PD - 96305 IRG7PH46UPbF IRG7PH46U-EP INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • • • • C Low VCE (ON) trench IGBT technology Low switching losses Maximum junction temperature 175 °C Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) temperature co-efficient Tight parameter distribution Lead -Free VCES = 1200V IC = 75A, TC = 100°C G TJ(max) =175°C E VCE(on) typ. = 1.7V n-channel Benefits • High efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to low VCE (ON) and low switching losses • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation C C GC Applications • • • • E TO-247AC IRG7PH46UPbF U.P.S Welding Solar inverter Induction heating G Gate E GC TO-247AD IRG7PH46U-EP C Collector E Emitter Absolute Maximum Ratings Parameter VCES Collector-to-Emitter Voltage IC @ TC = 25°C Max. Units V Continuous Collector Current (Silicon Limited) 1200 130 IC @ TC = 100°C Continuous Collector Current (Silicon Limited) 75 INOMINAL ICM Nominal Current Pulse Collector Current, VGE = 15V 120 g A 40 c ILM Clamped Inductive Load Current, VGE = 20V VGE Continuous Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 469 PD @ TC = 100°C Maximum Power Dissipation 234 TJ Operating Junction and TSTG Storage Temperature Range 160 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter f RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) TO-247AC RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) 1 f Min. Typ. Max. ––– ––– 0.32 ––– 0.24 ––– ––– 40 ––– Units °C/W www.irf.com 04/20/10 IRG7PH46UPbF/IRG7PH46U-EP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 1200 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.2 — — 1.7 2.0 — 2.0 — — 2.1 — 3.0 — 6.0 VCE(on) VGE(th) Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Max. Units ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -15 — gfe ICES Forward Transconductance — 60 — Collector-to-Emitter Leakage Current — 1 100 — 1170 — — — ±200 IGES Gate-to-Emitter Leakage Current V Conditions VGE = 0V, IC = 100µA e e d = 150°C d = 175°C d V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 40A, VGE = 15V, TJ = 25°C V IC = 40A, VGE = 15V, TJ V VCE = VGE, IC = 1.6mA IC = 40A, VGE = 15V, TJ mV/°C VCE = VGE, IC = 1.6mA (25°C - 175°C) S VCE = 50V, IC = 40A, PW = 20µs µA nA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 175°C VGE = ±30V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 220 Max. Units Qge Gate-to-Emitter Charge (turn-on) — 30 50 Qgc Gate-to-Collector Charge (turn-on) — 85 130 Eon Turn-On Switching Loss — 2560 3460 Eoff Turn-Off Switching Loss — 1780 2660 IC = 40A 320 nC d Conditions VGE = 15V VCC = 600V IC = 40A, VCC = 600V, VGE = 15V µJ RG = 10Ω, L = 200µH,TJ = 25°C Etotal Total Switching Loss — 4340 6120 td(on) Turn-On delay time — 45 65 tr Rise time — 40 55 td(off) Turn-Off delay time — 410 445 tf Fall time — 45 65 Eon Turn-On Switching Loss — 3950 — IC = 40A, VCC = 600V, VGE=15V RG=10Ω, L=200µH, TJ = 175°C d Energy losses include tail & diode reverse recovery Diode clamp the same as IRG7PH46UDPbF ns Eoff Turn-Off Switching Loss — 3020 — Etotal Total Switching Loss — 6970 — td(on) Turn-On delay time — 40 — tr Rise time — 40 — td(off) Turn-Off delay time — 480 — tf Fall time — 220 — Cies Input Capacitance — 4820 — Coes Output Capacitance — 150 — VCC = 30V Cres Reverse Transfer Capacitance — 110 — f = 1.0Mhz IC = 160A RBSOA Reverse Bias Safe Operating Area FULL SQUARE µJ d Energy losses include tail & diode reverse recovery Diode clamp the same as IRG7PH46UDPbF ns pF VGE = 0V VCC = 960V, Vp =1200V Rg = 10Ω, VGE = +20V to 0V, TJ =175°C Notes: VCC = 80% (VCES ), VGE = 20V, L = 25µH, RG = 50Ω Pulse width ≤ 400µs; duty cycle ≤ 2%. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 117A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. 