PD - 96233B IRG7PH42UPbF IRG7PH42U-EP INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • • • • C Low VCE (ON) trench IGBT technology Low switching losses Maximum junction temperature 175 °C Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) temperature co-efficient Tight parameter distribution Lead -Free VCES = 1200V IC = 60A, TC = 100°C G TJ(max) =175°C E VCE(on) typ. = 1.7V n-channel Benefits • High efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to low VCE (ON) and low switching losses • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation C C GC Applications • • • • E TO-247AC IRG7PH42UPbF U.P.S Welding Solar inverter Induction heating G Gate E GC TO-247AD IRG7PH42U-EP C Collector E Emitter Absolute Maximum Ratings Parameter Max. Units V Continuous Collector Current (Silicon Limited) 1200 90 IC @ TC = 100°C Continuous Collector Current (Silicon Limited) 60 INOMINAL ICM Nominal Current Pulse Collector Current, VGE = 15V 90 ILM Clamped Inductive Load Current, VGE = 20V VGE Continuous Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 385 PD @ TC = 100°C Maximum Power Dissipation 192 TJ Operating Junction and TSTG Storage Temperature Range VCES Collector-to-Emitter Voltage IC @ TC = 25°C g A 30 c 120 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter f RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) TO-247AC RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) 1 f Min. Typ. Max. ––– ––– 0.39 ––– 0.24 ––– ––– 40 ––– Units °C/W www.irf.com 03/27/12 IRG7PH42UPbF/IRG7PH42U-EP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 1200 — — ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage — 1.2 — — 1.7 2.0 — 2.1 — — 2.2 — 3.0 — 6.0 VCE(on) VGE(th) Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Max. Units ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient — -16 — gfe ICES Forward Transconductance — 32 — Collector-to-Emitter Leakage Current — 1 150 — 700 — — — ±100 IGES Gate-to-Emitter Leakage Current V Conditions VGE = 0V, IC = 100μA e e d = 150°C d = 175°C d V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 30A, VGE = 15V, TJ = 25°C V IC = 30A, VGE = 15V, TJ V VCE = VGE, IC = 1mA IC = 30A, VGE = 15V, TJ mV/°C VCE = VGE, IC = 1mA (25°C - 175°C) S VCE = 50V, IC = 30A, PW = 80μs μA nA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 175°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 157 Max. Units Qge Gate-to-Emitter Charge (turn-on) — 21 32 Qgc Gate-to-Collector Charge (turn-on) — 69 104 Eon Turn-On Switching Loss — 2105 2374 Eoff Turn-Off Switching Loss — 1182 1424 IC = 30A 236 nC d Conditions VGE = 15V VCC = 600V IC = 30A, VCC = 600V, VGE = 15V μJ RG = 10Ω, L = 200μH,TJ = 25°C Etotal Total Switching Loss — 3287 3798 td(on) Turn-On delay time — 25 34 tr Rise time — 32 41 td(off) Turn-Off delay time — 229 271 tf Fall time — 63 86 Eon Turn-On Switching Loss — 3186 — IC = 30A, VCC = 600V, VGE=15V RG=10Ω, L=200μH, TJ = 175°C d Energy losses include tail & diode reverse recovery Diode clamp the same as IRG7PH42UDPbF ns Eoff Turn-Off Switching Loss — 2153 — Etotal Total Switching Loss — 5339 — td(on) Turn-On delay time — 20 — tr Rise time — 31 — td(off) Turn-Off delay time — 310 — tf Fall time — 162 — Cies Input Capacitance — 3338 — Coes Output Capacitance — 124 — VCC = 30V Cres Reverse Transfer Capacitance — 75 — f = 1.0Mhz IC = 120A RBSOA Reverse Bias Safe Operating Area FULL SQUARE μJ d Energy losses include tail & diode reverse recovery Diode clamp the same as IRG7PH42UDPbF ns pF VGE = 0V VCC = 960V, Vp =1200V Rg = 10Ω, VGE = +20V to 0V, TJ =175°C Notes: VCC = 80% (VCES ), VGE = 20V, L = 22μH, RG = 10Ω Pulse width ≤ 400μs; duty cycle ≤ 2%. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 78A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. 