IRG7PH42U Data Sheet (291 KB, EN)

PD - 96233B
IRG7PH42UPbF
IRG7PH42U-EP
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
•
•
•
C
Low VCE (ON) trench IGBT technology
Low switching losses
Maximum junction temperature 175 °C
Square RBSOA
100% of the parts tested for ILM
Positive VCE (ON) temperature co-efficient
Tight parameter distribution
Lead -Free
VCES = 1200V
IC = 60A, TC = 100°C
G
TJ(max) =175°C
E
VCE(on) typ. = 1.7V
n-channel
Benefits
• High efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
low VCE (ON) and low switching losses
• Rugged transient performance for increased reliability
• Excellent current sharing in parallel operation
C
C
GC
Applications
•
•
•
•
E
TO-247AC
IRG7PH42UPbF
U.P.S
Welding
Solar inverter
Induction heating
G
Gate
E
GC
TO-247AD
IRG7PH42U-EP
C
Collector
E
Emitter
Absolute Maximum Ratings
Parameter
Max.
Units
V
Continuous Collector Current (Silicon Limited)
1200
90
IC @ TC = 100°C
Continuous Collector Current (Silicon Limited)
60
INOMINAL
ICM
Nominal Current
Pulse Collector Current, VGE = 15V
90
ILM
Clamped Inductive Load Current, VGE = 20V
VGE
Continuous Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
385
PD @ TC = 100°C
Maximum Power Dissipation
192
TJ
Operating Junction and
TSTG
Storage Temperature Range
VCES
Collector-to-Emitter Voltage
IC @ TC = 25°C
g
A
30
c
120
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
f
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT) TO-247AC
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
1
f
Min.
Typ.
Max.
–––
–––
0.39
–––
0.24
–––
–––
40
–––
Units
°C/W
www.irf.com
03/27/12
IRG7PH42UPbF/IRG7PH42U-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
1200
—
—
ΔV(BR)CES/ΔTJ
Temperature Coeff. of Breakdown Voltage
—
1.2
—
—
1.7
2.0
—
2.1
—
—
2.2
—
3.0
—
6.0
VCE(on)
VGE(th)
Collector-to-Emitter Saturation Voltage
Gate Threshold Voltage
Max. Units
ΔVGE(th)/ΔTJ
Threshold Voltage temp. coefficient
—
-16
—
gfe
ICES
Forward Transconductance
—
32
—
Collector-to-Emitter Leakage Current
—
1
150
—
700
—
—
—
±100
IGES
Gate-to-Emitter Leakage Current
V
Conditions
VGE = 0V, IC = 100μA
e
e
d
= 150°C d
= 175°C d
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 30A, VGE = 15V, TJ = 25°C
V
IC = 30A, VGE = 15V, TJ
V
VCE = VGE, IC = 1mA
IC = 30A, VGE = 15V, TJ
mV/°C VCE = VGE, IC = 1mA (25°C - 175°C)
S VCE = 50V, IC = 30A, PW = 80μs
μA
nA
VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 175°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
157
Max. Units
Qge
Gate-to-Emitter Charge (turn-on)
—
21
32
Qgc
Gate-to-Collector Charge (turn-on)
—
69
104
Eon
Turn-On Switching Loss
—
2105
2374
Eoff
Turn-Off Switching Loss
—
1182
1424
IC = 30A
236
nC
d
Conditions
VGE = 15V
VCC = 600V
IC = 30A, VCC = 600V, VGE = 15V
μJ
RG = 10Ω, L = 200μH,TJ = 25°C
Etotal
Total Switching Loss
—
3287
3798
td(on)
Turn-On delay time
—
25
34
tr
Rise time
—
32
41
td(off)
Turn-Off delay time
—
229
271
tf
Fall time
—
63
86
Eon
Turn-On Switching Loss
—
3186
—
IC = 30A, VCC = 600V, VGE=15V
RG=10Ω, L=200μH, TJ = 175°C
d
Energy losses include tail & diode reverse recovery
Diode clamp the same as IRG7PH42UDPbF
ns
Eoff
Turn-Off Switching Loss
—
2153
—
Etotal
Total Switching Loss
—
5339
—
td(on)
Turn-On delay time
—
20
—
tr
Rise time
—
31
—
td(off)
Turn-Off delay time
—
310
—
tf
Fall time
—
162
—
Cies
Input Capacitance
—
3338
—
Coes
Output Capacitance
—
124
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
75
—
f = 1.0Mhz
IC = 120A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
μJ
d
Energy losses include tail & diode reverse recovery
Diode clamp the same as IRG7PH42UDPbF
ns
pF
VGE = 0V
VCC = 960V, Vp =1200V
Rg = 10Ω, VGE = +20V to 0V, TJ =175°C
Notes:

‚
ƒ
„
VCC = 80% (VCES ), VGE = 20V, L = 22μH, RG = 10Ω
Pulse width ≤ 400μs; duty cycle ≤ 2%.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Rθ is measured at TJ of approximately 90°C.
… Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 78A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
2
www.irf.com
IRG7PH42UPbF/IRG7PH42U-EP
60
For both:
Duty cycle : 50%
Tj = 150°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 95W
Load Current ( A )
50
40
30
Square wave:
60% of rated
voltage
20
I
10
Ideal diodes
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
400
350
80
300
250
IC (A)
Ptot (W)
60
40
200
150
100
20
50
0
0
25
50
75
100
125
150
0
175
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
Fig. 3 - Power Dissipation vs. Case
Temperature
1000
1000
100
100
100μsec
10
IC (A)
IC (A)
10μsec
1msec
DC
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
1
0.1
1
10
100
1000
VCE (V)
Fig. 4 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
www.irf.com
10000
10
100
1000
10000
VCE (V)
Fig. 5 - Reverse Bias SOA
TJ = 175°C; VGE =20V
3
IRG7PH42UPbF/IRG7PH42U-EP
120
120
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 9.0V
VGE = 8.0V
VGE = 7.0V
ICE (A)
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 9.0V
VGE = 8.0V
VGE = 7.0V
100
80
ICE (A)
100
60
60
40
40
20
20
0
0
0
2
4
6
8
10
0
2
4
VCE (V)
12
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 9.0V
VGE = 8.0V
VGE = 7.0V
80
10
8
VCE (V)
100
ICE (A)
10
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 20μs
120
60
40
ICE = 15A
ICE = 30A
6
ICE = 60A
4
20
2
0
0
2
4
6
8
0
10
4
VCE (V)
12
12
10
10
8
8
VCE (V)
ICE = 15A
ICE = 30A
6
8
12
16
20
VGE (V)
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 20μs
VCE (V)
8
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = -40°C; tp =20μs
ICE = 60A
4
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
ICE = 15A
ICE = 30A
6
ICE = 60A
4
2
2
0
4
8
12
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
4
6
16
20
0
4
8
12
16
20
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
www.irf.com
IRG7PH42UPbF/IRG7PH42U-EP
7000
ICE, Collector-to-Emitter Current (A)
120
6000
100
TJ = 25°C
T J = 175°C
5000
Energy (μJ)
80
60
40
4000
EON
3000
EOFF
2000
20
1000
0
0
4
6
8
10
0
12
10
20
VGE, Gate-to-Emitter Voltage (V)
30
40
50
60
IC (A)
Fig. 12- Typ. Transfer Characteristics
VCE = 50V; tp = 20μs
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V
1000
6000
5500
tdOFF
4500
tF
100
Energy (μJ)
Swiching Time (ns)
5000
tR
tdON
10
EON
4000
EOFF
3500
3000
2500
2000
1500
1000
1
0
10
20
30
40
50
0
60
25
75
100
Rg (Ω)
IC (A)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 600V, ICE = 30A; VGE = 15V
10000
Swiching Time (ns)
50
1000
tdOFF
tF
100
tR
tdON
10
0
20
40
60
80
100
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 600V, ICE = 30A; VGE = 15V
www.irf.com
5
IRG7PH42UPbF/IRG7PH42U-EP
10000
16
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
Cies
1000
100
Coes
Cres
10
0
100
200
300
400
500
VCES = 600V
VCES = 400V
14
12
10
8
6
4
2
0
600
0
VCE (V)
25
50
75
100
125
150
175
Q G, Total Gate Charge (nC)
Fig. 18- Typical Gate Charge vs. VGE
ICE = 30A; L = 600μH
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
0.001
τJ
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
0.0001
τ4
τ4
τi (sec)
0.1306
0.000313
0.1752
0.002056
0.0814
0.008349
0.0031
0.0431
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC
6
www.irf.com
IRG7PH42UPbF/IRG7PH42U-EP
L
L
DUT
0
80 V +
VCC
DUT
-
Vclamped
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
R = VCC
ICM
DIODE CLAMP
L
DUT
DUT /
DRIVER
VCC
VCC
Rg
Rg
Fig.C.T.3 - Switching Loss Circuit
Fig.C.T.4 - Resistive Load Circuit
C fo rce
100K
D1
22K
C sense
0.0075μ
G force
DUT
E sense
E fo rce
Fig.C.T.5 - BVCES Filter Circuit
www.irf.com
7
800
80
tf
700
70
600
60
500
50
90% ICE
400
40
300
5% V CE
30
200
5% ICE
20
100
10
0
-100
-0.5
0
E off L os s
0
0.5
1
-10
1.5
2
time(μs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
8
900
90
800
80
tr
700
70
TEST CURRENT
600
60
500
50
90% tes t
current
400
300
40
30
10% test
current
200
5% V CE
ICE (A)
90
VCE (V)
900
ICE (A)
VCE (V)
IRG7PH42UPbF/IRG7PH42U-EP
20
100
10
0
0
Eon Loss
-100
9.3
9.5
9.7
9.9
10.1
-10
10.3
time (μs)
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
www.irf.com
IRG7PH42UPbF/IRG7PH42U-EP
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: THIS IS AN IRFPE30
WITH AS SEMBLY
LOT CODE 5657
ASS EMBLED ON WW 35, 2001
IN THE AS SEMBLY LINE "H"
Note: "P" in as sembly line pos ition
indicates "Lead-Free"
INTERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
IRFPE30
56
135H
57
DATE CODE
YEAR 1 = 2001
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRG7PH42UPbF/IRG7PH42U-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
EXAMPLE: T HIS IS AN IRGP30B120KD-E
WIT H AS S EMBLY
LOT CODE 5657
AS S EMBLED ON WW 35, 2000
IN T HE AS S EMBLY LINE "H"
Note: "P" in as sembly line pos ition
indicates "Lead-Free"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
56
AS S EMBLY
LOT CODE
035H
57
DAT E CODE
YEAR 0 = 2000
WEEK 35
LINE H
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 03/2011
10
www.irf.com