IRF IRGB4056DPBF

PD - 97188
IRGB4056DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
•
•
•
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 175 °C
5 µS short circuit SOA
Square RBSOA
100% of the parts tested for 4X rated current (ILM)
Positive VCE (ON) Temperature co-efficient
Ultra fast soft Recovery Co-Pak Diode
Tight parameter distribution
Lead Free Package
C
VCES = 600V
IC = 12A, TC = 100°C
tSC ≥ 5µs, TJ(max) = 175°C
G
VCE(on) typ. = 1.55V
E
n-channel
Benefits
C
• High Efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
• Rugged transient Performance for increased reliability
• Excellent Current sharing in parallel operation
• Low EMI
E
C
G
TO-220AB
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Parameter
Max.
Units
V
VCES
Collector-to-Emitter Voltage
600
IC @ TC = 25°C
Continuous Collector Current
24
IC @ TC = 100°C
Continuous Collector Current
12
ICM
ILM
Pulse Collector Current
Clamped Inductive Load Current
IF @ TC = 25°C
Diode Continous Forward Current
IF @ TC = 100°C
IFM
Diode Continous Forward Current
Diode Maximum Forward Current
VGE
Continuous Gate-to-Emitter Voltage
±20
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
140
PD @ TC = 100°C
Maximum Power Dissipation
70
TJ
Operating Junction and
TSTG
Storage Temperature Range
48
c
48
A
24
12
e
48
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
1.07
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
3.66
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.50
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
80
–––
1
www.irf.com
02/24/06
IRGB4056DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.30
—
—
1.55
1.85
—
1.90
—
—
1.97
—
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
VGE(th)
Gate Threshold Voltage
4.0
—
6.5
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-18
—
gfe
ICES
Forward Transconductance
—
7.7
—
Collector-to-Emitter Leakage Current
—
2.0
25
—
475
—
—
2.10
3.10
—
1.61
—
—
—
±100
VFM
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
Conditions
VGE = 0V, IC = 100µA
Ref.Fig
f
CT6
V/°C VGE = 0V, IC = 1mA (25°C-175°C)
IC = 12A, VGE = 15V, TJ = 25°C
V
CT6
5,6,7
IC = 12A, VGE = 15V, TJ = 150°C
9,10,11
IC = 12A, VGE = 15V, TJ = 175°C
V
VCE = VGE, IC = 350µA
9, 10,
mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C)
S VCE = 50V, IC = 12A, PW = 80µs
µA
VGE = 0V, VCE = 600V
V
IF = 12A
11, 12
VGE = 0V, VCE = 600V, TJ = 175°C
8
IF = 12A, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
25
Max. Units
38
Qge
Gate-to-Emitter Charge (turn-on)
—
7.0
11
Qgc
Gate-to-Collector Charge (turn-on)
—
11
16
VCC = 400V
Eon
Turn-On Switching Loss
—
75
118
IC = 12A, VCC = 400V, VGE = 15V
RG = 22Ω, L = 200µH, LS = 150nH, TJ = 25°C
Eoff
Turn-Off Switching Loss
—
225
273
Etotal
Total Switching Loss
—
300
391
td(on)
Turn-On delay time
—
31
40
tr
Rise time
—
17
24
td(off)
Turn-Off delay time
—
83
94
tf
Fall time
—
24
31
Eon
Turn-On Switching Loss
—
185
—
Eoff
Turn-Off Switching Loss
—
355
—
Etotal
Total Switching Loss
—
540
—
td(on)
Turn-On delay time
—
30
—
tr
Rise time
—
18
—
Conditions
Ref.Fig
IC = 12A
nC
µJ
24
VGE = 15V
CT1
CT4
Energy losses include tail & diode reverse recovery
IC = 12A, VCC = 400V, VGE = 15V
ns
CT4
RG = 22Ω, L = 200µH, LS = 150nH, TJ = 25°C
IC = 12A, VCC = 400V, VGE=15V
µJ
RG=22Ω, L=100µH, LS=150nH, TJ = 175°C
f
Energy losses include tail & diode reverse recovery
IC = 12A, VCC = 400V, VGE = 15V
ns
CT4
WF1, WF2
14, 16
RG = 22Ω, L = 200µH, LS = 150nH
CT4
TJ = 175°C
WF1
td(off)
Turn-Off delay time
—
102
tf
Fall time
—
41
—
Cies
Input Capacitance
—
765
—
Coes
Output Capacitance
—
52
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
23
—
f = 1.0Mhz
TJ = 175°C, IC = 48A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5
—
13, 15
WF2
pF
VGE = 0V
23
4
VCC = 480V, Vp =600V
CT2
Rg = 22Ω, VGE = +15V to 0V
—
—
µs
VCC = 400V, Vp =600V
22, CT3
Rg = 22Ω, VGE = +15V to 0V
WF4
Erec
trr
Reverse Recovery Energy of the Diode
—
280
—
µJ
TJ = 175°C
Diode Reverse Recovery Time
—
68
—
ns
VCC = 400V, IF = 12A
Irr
Peak Reverse Recovery Current
—
19
—
A
VGE = 15V, Rg = 22Ω, L =200µH, Ls = 150nH
17, 18, 19
20, 21
WF3
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 22Ω.
‚ This is only applied to TO-220AB package.
ƒ Pulse width limited by max. junction temperature.
„ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGB4056DPbF
25
150
20
125
100
Ptot (W)
IC (A)
15
10
75
50
5
25
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
IC (A)
IC (A)
10µsec
10
100µsec
1
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
0.1
1
1
10
100
1000
10000
10
100
VCE (V)
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
45
40
40
35
35
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
20
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
30
ICE (A)
30
ICE (A)
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =15V
45
25
20
15
15
10
10
5
5
0
0
0
1
2
3
4
VCE (V)
5
6
7
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
www.irf.com
1000
8
0
1
2
3
4
5
6
7
8
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
3
IRGB4056DPbF
45
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
40
35
60
-40°c
25°C
175°C
50
25
IF (A)
ICE (A)
30
70
20
40
30
15
10
20
5
10
0
0
0
1
2
3
4
5
6
7
8
0.0
1.0
2.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
20
20
18
18
16
16
14
14
ICE = 6.0A
ICE = 12A
ICE = 24A
8
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
10
4.0
VF (V)
VCE (V)
12
3.0
12
ICE = 6.0A
ICE = 12A
10
ICE = 24A
8
6
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
50
20
18
T J = 25°C
T J = 175°C
40
16
12
ICE = 6.0A
ICE (A)
VCE (V)
14
ICE = 12A
10
ICE = 24A
8
30
20
6
10
4
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
4
20
0
5
10
15
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
IRGB4056DPbF
800
1000
700
tdOFF
Swiching Time (ns)
Energy (µJ)
600
EOFF
500
400
EON
300
100
tF
tdON
10
tR
200
100
0
1
0
10
20
30
5
10
15
20
25
IC (A)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 22Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 22Ω; VGE = 15V
500
1000
450
400
Swiching Time (ns)
EOFF
Energy (µJ)
350
300
250
EON
200
tdOFF
100
tF
150
tdON
100
tR
50
10
0
25
50
75
100
125
0
25
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V
100
125
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V
25
25
RG = 10Ω
20
20
RG = 22Ω
15
IRR (A)
IRR (A)
75
RG (Ω)
Rg (Ω)
RG = 47Ω
10
RG = 100Ω
5
15
10
0
5
0
10
20
IF (A)
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 175°C
www.irf.com
50
30
0
25
50
75
100
125
RG (Ω)
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 175°C
5
IRGB4056DPbF
1400
25
1200
20
24A
10Ω
15
QRR (µC)
IRR (A)
1000
10
22Ω
47Ω
800
12A
600
100Ω
5
400
0
200
0
500
1000
6.0A
0
1500
500
diF /dt (A/µs)
120
18
110
16
100
14
90
12
80
10
70
8
60
6
50
4
40
50
2
30
0
0
RG = 10Ω
350
RG = 22Ω
RG = 47Ω
250
Time (µs)
Energy (µJ)
300
200
150
RG = 100Ω
100
0
10
20
20
8
30
Current (A)
20
400
10
12
IF (A)
14
16
18
VGE (V)
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 175°C
16
VGE, Gate-to-Emitter Voltage (V)
10000
Capacitance (pF)
1500
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 175°C
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 12A; TJ = 175°C
Cies
1000
100
Coes
Cres
V CES = 300V
14
V CES = 400V
12
10
8
6
4
2
0
10
0
20
40
60
80
VCE (V)
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
1000
diF /dt (A/µs)
100
0
5
10
15
20
25
30
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 12A; L = 600µH
www.irf.com
IRGB4056DPbF
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
τJ
0.01
0.01
1E-005
0.0001
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
τ3
Ri (°C/W) τi (sec)
0.358
0.000171
0.424
0.001361
0.287
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R1
R1
0.009475
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
τJ
0.01
0.01
0.001
1E-006
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
0.0001
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
Ci= τi/Ri
Ci i/Ri
Ri (°C/W)
τC 0.821094
τ
τ3
τi (sec)
0.000233
1.913817 0.001894
0.926641 0.014711
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB4056DPbF
L
L
VC C
D UT
0
80 V
DU T
4 80V
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp /
DU T
4x
DC
L
- 5V
360V
DU T /
D RIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
R=
Fig.C.T.4 - Switching Loss Circuit
VCC
ICM
C force
400µH
D1
10K
C sense
DUT
VCC
G force
DUT
0.0075µ
Rg
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
8
Fig.C.T.6 - BVCES Filter Circuit
www.irf.com
IRGB4056DPbF
500
25
500
50
400
20
400
40
300
15
300
tf
90% ICE
10
5% ICE
100
5
200
30
90% test
100
5% VCE
0
0.50
1.00
1.50
0
-100
11.70
11.80
11.90
QRR
500
250
400
200
tRR
VCE
300
150
VCE (V)
I RR (A)
5
0
-5
-10
-10
12.10
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
25
10
12.00
Time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
15
10
EON
-5
2.00
Time(µs)
20
10% test
0
EOFF Loss
0.00
20
5% VCE
0
-100
-0.50
TEST
C
10%
Peak
IRR
Peak
IRR
-15
ICE
200
100
100
50
0
I CE (A)
200
VCE (V)
VCE (V)
tr
0
-20
-25
-0.05
0.05
0.15
-100
-5.00
0.00
5.00
-50
10.00
time (µS)
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
www.irf.com
9
IRGB4056DPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/06
10
www.irf.com