PD- 95897 IRGP20B120U-EP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT Features UltraFast Non Punch Through (NPT) Technology 10 µs Short Circuit capability Square RBSOA Positive VCE(on) Temperature Coefficient Extended lead TO-247 package Lead-Free C VCES = 1200V VCE(on) typ. = 3.05V G VGE = 15V, IC = 20A, 25°C E Benefits n-channel Benchmark efficiency above 20KHz Optimized for Welding, UPS, and Induction Heating applications Rugged with UltraFast performance Low EMI Significantly Less Snubber required Excellent Current sharing in Parallel operation Longer leads for easier mounting TO-247AD Absolute Maximum Ratings Parameter V CES IC @ TC = 25°C I C @ TC = 100°C I CM I LM V GE EAS @ TC =25°C PD @ TC = 25°C P D @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current (Fig.1) Continuous Collector Current (Fig.1) Pulsed Collector Current (Fig.3, Fig. CT.5) Clamped Inductive Load Current(Fig.4, Fig. CT.2) Gate-to-Emitter Voltage Avalanche Energy, single pulse IC = 25A, VCC = 50V, RGE = 25ohm L = 200µH (Fig. CT.6) Maximum Power Dissipation (Fig.2) Maximum Power Dissipation (Fig.2) Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. Max. Units 1200 40 20 120 120 ± 20 65 V A V mJ 300 120 -55 to + 150 W 300, (0.063 in. (1.6mm) from case) 10 lbfin (1.1Nm) °C Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case - IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Wt Z θJC Weight Transient Thermal Impedance Junction-to-Case www.irf.com Min. Typ. Max. Units 0.24 0.42 40 °C/W 6 (0.21) g (oz) (Fig.18) 1 09/14/04 IRGP20B120U-EP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage Min. 1200 ∆V(BR)CES / ∆Tj Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation VCE(on) VGE(th) Voltage Gate Threshold Voltage ∆VGE(th) / ∆Tj Temperature Coeff. of Threshold Voltage gfe Forward Transconductance ICES Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current 4.0 13.6 Typ. +1.2 3.05 3.37 4.23 3.89 4.31 5.0 - 1.2 15.7 Max. Units V V/°C 3.45 3.80 4.85 V 4.50 5.06 6.0 V Conditions Fig. VGE = 0V,Ic =250 µA o VGE = 0V, Ic = 1 mA ( 25 -125 C ) IC = 20A, VGE = 15V 5, 6 IC = 25A, VGE = 15V 7, 8 IC = 40A, VGE = 15V 9 IC = 20A, VGE = 15V, TJ = 125°C 10 IC = 25A, VGE = 15V, TJ = 125°C VCE = VGE, IC = 250 µA 8,9,10,11 o o S VCE = 50V, IC = 20A, PW=80µs mV/ C VCE = VGE, IC = 1 mA (25 -125 C) 17.8 250 420 750 1482 2200 ±100 VGE = 0V, VCE = 1200V µA VGE = 0V, VCE = 1200V, TJ =125°C VGE = 0V, VCE = 1200V, TJ =150°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Eon Turn-On Switching Loss * Eoff Turn-Off Switching Loss * Typ. 169 24 82 850 425 Etot Total Switching Loss * 1275 1800 T J = 25 C, Energy losses include tail and diode reverse recovery Eon Turn-on Switching Loss * Ic = 20A, VCC = 600V Eoff Turn-off Switching Loss * 1350 1550 610 875 Qg Total Gate