PD - 97355B IRGS4062DPbF IRGSL4062DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 µS short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package C VCES = 600V IC = 24A, TC = 100°C tSC ≥ 5µs, TJ(max) = 175°C G VCE(on) typ. = 1.65V E n-channel C C Benefits • High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI E G G D2 Pak IRGS4062DPbF G Gate C E TO-262 IRGSL4062DPbF C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 48 IC @ TC = 100°C Continuous Collector Current 24 ICM 96 ILM Pulse Collector Current Clamped Inductive Load Current IF @ TC = 25°C Diode Continous Forward Current IF @ TC = 100°C IFM Diode Continous Forward Current Diode Maximum Forward Current VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 250 PD @ TC = 100°C Maximum Power Dissipation 125 TJ Operating Junction and TSTG Storage Temperature Range c 96 A 48 24 d 96 V W -55 to +175 Soldering Temperature, for 10 sec. °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Min. Typ. Max. RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.60 RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 1.53 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 80 ––– 1 Units °C/W www.irf.com 12/07/09 IRGS/SL4062DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.30 — — 1.60 1.95 VCE(on) VGE(th) Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Max. Units — 2.03 — — 2.04 — 4.0 — 6.5 V Conditions VGE = 0V, IC = 100µA V CT6 5,6,7 IC = 24A, VGE = 15V, TJ = 150°C 9,10,11 IC = 24A, VGE = 15V, TJ = 175°C V VCE = VGE, IC = 700µA Threshold Voltage temp. coefficient — -18 — gfe ICES Forward Transconductance — 17 — S VCE = 50V, IC = 24A, PW = 80µs Collector-to-Emitter Leakage Current — 2.0 25 µA VGE = 0V, VCE = 600V — 775 — VFM Diode Forward Voltage Drop — 1.80 2.6 — 1.28 — — — ±100 Gate-to-Emitter Leakage Current CT6 V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 24A, VGE = 15V, TJ = 25°C ∆VGE(th)/∆TJ IGES Ref.Fig e 9, 10, mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) 11, 12 VGE = 0V, VCE = 600V, TJ = 175°C V IF = 24A 8 IF = 24A, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 50 Max. Units 75 Qge Gate-to-Emitter Charge (turn-on) — 13 20 Conditions Ref.Fig IC = 24A nC 24 VGE = 15V CT1 VCC = 400V Qgc Gate-to-Collector Charge (turn-on) — 21 31 Eon Turn-On Switching Loss — 115 201 Eoff Turn-Off Switching Loss — 600 700 Etotal Total Switching Loss — 715 901 td(on) Turn-On delay time — 41 53 IC = 24A, VCC = 400V, VGE = 15V RG = 10Ω, L = 200µH, LS = 150nH, TJ = 25°C tr Rise time — 22 31 td(off) Turn-Off delay time — 104 115 tf Fall time — 29 41 Eon Turn-On Switching Loss — 420 — Eoff Turn-Off Switching Loss — 840 — Etotal Total Switching Loss — 1260 — td(on) Turn-On delay time — 40 — tr Rise time — 24 — td(off) Turn-Off delay time — 125 — tf Fall time — 39 — Cies Input Capacitance — 1490 — IC = 24A, VCC = 400V, VGE = 15V µJ CT4 RG = 10Ω, L = 200µH, LS = 150nH, TJ = 25°C Energy losses include tail & diode reverse recovery ns CT4 IC = 24A, VCC = 400V, VGE=15V µJ RG=10Ω, L=100µH, LS=150nH, TJ = 175°C e Energy losses include tail & diode reverse recovery IC = 24A, VCC = 400V, VGE = 15V ns 13, 15 CT4 WF1, WF2 14, 16 RG = 10Ω, L = 200µH, LS = 150nH CT4 TJ = 175°C WF1 WF2 pF VGE = 0V Coes Output Capacitance — 129 — VCC = 30V Cres Reverse Transfer Capacitance — 45 — f = 1.0Mhz TJ = 175°C, IC = 96A RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 23 4 VCC = 480V, Vp =600V CT2 Rg = 10Ω, VGE = +15V to 0V — — µs VCC = 400V, Vp =600V 22, CT3 Rg = 10Ω, VGE = +15V to 0V Erec trr Reverse Recovery Energy of the Diode — Diode Reverse Recovery Time — Irr Peak Reverse Recovery Current — WF4 — µJ TJ = 175°C 89 — ns VCC = 400V, IF = 24A 37 — A VGE = 15V, Rg = 10Ω, L =200µH, Ls = 150nH 621 17, 18, 19 20, 21 WF3 Notes: VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 www.irf.com IRGS/SL4062DPbF 50 300 45 250 40 35 200 Ptot (W) IC (A) 30 25 20 150 100 15 10 50 5 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 100 IC (A) IC (A) 10µsec 10 100µsec 1 10 1msec Tc = 25°C Tj = 175°C Single Pulse DC 0.1 1 1 10 100 1000 10000 10 100 VCE (V) VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V 90 90 80 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 60 50 70 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 60 ICE (A) 70 40 50 40 30 30 20 20 10 10 0 0 0 1 2 3 4 VCE (V) 5 6 7 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs www.irf.com 1000 8 0 1 2 3 4 5 6 7 8 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 3 IRGS/SL4062DPbF 90 120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 70 80 50 IF (A) ICE (A) 60 100 40 30 -40°c 25°C 175°C 60 40 20 20 10 0 0 0 1 2 3 4 5 6 7 8 0.0 1.