Freescale Semiconductor, Inc. Data Sheet: Technical Data Document Number K63P144M120SF5 Rev. 6, 08/2015 Kinetis K63F Sub-Family Data Sheet MK63FN1M0VLQ12 MK63FN1M0VMD12 120 MHz ARM® Cortex®-M4-based Microcontroller with FPU The K63 product family members are optimized for cost-sensitive applications requiring low-power, USB/Ethernet connectivity, up to 256 KB of embedded SRAM and the need for extensive tamper protection, such as Electronic Point of Sales. These devices share the comprehensive enablement and scalability of the Kinetis family. This product offers: 144 LQFP 144 MAPBGA 20 x 20 x 1.6 mm Pitch 13 x 13 x 1.46 mm • Run power consumption down to 250 μA/MHz. Static 0.5 mm Pitch 1 mm power consumption down to 5.8 μA with full state retention and 5 μs wakeup. Lowest Static mode down to 339 nA • DryIce Tamper Detection with active/passive pin, temperature, clock, supply voltage monitoring • USB LS/FS OTG 2.0 with embedded 3.3 V, 120 mA LDO Vreg, with USB device crystal-less operation • 10/100 Mbit/s Ethernet MAC with MII and RMII interfaces Performance • Up to 120 MHz ARM® Cortex®-M4 core with DSP instructions and floating point unit Memories and memory interfaces • Up to 1 MB program flash memory and 256 KB RAM • FlexBus external bus interface System peripherals • Multiple low-power modes, low-leakage wake-up unit • Memory protection unit with multi-master protection • 16-channel DMA controller • External watchdog monitor and software watchdog Security and integrity modules • Hardware CRC module • Tamper detect and secure storage • Hardware random-number generator • Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms • 128-bit unique identification (ID) number per chip Analog modules • Two 16-bit SAR ADCs • Two 12-bit DACs • Three analog comparators (CMP) • Voltage reference Communication interfaces • Ethernet controller with MII and RMII interface • USB full-/low-speed On-the-Go controller • Controller Area Network (CAN) module • Three SPI modules • Three I2C modules. Support for up to 1 Mbit/s • Six UART modules • Secure Digital Host Controller (SDHC) • I2S module Timers • Two 8-channel Flex-Timers (PWM/Motor control) • Two 2-channel FlexTimers (PWM/Quad decoder) • IEEE 1588 timers • 32-bit PITs and 16-bit low-power timers • Real-time clock • Programmable delay block Clocks • 3 to 32 MHz and 32 kHz crystal oscillator • PLL, FLL, and multiple internal oscillators • 48 MHz Internal Reference Clock (IRC48M) Operating Characteristics • Voltage range: 1.71 to 3.6 V • Flash write voltage range: 1.71 to 3.6 V • Temperature range (ambient): –40 to 105°C Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2014 Freescale Semiconductor, Inc. All rights reserved. Ordering Information 1 Part Number Memory Maximum number of I\O's Flash SRAM (KB) MK63FN1M0VLQ12 1 MB 256 100 MK63FN1M0VMD12 1 MB 256 95 1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search. Related Resources Type Description Resource Selector Guide The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. Solution Advisor Product Brief The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability. K60PB 1 Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. K63P144M120SF5RM 1 Data Sheet The Data Sheet includes electrical characteristics and signal connections. K63P144M120SF51 Package drawing Package dimensions are provided in package drawings. • LQFP 144-pin: 98ASS23177W1 • MAPBGA 144-pin: 98ASA00222D1 1. To find the associated resource, go to http://www.freescale.com and perform a search using this term. 2 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Kinetis K63 Family ARM ® Cortex™-M4 Core System Memories and Memory Interfaces Clocks Internal and external watchdogs Program flash RAM Phaselocked loop Serial programming interface External bus Frequencylocked loop Debug interfaces DSP Memory protection Interrupt controller Floatingpoint unit DMA Low/high frequency oscillators Low-leakage wakeup Internal reference clocks Security Analog Timers CRC 16-bit ADC x2 Timers x2 (8ch) x2 (2ch) Random number generator Analog comparator x3 Hardware encryption 6-bit DAC x3 Tamper detect 12-bit DAC x2 and Integrity Voltage reference Programmable delay block Periodic interrupt timers Low power timer Independent real-time clock Communication Interfaces 2 I C x3 I S UART x6 Secure Digital SPI x3 USB OTG LS/FS CAN x1 USB LS/FS transceiver IEEE 1588 Ethernet USB charger detect IEEE 1588 Timers 2 Human-Machine Interface (HMI) GPIO USB voltage regulator Figure 1. K63 block diagram Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 3 Freescale Semiconductor, Inc. Table of Contents 1 Ratings.................................................................................... 5 1.1 Thermal handling ratings................................................. 5 1.2 Moisture handling ratings................................................ 