IRGS15B60K Data Sheet (259 KB, EN)

PD - 96358
INSULATED GATE BIPOLAR TRANSISTOR
Features
IRGS15B60KPbF
C
• Low VCE (on) Non Punch Through IGBT
Technology.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Positive VCE (on) Temperature Coefficient.
• Lead-Free
VCES = 600V
IC = 15A, TC=100°C
G
E
n-channel
tsc > 10µs, TJ=150°C
VCE(on) typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
D2Pak
IRGS15B60KPbF
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
31
IC @ TC = 100°C
Continuous Collector Current
15
ICM
62
ILM
Pulse Collector Current Vge = 15V
Clamped Inductive Load Current Vge = 20V
VGE
Continuous Gate-to-Emitter Voltage
±20
PD @ TC = 25°C
Maximum Power Dissipation
208
f
62
PD @ TC = 100°C Maximum Power Dissipation
TJ
Operating Junction and
TSTG
A
V
W
83
-55 to +150
Storage Temperature Range
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Min.
Typ.
Max.
RθJC (IGBT)
Junction-to-Case-IGBT
Parameter
–––
–––
0.6
RθCS
Case-to-Sink (flat, greased surface)
–––
0.5
–––
RθJA
www.irf.com
c
Junction-to-Ambient (PCB Mount steady state)
–––
–––
40
Weight
–––
1.44
–––
Units
°C/W
g (oz)
1
02/22/11
IRGS15B60KPbF
Electrical Characteristics @ T J = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
Min.
Typ.
600
—
Max. Units
—
—
0.3
—
1.5
1.8
2.2
2.5
VCE(on)
Collector-to-Emitter Saturation Voltage
—
2.05
—
2.1
2.6
VGE(th)
Gate Threshold Voltage
3.5
4.5
5.5
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-10
—
gfe
Forward Transconductance
—
10.6
—
ICES
Collector-to-Emitter Leakage Current
—
5.0
150
—
500
1000
—
—
±100
IGES
Gate-to-Emitter Leakage Current
V
Conditions
Ref.Fig
VGE = 0V, I C = 500µA
V/°C VGE = 0V, I C = 1.0mA (25°C-150°C)
IC = 15A, VGE = 15V, TJ = 25°C
V
5,6,7
IC = 15A, VGE = 15V, TJ = 125°C
8,9,10
IC = 15A, VGE = 15V, TJ = 150°C
V
VCE = VGE, IC = 250µA
8,9
mV/°C VCE = VGE, IC =1.0mA (25°C - 150°C)
S VCE = 50V, IC = 20A, PW = 80µs
µA
nA
10,11
VGE = 0V, VCE = 600V, TJ = 25°C
VGE = 0V, VCE = 600V, TJ = 150°C
VGE = ± 20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Total Gate Charge (turn-on)
Min.
Typ.
—
56
Max. Units
Qge
Gate-to-Emitter Charge (turn-on)
—
7.0
10
Qgc
Gate-to-Collector Charge (turn-on)
—
26
39
Eon
Turn-On Switching Loss
—
220
330
Eoff
Turn-Off Switching Loss
—
340
455
Etotal
Total Switching Loss
—
560
785
td(on)
Turn-On delay time
—
34
44
tr
Rise time
—
16
22
td(off)
Turn-Off delay time
—
184
200
tf
Fall time
—
20
26
Eon
Turn-On Switching Loss
—
355
470
Eoff
Turn-Off Switching Loss
—
490
600
Etotal
Total Switching Loss
—
835
1070
td(on)
Turn-On delay time
—
34
44
tr
Rise time
—
18
25
td(off)
Turn-Off delay time
—
203
226
tf
Fall time
—
28
36
Cies
Input Capacitance
—
850
—
Coes
Output Capacitance
—
75
—
Cres
Reverse Transfer Capacitance
—
35
—
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
Conditions
Ref.Fig
IC = 15A
84
nC
VGE = 15V
CT1
VCC = 400V
IC = 15A, VCC = 400V, VGE = 15V
J
CT4
RG = 22Ω, L = 200µH
LS = 150nH TJ = 25°C
d
IC = 15A, VCC = 400V, VGE = 15V
ns
CT4
RG = 22Ω, L = 200µH
LS = 150nH TJ = 25°C
IC = 15A, VCC = 400V, VGE = 15V
J
CT4
RG = 22Ω, L = 200µH
LS = 150nH TJ = 150°C
12,14
d
WF1, WF2
IC = 15A, VCC = 400V, VGE = 15V
ns
13, 15
RG = 22Ω, L = 200µH
CT4
LS = 150nH TJ = 150°C
WF1
WF2
VGE = 0V
pF
VCC = 30V
f = 1.0Mhz
I C = 62A
4
VCC = 500V, Vp =600V
CT2
Rg = 22Ω, VGE = +20V to 0V, TJ =150°C
10
—
—
µs
VCC = 360V, Vp =600V ,TJ = 150°C
CT3
Rg = 22Ω, VGE = +15V to 0V
WF3
Note  to ƒ are on page 11
2
www.irf.com
IRGS15B60KPbF
35
240
30
200
25
160
Ptot (W)
IC (A)
20
15
120
80
10
40
5
0
0
0
20
40
60
80
100 120 140 160
0
T C (°C)
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10 µs
10
IC A)
IC (A)
10
100 µs
1
1
1ms
DC
0.1
0
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGS15B60KPbF
100
100
90
VGE
VGE
VGE
VGE
VGE
80
70
90
VGE
VGE
VGE
VGE
VGE
80
70
ICE (A)
ICE (A)
60
= 18V
= 15V
= 12V
= 10V
= 8.0V
50
40
60
= 18V
= 15V
