PD - 96358 INSULATED GATE BIPOLAR TRANSISTOR Features IRGS15B60KPbF C • Low VCE (on) Non Punch Through IGBT Technology. • 10µs Short Circuit Capability. • Square RBSOA. • Positive VCE (on) Temperature Coefficient. • Lead-Free VCES = 600V IC = 15A, TC=100°C G E n-channel tsc > 10µs, TJ=150°C VCE(on) typ. = 1.8V Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. D2Pak IRGS15B60KPbF Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 31 IC @ TC = 100°C Continuous Collector Current 15 ICM 62 ILM Pulse Collector Current Vge = 15V Clamped Inductive Load Current Vge = 20V VGE Continuous Gate-to-Emitter Voltage ±20 PD @ TC = 25°C Maximum Power Dissipation 208 f 62 PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG A V W 83 -55 to +150 Storage Temperature Range °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Thermal Resistance Min. Typ. Max. RθJC (IGBT) Junction-to-Case-IGBT Parameter ––– ––– 0.6 RθCS Case-to-Sink (flat, greased surface) ––– 0.5 ––– RθJA www.irf.com c Junction-to-Ambient (PCB Mount steady state) ––– ––– 40 Weight ––– 1.44 ––– Units °C/W g (oz) 1 02/22/11 IRGS15B60KPbF Electrical Characteristics @ T J = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage Min. Typ. 600 — Max. Units — — 0.3 — 1.5 1.8 2.2 2.5 VCE(on) Collector-to-Emitter Saturation Voltage — 2.05 — 2.1 2.6 VGE(th) Gate Threshold Voltage 3.5 4.5 5.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -10 — gfe Forward Transconductance — 10.6 — ICES Collector-to-Emitter Leakage Current — 5.0 150 — 500 1000 — — ±100 IGES Gate-to-Emitter Leakage Current V Conditions Ref.Fig VGE = 0V, I C = 500µA V/°C VGE = 0V, I C = 1.0mA (25°C-150°C) IC = 15A, VGE = 15V, TJ = 25°C V 5,6,7 IC = 15A, VGE = 15V, TJ = 125°C 8,9,10 IC = 15A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 250µA 8,9 mV/°C VCE = VGE, IC =1.0mA (25°C - 150°C) S VCE = 50V, IC = 20A, PW = 80µs µA nA 10,11 VGE = 0V, VCE = 600V, TJ = 25°C VGE = 0V, VCE = 600V, TJ = 150°C VGE = ± 20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Total Gate Charge (turn-on) Min. Typ. — 56 Max. Units Qge Gate-to-Emitter Charge (turn-on) — 7.0 10 Qgc Gate-to-Collector Charge (turn-on) — 26 39 Eon Turn-On Switching Loss — 220 330 Eoff Turn-Off Switching Loss — 340 455 Etotal Total Switching Loss — 560 785 td(on) Turn-On delay time — 34 44 tr Rise time — 16 22 td(off) Turn-Off delay time — 184 200 tf Fall time — 20 26 Eon Turn-On Switching Loss — 355 470 Eoff Turn-Off Switching Loss — 490 600 Etotal Total Switching Loss — 835 1070 td(on) Turn-On delay time — 34 44 tr Rise time — 18 25 td(off) Turn-Off delay time — 203 226 tf Fall time — 28 36 Cies Input Capacitance — 850 — Coes Output Capacitance — 75 — Cres Reverse Transfer Capacitance — 35 — RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area Conditions Ref.Fig IC = 15A 84 nC VGE = 15V CT1 VCC = 400V IC = 15A, VCC = 400V, VGE = 15V J CT4 RG = 22Ω, L = 200µH LS = 150nH TJ = 25°C d IC = 15A, VCC = 400V, VGE = 15V ns CT4 RG = 22Ω, L = 200µH LS = 150nH TJ = 25°C IC = 15A, VCC = 400V, VGE = 15V J CT4 RG = 22Ω, L = 200µH LS = 150nH TJ = 150°C 12,14 d WF1, WF2 IC = 15A, VCC = 400V, VGE = 15V ns 13, 15 RG = 22Ω, L = 200µH CT4 LS = 150nH TJ = 150°C WF1 WF2 VGE = 0V pF VCC = 30V f = 1.0Mhz I C = 62A 4 VCC = 500V, Vp =600V CT2 Rg = 22Ω, VGE = +20V to 0V, TJ =150°C 10 — — µs VCC = 360V, Vp =600V ,TJ = 150°C CT3 Rg = 22Ω, VGE = +15V to 0V WF3 Note to are on page 11 2 www.irf.com IRGS15B60KPbF 35 240 30 200 25 160 Ptot (W) IC (A) 20 15 120 80 10 40 5 0 0 0 20 40 60 80 100 120 140 160 0 T C (°C) 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 µs 10 IC A) IC (A) 10 100 µs 1 1 1ms DC 0.1 0 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGS15B60KPbF 100 100 90 VGE VGE VGE VGE VGE 80 70 90 VGE VGE VGE VGE VGE 80 70 ICE (A) ICE (A) 60 = 18V = 15V = 12V = 10V = 8.0V 50 40 60 = 18V = 15V = 12V = 10V = 