PD - 97188 IRGB4056DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 µS short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package C VCES = 600V IC = 12A, TC = 100°C tSC ≥ 5µs, TJ(max) = 175°C G VCE(on) typ. = 1.55V E n-channel Benefits C • High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI E C G TO-220AB G Gate C Collector E Emitter Absolute Maximum Ratings Parameter Max. Units V VCES Collector-to-Emitter Voltage 600 IC @ TC = 25°C Continuous Collector Current 24 IC @ TC = 100°C Continuous Collector Current 12 ICM ILM Pulse Collector Current Clamped Inductive Load Current IF @ TC = 25°C Diode Continous Forward Current IF @ TC = 100°C IFM Diode Continous Forward Current Diode Maximum Forward Current VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 140 PD @ TC = 100°C Maximum Power Dissipation 70 TJ Operating Junction and TSTG Storage Temperature Range 48 c 48 A 24 12 e 48 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 1.07 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 3.66 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 80 ––– 1 www.irf.com 02/24/06 IRGB4056DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.30 — — 1.55 1.85 — 1.90 — — 1.97 — VCE(on) Collector-to-Emitter Saturation Voltage Max. Units VGE(th) Gate Threshold Voltage 4.0 — 6.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -18 — gfe ICES Forward Transconductance — 7.7 — Collector-to-Emitter Leakage Current — 2.0 25 — 475 — — 2.10 3.10 — 1.61 — — — ±100 VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V Conditions VGE = 0V, IC = 100µA Ref.Fig f CT6 V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 12A, VGE = 15V, TJ = 25°C V CT6 5,6,7 IC = 12A, VGE = 15V, TJ = 150°C 9,10,11 IC = 12A, VGE = 15V, TJ = 175°C V VCE = VGE, IC = 350µA 9, 10, mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) S VCE = 50V, IC = 12A, PW = 80µs µA VGE = 0V, VCE = 600V V IF = 12A 11, 12 VGE = 0V, VCE = 600V, TJ = 175°C 8 IF = 12A, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 25 Max. Units 38 Qge Gate-to-Emitter Charge (turn-on) — 7.0 11 Qgc Gate-to-Collector Charge (turn-on) — 11 16 VCC = 400V Eon Turn-On Switching Loss — 75 118 IC = 12A, VCC = 400V, VGE = 15V RG = 22Ω, L = 200µH, LS = 150nH, TJ = 25°C Eoff Turn-Off Switching Loss — 225 273 Etotal Total Switching Loss — 300 391 td(on) Turn-On delay time — 31 40 tr Rise time — 17 24 td(off) Turn-Off delay time — 83 94 tf Fall time — 24 31 Eon Turn-On Switching Loss — 185 — Eoff Turn-Off Switching Loss — 355 — Etotal Total Switching Loss — 540 — td(on) Turn-On delay time — 30 — tr Rise time — 18 — Conditions Ref.Fig IC = 12A nC µJ 24 VGE = 15V CT1 CT4 Energy losses include tail & diode reverse recovery IC = 12A, VCC = 400V, VGE = 15V ns CT4 RG = 22Ω, L = 200µH, LS = 150nH, TJ = 25°C IC = 12A, VCC = 400V, VGE=15V µJ RG=22Ω, L=100µH, LS=150nH, TJ = 175°C f Energy losses include tail & diode reverse recovery IC = 12A, VCC = 400V, VGE = 15V ns CT4 WF1, WF2 14, 16 RG = 22Ω, L = 200µH, LS = 150nH CT4 TJ = 175°C WF1 td(off) Turn-Off delay time — 102 tf Fall time — 41 — Cies Input Capacitance — 765 — Coes Output Capacitance — 52 — VCC = 30V Cres Reverse Transfer Capacitance — 23 — f = 1.0Mhz TJ = 175°C, IC = 48A RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 — 13, 15 WF2 pF VGE = 0V 23 4 VCC = 480V, Vp =600V CT2 Rg = 22Ω, VGE = +15V to 0V — — µs VCC = 400V, Vp =600V 22, CT3 Rg = 22Ω, VGE = +15V to 0V WF4 Erec trr Reverse Recovery Energy of the Diode — 280 — µJ TJ = 175°C Diode Reverse Recovery Time — 68 — ns VCC = 400V, IF = 12A Irr Peak Reverse Recovery Current — 19 — A VGE = 15V, Rg = 22Ω, L =200µH, Ls = 150nH 17, 18, 19 20, 21 WF3 Notes: VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 22Ω. This is only applied to TO-220AB package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 www.irf.com IRGB4056DPbF 25 150 20 125 100 Ptot (W) IC (A) 15 10 75 50 5 25 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 IC (A) IC (A) 10µsec 10 100µsec 1 1msec Tc = 25°C Tj = 175°C Single Pulse DC 0.1 1 1 10 100 1000 10000 10 100 VCE (V) VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V 45 40 40 35 35 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 25 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 30 ICE (A) 30 ICE (A) Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V 45 25 20 15 15 10 10 5 5 0 0 0 1 2 3 4 VCE (V) 5 6 7 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs www.irf.com 1000 8 0 1 2 3 4 5 6 7 8 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 3 IRGB4056DPbF 45 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 35 60 -40°c 25°C 175°C 50 25 IF (A) ICE (A) 30 70 20 40 30 15 10 20 5 10 0 0 0 1 2 3 4 5 6 7 8 0.0 1.0 2.