2 www.irf.com IRG7PH46UPbF/IRG7PH46U-EP 100 For both: Duty cycle : 50% Tj = 150°C Tc = 100°C Vcc = 600V Gate drive as specified Power Dissipation = 154W Load Current ( A ) 80 60 Square Wave: VCC 40 I 20 Diode as specified 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 140 500 450 120 400 350 Ptot (W) IC (A) 100 80 60 300 250 200 150 40 100 20 50 0 0 25 50 75 100 125 150 0 175 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 2 - Maximum DC Collector Current vs. Case Temperature Fig. 3 - Power Dissipation vs. Case Temperature 1000 1000 100 10µsec 100 10 IC (A) IC (A) 100µsec 1msec DC 10 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 1 10 100 1000 VCE (V) Fig. 4 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V www.irf.com 10000 10 100 1000 10000 VCE (V) Fig. 5 - Reverse Bias SOA TJ = 175°C; VGE =20V 3 IRG7PH46UPbF/IRG7PH46U-EP 160 160 140 100 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 100 ICE (A) 120 ICE (A) 140 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 80 60 60 40 40 20 20 0 0 0 2 4 6 8 0 10 2 4 8 10 VCE (V) VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = -40°C; tp =20µs Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 20µs 12 160 140 10 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 8 VCE (V) 120 ICE (A) 6 80 60 ICE = 20A ICE = 40A 6 ICE = 80A 4 40 2 20 0 0 0 2 4 6 8 4 10 8 12 10 10 8 8 VCE (V) VCE (V) 12 ICE = 20A ICE = 40A ICE = 80A ICE = 20A 6 ICE = 40A ICE = 80A 4 2 2 0 0 4 8 12 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C 4 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 8 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 20µs 4 16 VGE (V) VCE (V) 6 12 16 20 4 8 12 16 20 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C www.irf.com ICE, Collector-to-Emitter Current (A) IRG7PH46UPbF/IRG7PH46U-EP 160 9200 140 8200 7200 T J = 25°C 120 T J = 175°C 6200 Energy (µJ) 100 80 60 EON 5200 4200 EOFF 3200 40 2200 20 1200 200 0 3 4 5 6 7 8 0 9 10 20 30 VGE, Gate-to-Emitter Voltage (V) 40 50 60 70 80 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 600V, RG = 10Ω; VGE = 15V Fig. 12- Typ. Transfer Characteristics VCE = 50V; tp = 20µs 10000 1000 tdOFF EOFF tF Energy (µJ) Swiching Time (ns) 8000 100 td ON 2000 10 10 EON 4000 tR 0 6000 20 30 40 50 60 70 0 80 25 50 75 100 Rg (Ω) IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 600V, RG = 10Ω; VGE = 15V Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 600V, ICE = 40A; VGE = 15V Swiching Time (ns) 10000 1000 tdOFF tF 100 tR tdON 10 0 20 40 60 80 100 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 600V, ICE = 40A; VGE = 15V www.irf.com 5 IRG7PH46UPbF/IRG7PH46U-EP 10000 16 VGE, Gate-to-Emitter Voltage (V) Capacitance (pF) Cies 1000 100 Coes Cres VCES = 600V VCES = 400V 14 12 10 8 6 4 2 10 0 0 100 200 300 400 500 600 0 50 VCE (V) 100 150 200 250 Q G, Total Gate Charge (nC) Fig. 18- Typical Gate Charge vs. VGE ICE = 40A; L = 2.4mH Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Thermal Response ( Z thJC ) 1 0.1 D = 0.50 0.20 0.10 0.05 0.01 0.001 0.0001 1E-006 0.02 0.01 τJ R1 R1 τJ τ1 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 R2 R2 R3 R3 τC τ τ1 τ2 τ2 τ3 τ3 τ4 0.006 0.000011 0.090 0.000177 0.142 0.002958 0.085 0.015029 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc Ci= τi/Ri Ci i/Ri 0.0001 τ4 τi (sec) Ri (°C/W) R4 R4 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC 6 www.irf.com IRG7PH46UPbF/IRG7PH46U-EP L L DUT 0 80 V + VCC DUT - Vclamped Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit R = VCC ICM DIODE CLAMP L DUT DUT / DRIVER VCC VCC Rg Rg Fig.C.T.3 - Switching Loss Circuit Fig.C.T.4 - Resistive Load Circuit C fo rce 100K D1 22K C sense 0.0075µ G force DUT E sense E fo rce Fig.C.T.5 - BVCES Filter Circuit www.irf.com 7 IRG7PH46UPbF/IRG7PH46U-EP 80 800 70 700 70 60 600 60 500 50 500 50 400 40 400 40 700 VCE (V) 600 90% ICE 300 30 5% V CE 200 5% ICE 100 0 -100 -0.5 200 10 100 0 0.5 1 -10 1.5 2 time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 8 20 0 Eoff Loss 300 90 tr TEST CURRENT 10% test current 90% test current 30 20 5% V CE 0 -100 -0.3 80 I CE (A) tf 800 VCE (V) 900 I CE (A) 90 900 Eon -0.1 0.1 0.3 10 0 -10 0.5 time (µs) Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 www.irf.com IRG7PH46UPbF/IRG7PH46U-EP TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5)3( + '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRG7PH46UPbF/IRG7PH46U-EP TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/2010 10 www.irf.com