7
IC = 18A, VGE = 15V, TJ = 150°C
9,10,11
IC = 18A, VGE = 15V, TJ = 175°C
V
VCE = VGE, IC = 500μA
9, 10,
mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C)
S VCE = 50V, IC = 18A, PW = 80μs
μA
VGE = 0V, VCE = 600V
V
IF = 18A
11, 12
VGE = 0V, VCE = 600V, TJ = 175°C
8
IF = 18A, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
35
Max. Units
55
Qge
Gate-to-Emitter Charge (turn-on)
—
10
15
Conditions
nC
Gate-to-Collector Charge (turn-on)
—
15
25
Turn-On Switching Loss
—
95
140
Eoff
Turn-Off Switching Loss
—
350
405
Etotal
Total Switching Loss
—
445
545
td(on)
Turn-On delay time
—
40
55
IC = 18A, VCC = 400V, VGE = 15V
RG = 22Ω, L = 200μH, LS = 150nH
Rise time
—
25
35
Turn-Off delay time
—
105
120
tf
Fall time
—
25
35
Eon
Turn-On Switching Loss
—
285
—
Eoff
Turn-Off Switching Loss
—
570
—
Etotal
Total Switching Loss
—
855
—
td(on)
Turn-On delay time
—
40
—
tr
Rise time
—
25
—
td(off)
Turn-Off delay time
—
120
—
tf
Fall time
—
40
—
Cies
Input Capacitance
—
1043
—
CT1
VCC = 400V
Qgc
td(off)
24
VGE = 15V
Eon
tr
Ref.Fig
IC = 18A
IC = 18A, VCC = 400V, VGE = 15V
μJ
CT4
RG = 22Ω, L = 200μH, LS = 150nH
Energy losses include tail & diode reverse recovery
ns
CT4
IC = 18A, VCC = 400V, VGE=15V
μJ
RG=22Ω, L=200μH, LS=150nH, TJ = 175°C
f
Energy losses include tail & diode reverse recovery
IC = 18A, VCC = 400V, VGE = 15V
ns
13, 15
CT4
WF1, WF2
14, 16
RG = 22Ω, L = 200μH, LS = 150nH
CT4
TJ = 175°C
WF1
WF2
pF
VGE = 0V
Coes
Output Capacitance
—
87
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
32
—
f = 1.0Mhz
TJ = 175°C, IC = 72A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5
23
4
VCC = 480V, Vp =600V
CT2
Rg = 22Ω, VGE = +15V to 0V
—
—
μs
VCC = 400V, Vp =600V
22, CT3
Rg = 22Ω, VGE = +15V to 0V
Erec
trr
Reverse Recovery Energy of the Diode
Irr
WF4
—
μJ
TJ = 175°C
100
—
ns
VCC = 400V, IF = 18A
23
—
A
VGE = 15V, Rg = 22Ω, L =200μH, Ls = 150nH
—
260
Diode Reverse Recovery Time
—
Peak Reverse Recovery Current
—
17, 18, 19
20, 21
WF3
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 100μH, RG = 22Ω.
‚ This is only applied to TO-220AB package.
ƒ Pulse width limited by max. junction temperature.
„ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGB4061DPbF
40
250
35
200
30
150
Ptot (W)
IC (A)
25
20
15
100
10
50
5
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10μsec
IC (A)
IC (A)
10
100μsec
10
1
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
0.1
1
1
10
100
1000
10000
10
100
VCE (V)
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =15V
90
90
80
70
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
70
60
50
40
50
40
30
30
20
20
10
10
0
0
0
1
2
3
4
VCE (V)
5
6
7
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
www.irf.com
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
80
ICE (A)
ICE (A)
60
1000
8
0
1
2
3
4
5
6
7
8
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
3
IRGB4061DPbF
90
100
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
80
70
60
50
IF (A)
ICE (A)
60
-40°c
25°C
175°C
80
40
40
30
20
20
10
0
0
0
1
2
3
4
5
6
7
8
0.0
1.0
2.0
VCE (V)
20
20
18
18
16
16
14
14
ICE = 9.0A
ICE = 18A
ICE = 36A
10
8
12
8
6
4
4
2
2
0
5
10
15
5
20
10
20
180
18
160
16
140
14
T J = 25°C
T J = 175°C
120
ICE (A)
ICE = 9.0A
ICE = 18A
10
ICE = 36A
8
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
12
15
VGE (V)
VGE (V)
VCE (V)
5.0
ICE = 9.0A
ICE = 18A
ICE = 36A
10
6
0
100
80
60
6
4
40
2
20
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
4
4.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80μs
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80μs
12
3.0
VF (V)
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
www.irf.com
IRGB4061DPbF
1400
1000
1200
Swiching Time (ns)
Energy (μJ)
1000
EOFF
800
600
EON
400
tdOFF
100
tF
tdON
200
tR
0
10
5
10
15
20
25
30
35
40
5
10
15
20
25
30
35
40
45
IC (A)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 22Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 22Ω; VGE = 15V
900
1000
800
700
Swiching Time (ns)
EOFF
Energy (μJ)
600
500
EON
400
300
tdOFF
100
tdON
200
tF
100
tR
0
10
0
25
50
75
100
125
0
25
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 18A; VGE = 15V
100
125
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 18A; VGE = 15V
35
40
RG = 10Ω
30
35
30
RG = 22Ω
25
25
20
IRR (A)
IRR (A)
75
RG (Ω)
Rg (Ω)
RG = 47Ω
15
20
15
RG = 100Ω
10
10
5
5
0
0
0
10
20
30
IF (A)
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 175°C
www.irf.com
50
40
0
25
50
75
100
125
RG (Ω)
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 175°C
5
IRGB4061DPbF
40
1600
35
1400
10Ω
30
36A
QRR (μC)
IRR (A)
22Ω
1200
25
20
15
47Ω
1000
18A
800
100Ω
10
9.0A
600
5
400
0
0
500
1000
0
1500
500
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 175°C
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 18A; TJ = 175°C
400
RG = 10Ω
RG = 22Ω
Time (μs)
250
RG = 47Ω
200
150
100
RG = 100Ω
50
20
120
18
110
16
100
14
90
12
80
10
70
8
60
6
50
4
40
2
30
20
0
0
0
10
20
30
40
8
10
12
IF (A)
16
18
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
16
VGE, Gate-to-Emitter Voltage (V)
10000
Capacitance (pF)
14
VGE (V)
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 175°C
Cies
1000
100
Coes
Cres
V CES = 300V
14
V CES = 400V
12
10
8
6
4
2
0
10
0
20
40
60
80
VCE (V)
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
Current (A)
Energy (μJ)
300
1500
diF /dt (A/μs)
diF /dt (A/μs)
350
1000
100
0
5
10
15
20
25
30
35
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 18A; L = 600μH
www.irf.com
IRGB4061DPbF
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
R1
R1
τJ
τ1
0.01
R2
R2
τ2
τ1
Ri (°C/W) τi (sec)
0.3193 0.000273
τC
τ
0.4104
τ2
0.004525
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
τJ
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci τi/Ri
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.244
0.000084
1.102
0.001770
0.655
0.013544
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB4061DPbF
L
L
VC C
D UT
0
80 V
DU T
4 80V
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io de cl amp /
DU T
4x
DC
L
- 5V
360V
DU T /
D RIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
R=
Fig.C.T.4 - Switching Loss Circuit
VCC
ICM
C force
400μH
D1
10K
C sense
DUT
VCC
G force
DUT
0.0075μ
Rg
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
8
Fig.C.T.6 - BVCES Filter Circuit
www.irf.com
IRGB4061DPbF
600
500
30
600
25
500
20
400
300
15
300
5% ICE
10
VCE (V)
VCE (V)
400
200
50
tr
90% ICE
tf
60
40
TEST
C
90% test
30
200
20
10% test
100
5% VCE
0
EOFF Loss
-100
-5.70
-5.20
5
100
0
0
-5
-4.20
-4.70
QRR
0.15
500
250
400
200
tRR
10
VCE
300
150
0
Peak
IRR
10%
Peak
IRR
-20
200
100
100
50
0
-30
0.05
0.15
0
-100
-5.00
0.00
5.00
-50
10.00
time (μS)
time (μS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
www.irf.com
I CE (A)
ICE
VCE (V)
I RR (A)
0.05
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
30
-40
-0.05
-0.05
-10
0.25
Time (μs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
-10
0
EON
-100
-0.15
Time(μs)
20
10
5% VCE
9
IRGB4061DPbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
10- For the most current drawing please refer to IR website
at http://www.irf.com/package/pkigbt.html
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 2000
IN THE AS S EMBLY LINE "C"
Note: "P" in as sembly line position
indicates "Lead - Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
TO-220AB packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/07
10
www.irf.com