5 1.3 ESD handling ratings....................................................... 5 1.4 Voltage and current operating ratings............................. 5 2 General................................................................................... 6 2.1 AC electrical characteristics.............................................6 2.2 Nonswitching electrical specifications..............................6 2.2.1 Voltage and current operating requirements.....6 2.2.2 LVD and POR operating requirements............. 8 2.2.3 Voltage and current operating behaviors.......... 8 2.2.4 Power mode transition operating behaviors......10 2.2.5 Power consumption operating behaviors.......... 10 2.2.6 EMC radiated emissions operating behaviors...16 2.2.7 Designing with radiated emissions in mind....... 17 2.2.8 Capacitance attributes...................................... 17 2.3 Switching specifications...................................................17 2.3.1 Device clock specifications............................... 17 2.3.2 General switching specifications....................... 18 2.4 Thermal specifications..................................................... 19 2.4.1 Thermal operating requirements....................... 19 2.4.2 Thermal attributes............................................. 20 3 Peripheral operating requirements and behaviors.................. 21 3.1 Core modules.................................................................. 21 3.1.1 Debug trace timing specifications..................... 21 3.1.2 JTAG electricals................................................ 22 3.2 System modules.............................................................. 25 3.3 Clock modules................................................................. 25 3.3.1 MCG specifications........................................... 25 3.3.2 IRC48M specifications...................................... 27 3.3.3 Oscillator electrical specifications..................... 28 3.3.4 32 kHz oscillator electrical characteristics.........30 3.4 Memories and memory interfaces................................... 31 3.4.1 Flash (FTFE) electrical specifications............... 31 3.4.2 EzPort switching specifications......................... 33 3.4.3 Flexbus switching specifications....................... 34 3.5 Security and integrity modules........................................ 37 3.5.1 DryIce Tamper Electrical Specifications............37 3.6 Analog............................................................................. 38 3.6.1 ADC electrical specifications.............................38 4 Freescale Semiconductor, Inc. 4 5 6 7 8 3.6.2 CMP and 6-bit DAC electrical specifications.....42 3.6.3 12-bit DAC electrical characteristics................. 44 3.6.4 Voltage reference electrical specifications........ 47 3.7 Timers..............................................................................48 3.8 Communication interfaces............................................... 48 3.8.1 Ethernet switching specifications...................... 49 3.8.2 USB electrical specifications............................. 51 3.8.3 USB DCD electrical specifications.................... 51 3.8.4 USB VREG electrical specifications..................52 3.8.5 CAN switching specifications............................ 52 3.8.6 DSPI switching specifications (limited voltage range)................................................................52 3.8.7 DSPI switching specifications (full voltage range)................................................................54 3.8.8 Inter-Integrated Circuit Interface (I2C) timing....56 3.8.9 UART switching specifications.......................... 57 3.8.10 SDHC specifications......................................... 58 3.8.11 I2S switching specifications.............................. 58 Dimensions............................................................................. 64 4.1 Obtaining package dimensions....................................... 64 Pinout...................................................................................... 65 5.1 K63 Signal Multiplexing and Pin Assignments.................65 5.2 Unused analog interfaces................................................ 71 5.3 K63 Pinouts..................................................................... 71 Ordering parts......................................................................... 73 6.1 Determining valid orderable parts....................................73 Part identification.....................................................................74 7.1 Description.......................................................................74 7.2 Format............................................................................. 74 7.3 Fields............................................................................... 