charge (turn-on) Qge Gate - Emitter Charge (turn-on) Qgc Gate - Collector Charge (turn-on) Min. Max. Units Conditions IC = 20A 254 36 nC VCC = 600V VGE = 15V 126 IC = 20A, VCC = 600V 1050 650 µJ VGE = 15V, Rg = 5Ω, L = 200µH Fig. 17 CT 1 CT 4 WF1 o µJ WF2 12, 14 VGE = 15V, Rg = 5Ω, L = 200µH CT 4 o Etot Total Switching Loss * 1960 2425 T J = 125 C, Energy losses include tail and diode reverse recovery td(on) Turn - on delay time Ic = 20A, VCC = 600V tr Rise time td(off) Turn - off delay time tf Fall time Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance 50 20 204 24 2200 210 85 65 30 230 35 ns VGE = 15V, Rg = 5Ω, L = 200µH o TJ = 125 C Reverse bias safe operating area 13, 15 CT 4 WF1 WF2 VGE = 0V pF VCC = 30V 16 f = 1.0 MHz o RBSOA WF 1 & 2 TJ = 150 C, Ic = 120A VCC = 1000V, VP = 1200V FULL SQUARE 4 CT 2 Rg = 5Ω, VGE = +15V to 0V o SCSOA Short Circuit Safe Operating Area 10 ---- ---- µs TJ = 150 C VCC = 900V, VP = 1200V CT 3 WF3 Rg = 5Ω, VGE = +15V to 0V Le Internal Emitter Inductance 13 nH Measured 5 mm from the package. * Used Diode HF40D120ACE 2 www.irf.com IRGP20B120U-EP Fig.1 - Maximum DC Collector Current vs. Case Temperature Fig.2 - Power Dissipation vs. Case Temperature 50 320 45 280 40 240 200 P t o t ( W) 30 25 I C ( A) 35 20 160 120 15 80 10 40 5 0 0 0 40 80 120 160 0 40 T C (°C) 80 120 160 T C (°C) Fig.4 - Reverse Bias SOA Tj = 150°C, V GE = 15V Fig.3 - Forward SOA T C =25°C; Tj < 150°C 1000 1000 PULSED 2µs 100 10µs 100 ( A) 10 I 1ms I C C ( A) 100µ s 10 1 10ms DC 0.1 1 1 www.irf.com 10 100 V CE (V) 1000 10000 1 10 100 V CE (V) 1000 10000 3 IRGP20B120U-EP Fig.5 - Typical IGBT Output Characteristics Tj= -40°C; tp=300µs Fig.6 - Typical IGBT Output Characteristics Tj=25°C; tp=300µs 60 60 V GE = 18V 55 V GE = 12V 45 V GE = 10V 45 V GE = 10V 40 V GE = 8V 40 V GE = 8V (A) 35 30 35 30 C 25 I I V GE = 15V 50 V GE = 12V C ( A) 50 V GE = 18V 55 V GE = 15V 25 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 0 1 2 5 6 V CE (V) 3 V CE (V) 4 5 6 Fig.7 - Typical IGBT Output Characteristics Tj=125°C; tp=300µs 60 V GE = 18V 55 V GE = 15V V GE = 12V 45 V GE = 10V 40 V GE = 8V 35 30 I C (A) 50 25 20 15 10 5 0 0 1 2 3 4 V CE (V) 4 www.irf.com IRGP20B120U-EP Fig.10 9 - Typical V CE vs V GE Tj= 25°C 20 18 18 16 16 14 14 12 12 ( V) 20 10 8 CE I CE =10A I CE =20A I CE =40A V V CE (V) Fig.98 - Typical V CE vs V GE Tj= -40°C 10 8 6 6 4 4 2 2 0 0 6 8 10 12 14 V GE (V) 16 18 20 6 18 225 16 200 14 175 12 150 (A) 250 12 14 V GE (V) 16 18 20 Tj=25°C Tj=125°C 125 C I CE =10A I CE =20A I CE =40A 8 10 I ( V) CE 20 10 8 Fig.12 11 - Typ. Transfer Characteristics V CE =20V; tp=20µ s Fig.11 10 - Typical V CE vs V GE Tj= 125°C V I CE =10A I CE =20A I CE =40A 100 6 75 4 50 2 25 0 0 Tj=125°C Tj=25°C 6 www.irf.com 8 10 12 14 V GE (V) 16 18 20 0 4 8 12 V GE (V) 16 20 5 