= 12V
= 10V
= 8.0V
50
40
30
30
20
20
10
10
0
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
100
5
6
20
90
VGE
VGE
VGE
VGE
VGE
80
70
60
= 18V
18
= 15V
= 12V
= 10V
= 8.0V
16
14
VCE (V)
ICE (A)
4
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 300µs
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 300µs
50
40
12
ICE = 5.0A
10
ICE = 15A
8
ICE = 30A
30
6
20
4
10
2
0
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 300µs
4
3
VCE (V)
4
6
8
10
12
14
16
18
20
VGE (V)
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
www.irf.com
20
20
18
18
16
16
14
14
12
ICE = 5.0A
10
ICE = 15A
8
ICE = 30A
VCE (V)
VCE (V)
IRGS15B60KPbF
12
10
ICE = 5.0A
ICE = 15A
8
ICE = 30A
6
6
4
4
2
2
0
0
4
6
8
10
12
14
16
18
20
4
6
8
10
VGE (V)
12
14
16
18
20
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
Fig. 10 - Typical VCE vs. VGE
TJ = 150°C
160
T J = 25°C
140
T J = 150°C
120
ICE (A)
100
80
60
40
T J = 150°C
20
T J = 25°C
0
0
5
10
15
20
VGE (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
5
IRGS15B60KPbF
1000
1800
1600
Energy (µJ)
1200
Swiching Time (ns)
1400
EOFF
1000
EON
800
600
tdOFF
100
tdON
400
tF
200
0
0
10
20
30
40
tR
10
50
0
IC (A)
10
20
30
40
IC (A)
Fig. 13 - Typ. Switching Time vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 22Ω; VGE= 15V
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 22Ω; VGE= 15V
1000
900
tdOFF
800
Swiching Time (ns)
EOFF
700
EON
600
Energy (µJ)
50
500
400
300
100
tdON
tR
tF
200
100
10
0
0
50
100
R G (Ω)
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 150°C; L=200µH; VCE= 400V
ICE= 15A; VGE= 15V
6
150
0
50
100
150
R G (Ω)
Fig. 15- Typ. Switching Time vs. RG
TJ = 150°C; L=200µH; VCE= 600V
ICE= 15A; VGE= 15V
www.irf.com
IRGS15B60KPbF
16
10000
14
300V
Cies
1000
100
400V
10
VGE (V)
Capacitance (pF)
12
8
6
Coes
4
Cres
2
0
10
0
20
40
60
80
0
100
20
40
60
Q G , Total Gate Charge (nC)
VCE (V)
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 15A; L = 600µH
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.1
0.10
τJ
0.05
0.01
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.231
0.000157
0.175
0.000849
0.201
Ci= τi/Ri
Ci i/Ri
0.011943
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRGS15B60KPbF
L
L
VCC
DUT
0
+
-
80 V
DUT
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
480V
Rg
1K
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRGS15B60KPbF
600
30
500
50
400
40
tF
500
25
20
300
15
5 % IC E
200
10
V CE (V)
300
5% V CE
5
0
0
E o ff L o s s
-1 0 0
20
tes t current
0.5
1.0
5% V C E
0
Eon Los s
-100
-0.2
1 .5
-10
-0.1
0.0
0.1
t (µS )
t (µ S )
WF.1- Typ. Turn-off Loss
@ TJ = 150°C using CT.4
WF.2- Typ. Turn-on Loss
@ TJ = 150°C using Fig. CT.4
500
250
V CE
400
200
150
IC E
200
100
100
50
0
ICE (A)
300
VCE (V)
10
10% tes t current
tR
0
-5
0 .0
200
100
100
-0 .5
30
90% tes t current
ICE (A)
V CE (V)
9 0 % IC E
ICE (A)
400
0
-1 0 0
-5 0
-1 0
0
10
20
30
t (µ S )
WF.3- Typ. Short Circuit
@ TJ = 150°C using CT.3
www.irf.com
9
IRGS15B60KPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
THIS IS AN IRF530S WIT H
LOT CODE 8024
AS SEMBLED ON WW 02, 2000
IN T HE AS SEMBLY LINE "L"
INT ERNAT IONAL
RECT IF IER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
INTERNATIONAL
RECTIFIER
LOGO
ASS EMBLY
LOT CODE
10
PART NUMBER
F530S
DATE CODE
P = DESIGNATES LEAD - F REE
PRODUCT (OPTIONAL)
YEAR 0 = 2000
WEEK 02
A = AS SEMBLY SIT E CODE
www.irf.com
IRGS15B60KPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
15.42 (.609)
15.22 (.601)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
Notes:
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
3
4
 This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
‚ Energy losses include "tail" and diode reverse recovery, using Diode HF15D060ACE.
ƒ VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 22Ω.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2011
www.irf.com
11