74 7.4 Example...........................................................................75 Terminology and guidelines.................................................... 75 8.1 Definitions........................................................................ 75 8.2 Examples......................................................................... 76 8.3 Typical-value conditions.................................................. 76 8.4 Relationship between ratings and operating requirements....................................................................77 8.5 Guidelines for ratings and operating requirements..........77 9 Revision History...................................................................... 78 Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Ratings 1 Ratings 1.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 Solder temperature, leaded — 245 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 1.4 Voltage and current operating ratings Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 5 Freescale Semiconductor, Inc. General Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 185 mA VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 5.5 V VAIO Analog1, –0.3 VDD + 0.3 V ID VDDA RESET, EXTAL, and XTAL input voltage Maximum current single pin limit (applies to all digital pins) Analog supply voltage –25 25 mA VDD – 0.3 VDD + 0.3 V VUSB0_DP USB0_DP input voltage –0.3 3.63 V VUSB0_DM USB0_DM input voltage –0.3 3.63 V USB regulator input –0.3 6.0 V RTC battery supply voltage –0.3 3.8 V VREGIN VBAT 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 2 General 2.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VIH Input Signal High Low 80% 50% 20% Midpoint1 Fall Time VIL Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 2. Input signal measurement reference 2.2 Nonswitching electrical specifications 6 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. General 2.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V -5 — mA VBAT VIH VIL RTC battery supply voltage Notes Input high voltage Input low voltage VHYS Input hysteresis IICDIO Digital pin (except Tamper pins) negative DC injection current — single pin 1 • VIN < VSS-0.3V IICAIO IICcont Analog2, EXTAL, and XTAL pin DC injection current — single pin 3 mA • VIN < VSS-0.3V (Negative current injection) -5 — • VIN > VDD+0.3V (Positive current injection) — +5 -25 — — +25 Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection • Positive current injection mA VODPU Open drain pullup voltage level VDD VDD V VRAM VDD voltage required to retain RAM 1.2 — V VPOR_VBAT — V VRFVBAT VBAT voltage required to retain the VBAT register file 4 1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|. 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins. 3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VINVAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents. 4. Open drain outputs must be pulled to VDD. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 7 Freescale Semiconductor, Inc. General 2.2.2 LVD and POR operating requirements Table 2. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — 80 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — 60 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs 1. Rising threshold is the sum of falling threshold and hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes 2.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH Description Min. Max. Unit Notes Output high voltage — high drive strength Table continues on the next page... 8 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. General Table 4. Voltage and current operating behaviors (continued) Symbol Description Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -8mA VDD – 0.5 — V Notes • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — V — 100 mA VBAT – 0.5 — V VBAT – 0.5 — V VBAT – 0.5 — V VBAT – 0.5 — V — 100 mA • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA — 0.5 V — 100 mA — 0.5 V — 0.5 V — 0.5 V — 0.5 V Output low current total for Tamper pins — 100 mA IIN Input leakage current (per pin) for full temperature range — 1 μA 1 IIN Input leakage current (per pin) at 25°C — 0.025 μA 1 IIN_Tamper Input leakage current (per Tamper pin) for full temperature range — 1 μA IIN_Tamper Input leakage current (per Tamper pin) at 25°C — 0.025 μA Hi-Z (off-state) leakage current (per pin) — 0.25 μA Hi-Z (off-state) leakage current (per Tamper pin) — 0.25 μA Output high voltage — low drive strength IOHT Output high current total for all ports VOH_Tamper Output high voltage — high drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -10mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -3mA Output high voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -0.6mA IOH_Tamper Output high current total for Tamper pins VOL Output low voltage — high drive strength Output low voltage — low drive strength IOLT Output low current total for all ports VOL_Tamper Output low voltage — high drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 10mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 3mA Output low voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 0.6mA IOL_Tamper IOZ IOZ_Tamper Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 9 Freescale Semiconductor, Inc. General Table 4. Voltage and current operating behaviors (continued) Symbol Description Min. Max. Unit Notes RPU Internal pullup resistors (except Tamper pins) 20 50 kΩ 2 RPD Internal pulldown resistors (except Tamper pins) 20 50 kΩ 3 1. Measured at VDD=3.6V 2. Measured at VDD supply voltage = VDD min and Vinput = VSS 3. Measured at VDD supply voltage = VDD min and Vinput = VDD 2.