IRGP20B120U-EP Fig.13 12 - Typical Energy Loss vs Ic Tj=125°C; L=200µH; V CE =600V; Rg=22 Ω ; V GE =15V Fig.14 13 - Typical Switching Time vs Ic Tj=125°C; L=200µH; V CE =600V; Rg=22 Ω ; V GE =15V 6000 1000 Eon 5000 4000 t (nS) Energy (µJ) tdoff 3000 Eoff 100 tr tdon 2000 tf 1000 0 10 0 10 20 30 40 50 0 10 I C (A) 20 30 40 50 I C (A) Fig.15 14 - Typical Energy Loss vs Rg Tj=125°C; L=200µH; V CE =600V; I CE =20A; V GE =15V Fig.16 15 - Typical Switching Time vs Rg Tj=125°C; L=200µH; V CE =600V; I CE =20A; V GE =15V 1000 3000 2800 Eon tdoff 2600 2400 2000 1800 1600 Eoff 1400 t ( nS) Ener gy ( uJ) 2200 tdon 100 1200 tr 1000 tf 800 600 400 200 0 10 0 5 10 15 20 25 30 35 40 45 50 55 Rg (ohms) 6 0 5 10 15 20 25 30 35 40 45 50 55 Rg (ohms) www.irf.com IRGP20B120U-EP Fig.22 16 - Typical Capacitance vs V CE V GE =0V; f=1MHz Fig.23 17 - Typ. Gate Charge vs. V GE I C =20A; L=600µH 10000 16 800V 12 1000 10 V GE ( V ) CapacI tance (pF) 600V 14 C ies C oes 8 6 100 4 C res 2 0 10 0 20 40 60 80 100 0 40 80 120 160 200 Q G , Total Gate Charge (nC) V CE (V) Fig.24 18 - Normalized Transient Thermal Impedance, Junction-to-Case θ 10 1 D =0.5 0.2 0.1 0.1 0.05 P DM 0.02 t1 0.01 0.01 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + T C SINGLE PULSE 0.001 0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 t 1 , Rectangular Pulse Duration (sec) www.irf.com 7 IRGP20B120U-EP Fig. CT.1 - Gate Charge Circuit (turn-off) Fig. CT.2 - RBSOA Circuit L L VCC DUT 0 80 V + - DUT 1000V Rg 1K Fig. CT.3 - S.C. SOA Circuit Driver DC Fig. CT.4 - Switching Loss Circuit DIODE CLAMP L 900V DUT DUT / DRIVER VCC Rg Fig. CT.5 - Resistive Load Circuit Fig. CT.6 - Unclamped Inductive Load Circuit R = VCC ICM L DUT VCC Rg DUT VCC Rg 8 www.irf.com IRGP20B120U-EP Fig. WF.1 - Typ. Turn-off Loss Waveform @ Tj=125°C using Fig. CT.4 1000 Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125°C using Fig. CT.4 25 800 80 600 60 90% IC E 800 20 600 400 10 I CE ( A ) 400 40 tr VCE ( V) f I CE ( A ) t VCE ( V) 90% test current 15 TEST CURRENT 200 5% VCE 20 10% test current 200 5 5% VCE 5% IC E 0 0 0 0 Eon Loss Eof f Loss -200 -5 -0.2 0.0 0.2 0.4 0.6 -200 -0.2 0.8 -20 -0.1 0.0 t i me (µs) 0.1 0.2 0.3 t i me (µs) 1200 250 1000 200 800 150 600 100 400 50 200 0 0 I CE ( A ) V CE ( V ) Fig. WF.3- Typ. S.C. Waveform @ TC=150°C using Fig. CT.3 -50 -10 0 10 20 30 t i me (µs) www.irf.com 9 IRGP20B120U-EP TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information EXAMPLE: THIS IS AN IRGP30B120KD-E WIT H ASSEMBLY LOT CODE 5657 AS SEMBLED ON WW 35, 2000 IN T HE AS SEMBLY LINE "H" Note: "P" in as sembly line position indicates "Lead-Free" PART NUMBER INT ERNAT IONAL RECT IFIER LOGO 56 AS SEMBLY LOT CODE 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/04 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/