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 20 20 18 18 16 16 14 14 ICE = 12A VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs ICE = 24A 10 ICE = 48A 8 3.0 VF (V) VCE (V) 12 2.0 12 10 ICE = 48A 8 6 6 4 4 2 2 0 ICE = 12A ICE = 24A 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 120 20 18 100 16 T J = 25°C TJ = 175°C 80 12 ICE = 12A ICE (A) VCE (V) 14 ICE = 24A ICE = 48A 10 8 60 40 6 4 20 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C 4 20 0 5 10 15 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com IRGS/SL4062DPbF 1800 1000 1600 1400 Energy (µJ) 1200 Swiching Time (ns) tdOFF EOFF 1000 800 EON 600 100 tdON tF 10 tR 400 200 0 1 0 10 20 30 40 50 60 10 20 30 40 50 IC (A) IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V 1000 1600 1400 EON 1000 Swiching Time (ns) Energy (µJ) 1200 EOFF 800 600 tdOFF 100 tdON 400 tF tR 200 10 0 0 25 50 75 100 0 125 25 50 75 100 125 RG (Ω) Rg (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V 40 45 RG = 10Ω 40 35 35 30 RG = 22Ω IRR (A) IRR (A) 30 25 RG = 47Ω 20 20 RG = 100Ω 15 15 10 10 5 0 10 20 30 40 50 IF (A) Fig. 17 - Typ. Diode IRR vs. IF TJ = 175°C www.irf.com 25 60 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typ. Diode IRR vs. RG TJ = 175°C 5 IRGS/SL4062DPbF 45 4000 40 48A 3500 35 10Ω 3000 Q RR (µC) IRR (A) 30 25 20 22Ω 2500 47Ω 2000 15 1500 10 1000 12A 5 0 500 1000 500 1500 0 500 diF /dt (A/µs) RG = 22Ω Time (µs) RG = 47Ω RG = 100Ω 400 200 16 280 14 240 12 200 10 160 8 120 6 80 40 4 0 0 10 20 30 40 50 8 60 12 14 16 18 Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C Fig. 21 - Typ. Diode ERR vs. IF TJ = 175°C 16 VGE, Gate-to-Emitter Voltage (V) Capacitance (pF) 10 VGE (V) IF (A) Cies 1000 Coes 100 Cres 10 V CES = 300V V CES = 400V 14 12 10 8 6 4 2 0 0 20 40 60 80 VCE (V) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 Current (A) Energy (µJ) 800 600 1500 diF /dt (A/µs) 1000 RG = 10Ω 1000 Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 24A; TJ = 175°C 10000 24A 100Ω 100 0 5 10 15 20 25 30 35 40 45 50 55 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 24A; L = 600µH www.irf.com IRGS/SL4062DPbF 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 τJ R1 R1 τJ τ1 τC τ2 τ1 τ Ri (°C/W) τi (sec) 0.2329 0.000234 0.3631 τ2 0.007009 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R2 R2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 0.1 0.01 0.001 0.0001 1E-006 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ R1 R1 τJ τ1 τ1 R2 R2 τ2 τ3 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 R3 R3 τC τ τ3 Ri (°C/W) τi (sec) 0.476 0.000763 0.647 0.003028 0.406 0.023686 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGS/SL4062DPbF L L VC C D UT 0 80 V DU T 4 80V Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit d io d e clamp / DU T 4x DC V360V CC L - 5V DU T / D RIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit R= Fig.C.T.4 - Switching Loss Circuit VCC ICM DUT VCC Rg Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.6 - BVCES Filter Circuit www.irf.com IRGS/SL4062DPbF 600 30 600 25 500 60 tf 500 50 90% ICE 20 V CE 300 200 300 5 20 100 0 EOFF Loss 0.60 0 0 -100 11.70 Time(µs) 11.90 600 300 QRR ICE 500 10 tRR V CE (V) IRR (A) Peak IRR 10% Peak IRR -30 200 -0.05 0.05 0.15 0.25 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4 www.irf.com V CE 300 150 200 100 100 50 0 -40 -50 -0.15 250 400 0 -20 -10 12.30 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 30 -10 12.10 Time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 20 10 5% V CE EON -5 0.10 30 90% test 200 5% ICE -100 -0.40 C 10% ICE 100 0 40 ICE 15 10 5% V CE tr I CE (A) VCE (V) ICE 400 VCE (V) 400 V CE C 0 -100 -5.00 0.00 5.00 -50 10.00 time (µS) Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 9 IRGS/SL4062DPbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/ ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 )6 '$7(&2'( <($5 :((. /,1(/ 3$57180%(5 )6 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html 10 www.irf.com IRGS/SL4062DPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html www.irf.com 11 IRGS/SL4062DPbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 24.30 (.957) 23.90 (.941) 15.42 (.609) 15.22 (.601) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/2009 12 www.irf.com