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • CPU and system clocks = 100 MHz Bus clock = 50 MHz FlexBus clock = 50 MHz Flash clock = 25 MHz Table 5. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • VLLS0 → RUN • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN 10 Freescale Semiconductor, Inc. Min. Max. Unit — 300 μs — 156 μs — 156 μs — 78 μs — 78 μs — 4.8 μs — 4.5 μs — 4.5 μs Notes Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. General 2.2.5 Power consumption operating behaviors NOTE The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma). Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Analog supply current Typ. Max. Unit Notes — — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8V • @ 3.0V IDD_RUN Min. 2 — 31.1 36.65 mA — 31 36.75 mA Run mode current — all peripheral clocks enabled, code executing from flash 3, 4 — 42.7 48.35 mA • @ 25°C — 40 41.60 mA • @ 105°C — 48.33 51.50 mA • @ 1.8V • @ 3.0V IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 17.9 — mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 6.9 — mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 1.0 — mA 6 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 1.7 — mA 7 — 0.678 — mA 8 • @ –40 to 25°C — 0.49 0.67 mA • @ 70°C — 1.18 2.11 mA • @ 105°C — 3.0 5.74 mA • @ –40 to 25°C — 57 139.31 μA • @ 70°C — 291 679.33 μA • @ 105°C — 927.3 1869.85 μA IDD_VLPW Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled IDD_STOP IDD_VLPS IDD_LLS Stop mode current at 3.0 V Very-low-power stop mode current at 3.0 V Low leakage stop mode current at 3.0 V • @ –40 to 25°C 9 — 5.8 10.48 μA — 26.7 47.99 μA Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 11 Freescale Semiconductor, Inc. General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit — 114.9 196.49 μA • @ –40 to 25°C — 4.4 5.54 μA • @ 70°C — 21 36.46 μA • @ 105°C — 90.2 150.17 μA • @ –40 to 25°C — 2.1 2.34 μA • @ 70°C — 6.84 10.36 μA • @ 105°C — 29.4 46.74 μA • @ –40 to 25°C — 0.817 0.86 μA • @ 70°C — 3.97 5.77 μA • @ 105°C — 21.3 33.99 μA — 0.520 0.60 μA — 3.67 5.52 μA — 21.2 33.68 μA — 0.339 0.412 μA — 3.36 4.2 μA — 20.3 29.9 μA — 0.16 0.19 μA — 0.55 0.72 μA — 2.5 3.68 μA — 0.18 0.21 μA — 0.66 0.86 μA — 2.92 4.30 μA • @ 70°C Notes • @ 105°C IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled • @ –40 to 25°C • @ 70°C • @ 105°C IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled • @ –40 to 25°C • @ 70°C • @ 105°C IDD_VBAT Average current with RTC and 32 kHz disabled • @ 1.8 V • @ –40 to 25°C • @ 70°C • @ 105°C • @ 3.0 V • @ –40 to 25°C • @ 70°C • @ 105°C IDD_VBAT Average current when CPU is not accessing RTC registers 12 Freescale Semiconductor, Inc. 10 Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. General Table 6. Power consumption operating behaviors Symbol Description Min. Typ. Max. Unit • @ –40 to 25°C — 0.59 0.70 μA • @ 70°C — 1.0 1.30 μA • @ 105°C — 3.0 4.42 μA • @ –40 to 25°C — 0.71 0.84 μA • @ 70°C — 1.22 1.59 μA • @ 105°C — 3.5 5.15 μA Notes • @ 1.8 V • @ 3.0 V 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 120 MHz core and system clock, 60 MHz bus, 30 Mhz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled. 3. 120 MHz core and system clock, 60 MHz bus clock, 30 MHz Flexbus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled. 4. Max values are measured with CPU executing DSP instructions. 5. 25 MHz core and system clock, 25 MHz bus clock, and 25 MHz FlexBus and flash clock. MCG configured for FEI mode. 6. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 7. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 9. Data reflects devices with 256 KB of RAM. 10. Includes 32kHz oscillator current and RTC operation. Table 7. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled. 56 56 56 56 56 56 µA IIREFSTEN32KHz 32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled. 52 52 52 52 52 52 µA IEREFSTEN4MHz External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled. 206 228 237 245 251 258 uA IEREFSTEN32KHz External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. 