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 20 20 18 18 16 16 14 14 ICE = 6.0A ICE = 12A ICE = 24A 8 VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 10 4.0 VF (V) VCE (V) 12 3.0 12 ICE = 6.0A ICE = 12A 10 ICE = 24A 8 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 50 20 18 T J = 25°C T J = 175°C 40 16 12 ICE = 6.0A ICE (A) VCE (V) 14 ICE = 12A 10 ICE = 24A 8 30 20 6 10 4 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C 4 20 0 5 10 15 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com IRGB4056DPbF 800 1000 700 tdOFF Swiching Time (ns) Energy (µJ) 600 EOFF 500 400 EON 300 100 tF tdON 10 tR 200 100 0 1 0 10 20 30 5 10 15 20 25 IC (A) IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 22Ω; VGE = 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 22Ω; VGE = 15V 500 1000 450 400 Swiching Time (ns) EOFF Energy (µJ) 350 300 250 EON 200 tdOFF 100 tF 150 tdON 100 tR 50 10 0 25 50 75 100 125 0 25 Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V 100 125 Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V 25 25 RG = 10Ω 20 20 RG = 22Ω 15 IRR (A) IRR (A) 75 RG (Ω) Rg (Ω) RG = 47Ω 10 RG = 100Ω 5 15 10 0 5 0 10 20 IF (A) Fig. 17 - Typ. Diode IRR vs. IF TJ = 175°C www.irf.com 50 30 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typ. Diode IRR vs. RG TJ = 175°C 5 IRGB4056DPbF 1400 25 1200 20 24A 10Ω 15 QRR (µC) IRR (A) 1000 10 22Ω 47Ω 800 12A 600 100Ω 5 400 0 200 0 500 1000 6.0A 0 1500 500 diF /dt (A/µs) 120 18 110 16 100 14 90 12 80 10 70 8 60 6 50 4 40 50 2 30 0 0 RG = 10Ω 350 RG = 22Ω RG = 47Ω 250 Time (µs) Energy (µJ) 300 200 150 RG = 100Ω 100 0 10 20 20 8 30 Current (A) 20 400 10 12 IF (A) 14 16 18 VGE (V) Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C Fig. 21 - Typ. Diode ERR vs. IF TJ = 175°C 16 VGE, Gate-to-Emitter Voltage (V) 10000 Capacitance (pF) 1500 Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 12A; TJ = 175°C Cies 1000 100 Coes Cres V CES = 300V 14 V CES = 400V 12 10 8 6 4 2 0 10 0 20 40 60 80 VCE (V) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 1000 diF /dt (A/µs) 100 0 5 10 15 20 25 30 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 12A; L = 600µH www.irf.com IRGB4056DPbF 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.02 τJ 0.01 0.01 1E-005 0.0001 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ τ3 Ri (°C/W) τi (sec) 0.358 0.000171 0.424 0.001361 0.287 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R1 R1 0.009475 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.02 τJ 0.01 0.01 0.001 1E-006 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 Ci= τi/Ri Ci i/Ri Ri (°C/W) τC 0.821094 τ τ3 τi (sec) 0.000233 1.913817 0.001894 0.926641 0.014711 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB4056DPbF L L VC C D UT 0 80 V DU T 4 80V Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit d io d e clamp / DU T 4x DC L - 5V 360V DU T / D RIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit R= Fig.C.T.4 - Switching Loss Circuit VCC ICM C force 400µH D1 10K C sense DUT VCC G force DUT 0.0075µ Rg E sense E force Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.6 - BVCES Filter Circuit www.irf.com IRGB4056DPbF 500 25 500 50 400 20 400 40 300 15 300 tf 90% ICE 10 5% ICE 100 5 200 30 90% test 100 5% VCE 0 0.50 1.00 1.50 0 -100 11.70 11.80 11.90 QRR 500 250 400 200 tRR VCE 300 150 VCE (V) I RR (A) 5 0 -5 -10 -10 12.10 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 25 10 12.00 Time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 15 10 EON -5 2.00 Time(µs) 20 10% test 0 EOFF Loss 0.00 20 5% VCE 0 -100 -0.50 TEST C 10% Peak IRR Peak IRR -15 ICE 200 100 100 50 0 I CE (A) 200 VCE (V) VCE (V) tr 0 -20 -25 -0.05 0.05 0.15 -100 -5.00 0.00 5.00 -50 10.00 time (µS) time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 www.irf.com 9 IRGB4056DPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/06 10 www.irf.com