8.0V 50 40 30 30 20 20 10 10 0 0 0 1 2 3 4 5 6 0 1 2 VCE (V) 100 5 6 20 90 VGE VGE VGE VGE VGE 80 70 60 = 18V 18 = 15V = 12V = 10V = 8.0V 16 14 VCE (V) ICE (A) 4 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 300µs Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 300µs 50 40 12 ICE = 5.0A 10 ICE = 15A 8 ICE = 30A 30 6 20 4 10 2 0 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 300µs 4 3 VCE (V) 4 6 8 10 12 14 16 18 20 VGE (V) Fig. 8 - Typical VCE vs. VGE TJ = -40°C www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 5.0A 10 ICE = 15A 8 ICE = 30A VCE (V) VCE (V) IRGS15B60KPbF 12 10 ICE = 5.0A ICE = 15A 8 ICE = 30A 6 6 4 4 2 2 0 0 4 6 8 10 12 14 16 18 20 4 6 8 10 VGE (V) 12 14 16 18 20 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C Fig. 10 - Typical VCE vs. VGE TJ = 150°C 160 T J = 25°C 140 T J = 150°C 120 ICE (A) 100 80 60 40 T J = 150°C 20 T J = 25°C 0 0 5 10 15 20 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com 5 IRGS15B60KPbF 1000 1800 1600 Energy (µJ) 1200 Swiching Time (ns) 1400 EOFF 1000 EON 800 600 tdOFF 100 tdON 400 tF 200 0 0 10 20 30 40 tR 10 50 0 IC (A) 10 20 30 40 IC (A) Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 22Ω; VGE= 15V Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 22Ω; VGE= 15V 1000 900 tdOFF 800 Swiching Time (ns) EOFF 700 EON 600 Energy (µJ) 50 500 400 300 100 tdON tR tF 200 100 10 0 0 50 100 R G (Ω) Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 15A; VGE= 15V 6 150 0 50 100 150 R G (Ω) Fig. 15- Typ. Switching Time vs. RG TJ = 150°C; L=200µH; VCE= 600V ICE= 15A; VGE= 15V www.irf.com IRGS15B60KPbF 16 10000 14 300V Cies 1000 100 400V 10 VGE (V) Capacitance (pF) 12 8 6 Coes 4 Cres 2 0 10 0 20 40 60 80 0 100 20 40 60 Q G , Total Gate Charge (nC) VCE (V) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 17 - Typical Gate Charge vs. VGE ICE = 15A; L = 600µH Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 τJ 0.05 0.01 0.02 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.231 0.000157 0.175 0.000849 0.201 Ci= τi/Ri Ci i/Ri 0.011943 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) www.irf.com 7 IRGS15B60KPbF L L VCC DUT 0 + - 80 V DUT Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC 480V Rg 1K DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com IRGS15B60KPbF 600 30 500 50 400 40 tF 500 25 20 300 15 5 % IC E 200 10 V CE (V) 300 5% V CE 5 0 0 E o ff L o s s -1 0 0 20 tes t current 0.5 1.0 5% V C E 0 Eon Los s -100 -0.2 1 .5 -10 -0.1 0.0 0.1 t (µS ) t (µ S ) WF.1- Typ. Turn-off Loss @ TJ = 150°C using CT.4 WF.2- Typ. Turn-on Loss @ TJ = 150°C using Fig. CT.4 500 250 V CE 400 200 150 IC E 200 100 100 50 0 ICE (A) 300 VCE (V) 10 10% tes t current tR 0 -5 0 .0 200 100 100 -0 .5 30 90% tes t current ICE (A) V CE (V) 9 0 % IC E ICE (A) 400 0 -1 0 0 -5 0 -1 0 0 10 20 30 t (µ S ) WF.3- Typ. Short Circuit @ TJ = 150°C using CT.3 www.irf.com 9 IRGS15B60KPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information THIS IS AN IRF530S WIT H LOT CODE 8024 AS SEMBLED ON WW 02, 2000 IN T HE AS SEMBLY LINE "L" INT ERNAT IONAL RECT IF IER LOGO AS SEMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L OR INTERNATIONAL RECTIFIER LOGO ASS EMBLY LOT CODE 10 PART NUMBER F530S DATE CODE P = DESIGNATES LEAD - F REE PRODUCT (OPTIONAL) YEAR 0 = 2000 WEEK 02 A = AS SEMBLY SIT E CODE www.irf.com IRGS15B60KPbF D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 24.30 (.957) 23.90 (.941) 15.42 (.609) 15.22 (.601) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. Notes: 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 3 4 This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Energy losses include "tail" and diode reverse recovery, using Diode HF15D060ACE. VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 22Ω. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/2011 www.irf.com 11