2 www.irf.com IRG7PH42UPbF/IRG7PH42U-EP 60 For both: Duty cycle : 50% Tj = 150°C Tsink = 90°C Gate drive as specified Power Dissipation = 95W Load Current ( A ) 50 40 30 Square wave: 60% of rated voltage 20 I 10 Ideal diodes 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 400 350 80 300 250 IC (A) Ptot (W) 60 40 200 150 100 20 50 0 0 25 50 75 100 125 150 0 175 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 2 - Maximum DC Collector Current vs. Case Temperature Fig. 3 - Power Dissipation vs. Case Temperature 1000 1000 100 100 100μsec 10 IC (A) IC (A) 10μsec 1msec DC 10 1 Tc = 25°C Tj = 175°C Single Pulse 1 0.1 1 10 100 1000 VCE (V) Fig. 4 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V www.irf.com 10000 10 100 1000 10000 VCE (V) Fig. 5 - Reverse Bias SOA TJ = 175°C; VGE =20V 3 IRG7PH42UPbF/IRG7PH42U-EP 120 120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 9.0V VGE = 8.0V VGE = 7.0V ICE (A) 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 9.0V VGE = 8.0V VGE = 7.0V 100 80 ICE (A) 100 60 60 40 40 20 20 0 0 0 2 4 6 8 10 0 2 4 VCE (V) 12 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 9.0V VGE = 8.0V VGE = 7.0V 80 10 8 VCE (V) 100 ICE (A) 10 Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 20μs 120 60 40 ICE = 15A ICE = 30A 6 ICE = 60A 4 20 2 0 0 2 4 6 8 0 10 4 VCE (V) 12 12 10 10 8 8 VCE (V) ICE = 15A ICE = 30A 6 8 12 16 20 VGE (V) Fig. 8 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 20μs VCE (V) 8 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = -40°C; tp =20μs ICE = 60A 4 Fig. 9 - Typical VCE vs. VGE TJ = -40°C ICE = 15A ICE = 30A 6 ICE = 60A 4 2 2 0 4 8 12 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C 4 6 16 20 0 4 8 12 16 20 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C www.irf.com IRG7PH42UPbF/IRG7PH42U-EP 7000 ICE, Collector-to-Emitter Current (A) 120 6000 100 TJ = 25°C T J = 175°C 5000 Energy (μJ) 80 60 40 4000 EON 3000 EOFF 2000 20 1000 0 0 4 6 8 10 0 12 10 20 VGE, Gate-to-Emitter Voltage (V) 30 40 50 60 IC (A) Fig. 12- Typ. Transfer Characteristics VCE = 50V; tp = 20μs Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V 1000 6000 5500 tdOFF 4500 tF 100 Energy (μJ) Swiching Time (ns) 5000 tR tdON 10 EON 4000 EOFF 3500 3000 2500 2000 1500 1000 1 0 10 20 30 40 50 0 60 25 75 100 Rg (Ω) IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200μH; VCE = 600V, ICE = 30A; VGE = 15V 10000 Swiching Time (ns) 50 1000 tdOFF tF 100 tR tdON 10 0 20 40 60 80 100 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200μH; VCE = 600V, ICE = 30A; VGE = 15V www.irf.com 5 IRG7PH42UPbF/IRG7PH42U-EP 10000 16 VGE, Gate-to-Emitter Voltage (V) Capacitance (pF) Cies 1000 100 Coes Cres 10 0 100 200 300 400 500 VCES = 600V VCES = 400V 14 12 10 8 6 4 2 0 600 0 VCE (V) 25 50 75 100 125 150 175 Q G, Total Gate Charge (nC) Fig. 18- Typical Gate Charge vs. VGE ICE = 30A; L = 600μH Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 0.001 τJ SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri 0.0001 τ4 τ4 τi (sec) 0.1306 0.000313 0.1752 0.002056 0.0814 0.008349 0.0031 0.0431 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC 6 www.irf.com IRG7PH42UPbF/IRG7PH42U-EP L L DUT 0 80 V + VCC DUT - Vclamped Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit R = VCC ICM DIODE CLAMP L DUT DUT / DRIVER VCC VCC Rg Rg Fig.C.T.3 - Switching Loss Circuit Fig.C.T.4 - Resistive Load Circuit C fo rce 100K D1 22K C sense 0.0075μ G force DUT E sense E fo rce Fig.C.T.5 - BVCES Filter Circuit www.irf.com 7 800 80 tf 700 70 600 60 500 50 90% ICE 400 40 300 5% V CE 30 200 5% ICE 20 100 10 0 -100 -0.5 0 E off L os s 0 0.5 1 -10 1.5 2 time(μs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 8 900 90 800 80 tr 700 70 TEST CURRENT 600 60 500 50 90% tes t current 400 300 40 30 10% test current 200 5% V CE ICE (A) 90 VCE (V) 900 ICE (A) VCE (V) IRG7PH42UPbF/IRG7PH42U-EP 20 100 10 0 0 Eon Loss -100 9.3 9.5 9.7 9.9 10.1 -10 10.3 time (μs) Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 www.irf.com IRG7PH42UPbF/IRG7PH42U-EP TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH AS SEMBLY LOT CODE 5657 ASS EMBLED ON WW 35, 2001 IN THE AS SEMBLY LINE "H" Note: "P" in as sembly line pos ition indicates "Lead-Free" INTERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER IRFPE30 56 135H 57 DATE CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRG7PH42UPbF/IRG7PH42U-EP TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information EXAMPLE: T HIS IS AN IRGP30B120KD-E WIT H AS S EMBLY LOT CODE 5657 AS S EMBLED ON WW 35, 2000 IN T HE AS S EMBLY LINE "H" Note: "P" in as sembly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER 56 AS S EMBLY LOT CODE 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 03/2011 10 www.irf.com