440 490 540 560 570 580 VLLS1 Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 13 Freescale Semiconductor, Inc. General Table 7. Low power mode peripheral adders — typical value (continued) Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 VLLS3 440 490 540 560 570 580 LLS 490 490 540 560 570 680 VLPS 510 560 560 560 610 680 STOP 510 560 560 560 610 680 48 Mhz internal reference clock 350 350 350 350 350 350 µA ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. 22 22 22 22 22 22 µA IRTC RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption. 432 357 388 475 532 810 nA IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. 66 66 66 66 66 66 µA OSCERCLK (4 MHz external crystal) 214 237 246 254 260 268 IBG Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode. 45 45 45 45 45 45 µA IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions. 42 42 42 42 42 42 µA I48MIRC MCGIRCLK (4 MHz internal reference clock) 2.2.5.1 nA Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFE 14 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. General Run Mode Current Consumption vs Core Frequency Temp (C)=25, VDD=3.6V, CACHE=ENABLE, Code Residence=Flash 40.00E-03 35.00E-03 Current Consumption on VDD (A) 30.00E-03 25.00E-03 All Peripheral Clk Gates 20.00E-03 ALLOFF ALLON 15.00E-03 10.00E-03 5.00E-03 000.00E+00 '1-1-1 '1-1-1 '1-1-1 '1-1-1 '1-1-1 '1-1-1 '1-1-2 '1-2-3 '1-2-4 '1-2-5 1 2 4 6.25 12.5 25 50 75 100 120 Clk Ratio Core-BusFlaxbus-Flash Core Freq (MHz) Figure 3. Run mode supply current vs. core frequency Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 15 Freescale Semiconductor, Inc. General Very Low Power Run (VLPR) Current vs Core Frequency Temp (C)=25, VDD=3.6V, CACHE=ENABLE, Code Residence=Flash 1.40E-03 1.20E-03 Current Consumption on VDD (A) 1.00E-03 800.00E-06 All Peripheral Clk Gates ALLOFF ALLON 600.00E-06 400.00E-06 200.00E-06 000.00E+00 '1-1-2 '1-1-1 '1-2-4 1 '1-1-4 '1-1-2 '1-2-4 2 '1-1-4 Clk Ratio Core-Bus-Flash Core Freq (MHz) 4 Figure 4. VLPR mode supply current vs. core frequency 2.2.6 EMC radiated emissions operating behaviors Table 8. EMC radiated emissions operating behaviors Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2 144 LQFP VRE1 Radiated emissions voltage, band 1 0.15–50 16 dBμV VRE2 Radiated emissions voltage, band 2 50–150 22 dBμV VRE3 Radiated emissions voltage, band 3 150–500 21 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 16 dBμV IEC level 0.15–1000 L — VRE_IEC 2, 3 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and 16 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. General Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 2.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 2.2.8 Capacitance attributes Table 9. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 2.3 Switching specifications 2.3.1 Device clock specifications Table 10. Device clock specifications Symbol Description Min. Max. Unit System and core clock — 120 MHz System and core clock when Full Speed USB in operation 20 — MHz Notes Normal run mode fSYS fENET System and core clock when ethernet in operation • 10 Mbps • 100 Mbps fBUS FB_CLK fFLASH MHz 5 — 50 — Bus clock — 60 MHz FlexBus clock — 50 MHz Flash clock — 25 MHz Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 17 Freescale Semiconductor, Inc. General Table 10. Device clock specifications (continued) Symbol Description fLPTMR LPTMR clock VLPR Min. Max. Unit — 25 MHz mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz FlexBus clock — 4 MHz fFLASH Flash clock — 0.8 MHz fERCLK External reference clock — 16 MHz LPTMR clock — 25 MHz fLPTMR_ERCLK LPTMR external reference clock — 16 MHz fFlexCAN_ERCLK FlexCAN external reference clock — 8 MHz FB_CLK fLPTMR_pin Notes fI2S_MCLK I2S master clock — 12.5 MHz fI2S_BCLK I2S bit clock — 4 MHz 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 2.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, IEEE 1588 timer, timers, and I2C signals. Table 11. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 3 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 50 — ns 3 External reset pulse width (digital glitch filter disabled) 100 — ns 3 2 — Bus clock cycles Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) - 3 V 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 8 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns — 18 ns • Slew enabled Table continues on the next page... 18 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. General Table 11. General switching specifications (continued) Symbol Description • 1.71 ≤ VDD ≤ 2.7V Min. Max. Unit — 12 ns Notes • 2.7 ≤ VDD ≤ 3.6V Port rise and fall time (high drive strength) - 5 V 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 6 ns • 2.7 ≤ VDD ≤ 3.6V — 4 ns • 1.71 ≤ VDD ≤ 2.7V — 24 ns • 2.7 ≤ VDD ≤ 3.6V — 14 ns • Slew enabled Port rise and fall time (low drive strength) - 3 V 5 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 12 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns • 1.71 ≤ VDD ≤ 2.7V — 24 ns • 2.7 ≤ VDD ≤ 3.6V — 16 ns • Slew enabled Port rise and fall time (low drive strength) - 5 V 5 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 17 ns • 2.7 ≤ VDD ≤ 3.6V — 10 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 20 ns • Slew enabled 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater synchronous and asynchronous timing must be met. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 25 pF load 5. 15 pF load 2.4 Thermal specifications Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 19 Freescale Semiconductor, Inc. General 2.4.1 Thermal operating requirements Table 12. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature1 –40 105 °C 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to determine TJ is: TJ = TA + RθJA x chip power dissipation 2.4.2 Thermal attributes Table 13. Thermal attributes Board type Symbol Description 144 LQFP 144 MAPBGA Unit Notes Single-layer (1s) RθJA Thermal 51 resistance, junction to ambient (natural convection) 38.1 °C/W 1 Four-layer (2s2p) Thermal 43 resistance, junction to ambient (natural convection) 21.6 °C/W 1 Single-layer (1s) RθJMA Thermal 42 resistance, junction to ambient (200 ft./ min. air speed) 30.8 °C/W 1 Four-layer (2s2p) RθJMA Thermal 36 resistance, junction to ambient (200 ft./ min. air speed) 18 °C/W 1 — RθJB Thermal resistance, junction to board 16.5 °C/W 2 — RθJC Thermal 11 resistance, junction to case 8.9 °C/W 3 — ΨJT Thermal 2 characterization parameter, junction to package top 0.9 °C/W 4 RθJA 20 Freescale Semiconductor, Inc. 30 Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 13. Thermal attributes Board type Symbol Description 144 LQFP 144 MAPBGA Unit Notes outside center (natural convection) 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 3 Peripheral operating requirements and behaviors 3.1 Core modules 3.1.1 Debug trace timing specifications Table 14. Debug trace operating behaviors Symbol Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 1.5 — ns Th Data hold 1 — ns Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 21 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TRACECLK Tr Tf Twh Twl Tcyc Figure 5. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Ts Th Th TRACE_D[3:0] Figure 6. Trace data specifications 3.1.2 JTAG electricals Table 15. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.6 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J2 TCLK cycle period J3 TCLK clock pulse width Table continues on the next page... 22 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 15. JTAG limited voltage range electricals (continued) Symbol Description Min. Max. Unit J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Table 16. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns J2 TCLK cycle period J3 TCLK clock pulse width J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 2.9 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 7. Test clock input timing Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 23 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 8. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 9. Test Access Port timing 24 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors TCLK J14 J13 TRST Figure 10. TRST timing 3.2 System modules There are no specifications necessary for the device's system modules. 3.3 Clock modules 3.3.1 MCG specifications Table 17. MCG specifications Symbol Description Min. Typ. Max. Unit Notes fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C — 32.768 — kHz fints_t Internal reference frequency (slow clock) — user trimmed 31.25 — 39.0625 kHz — 20 — µA Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 Iints Internal reference (slow clock) current Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — ± 0.5 ±2 %fdco Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.3 ±1 %fdco fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz Internal reference (fast clock) current — 25 — µA Iintf 1 ,2 1 Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 25 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 17. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — — 150 — — — 1 ms 48.0 — 120 MHz — 1060 — µA — 600 — µA 2.0 — 4.0 MHz Notes FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 3, 4 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) 5, 6 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fDCO = 48 MHz • fDCO = 98 MHz tfll_acquire FLL target frequency acquisition time ps 7 PLL fvco VCO operating frequency Ipll PLL operating current • PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 48) Ipll PLL operating current • PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 24) fpll_ref PLL reference frequency range Jcyc_pll PLL period jitter (RMS) Jacc_pll 8 8 9 • fvco = 48 MHz — 120 — ps • fvco = 120 MHz — 80 — ps PLL accumulated jitter over 1µs (RMS) 9 Table continues on the next page... 26 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 17. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit • fvco = 48 MHz — 1350 — ps • fvco = 120 MHz — 600 — ps Dlock Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % tpll_lock Lock detector detection time — 10-6 — 150 × + 1075(1/ fpll_ref) Notes s 10 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. 2 V <= VDD <= 3.6 V. 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Excludes any oscillator currents that are also consuming power while PLL is in operation. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 3.3.2 IRC48M specifications Table 18. IRC48M specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDD48M Supply current — 400 500 μA firc48m Internal reference frequency — 48 — MHz Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over full temperature • Regulator disable (USB_CLK_RECOVER_IRC_EN[REG_EN]=0) • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over full temperature • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) Notes 1 — ± 0.5 ± 1.5 — ± 0.5 ± 2.0 %firc48m 1 — ± 0.5 ± 1.5 %firc48m Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 27 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 18. IRC48M specifications (continued) Symbol Description Min. Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over 0 to 85 °C • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) Typ. Max. Unit 1 — ± 0.5 ± 1.0 %firc48m Δfirc48m_cl Closed loop total deviation of IRC48M frequency over voltage and temperature — — ± 0.1 %fhost Jcyc_irc48m Period Jitter (RMS) — 35 150 ps Startup time — 2 3 μs tirc48mst Notes 2 3 1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard deviation (mean ± 3 sigma) 2. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1). 3. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by setting USB_CLK_RECOVER_IRC_EN[IRC_EN]=1. 3.3.3 Oscillator electrical specifications 3.3.3.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high-gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Table continues on the next page... 28 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 19. Oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Notes Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) 5 Vpp 1. 2. 3. 4. 5. VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx and Cy can be provided by using either integrated capacitors or external components. When low-power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 29 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.3.3.2 Symbol Oscillator frequency specifications Table 20. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — highfrequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 50 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 3.3.4 32 kHz oscillator electrical characteristics 3.3.4.1 32 kHz oscillator DC electrical specifications Table 21. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V — 100 — MΩ RF Internal feedback resistor Table continues on the next page... 30 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 21. 32kHz oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 3.3.4.2 Symbol 32 kHz oscillator frequency specifications Table 22. 32 kHz oscillator frequency specifications Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms 1 fec_extal32 Externally provided input clock frequency — 32.768 — kHz 2 vec_extal32 Externally provided input clock amplitude 700 — VBAT mV 2, 3 fosc_lo tstart Description Notes 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VBAT. 3.4 Memories and memory interfaces 3.4.1 Flash (FTFE) electrical specifications This section describes the electrical characteristics of the FTFE module. 3.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 23. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit thvpgm8 thversscr Program Phrase high-voltage time — 7.5 18 μs Erase Flash Sector high-voltage time — 13 113 ms 1 — 416 3616 ms 1 thversblk512k Erase Flash Block high-voltage time for 512 KB Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Notes 31 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 1. Maximum time based on expectations at cycling end-of-life. 3.4.1.2 Symbol Flash timing specifications — commands Table 24. Flash command timing specifications Description Min. Typ. Max. Unit — — 1.8 ms Notes Read 1s Block execution time trd1blk512k • 512 KB program flash trd1sec4k Read 1s Section execution time (4 KB flash) — — 100 μs 1 tpgmchk Program Check execution time — — 95 μs 1 trdrsrc Read Resource execution time — — 40 μs 1 tpgm8 Program Phrase execution time — 90 150 μs Erase Flash Block execution time tersblk512k tersscr 2 • 512 KB program flash Erase Flash Sector execution time — 435 3700 ms — 15 115 ms — — 3.4 ms 2 Read 1s All Blocks execution time trd1alln trdonce • Program flash only devices Read Once execution time — — 30 μs Program Once execution time — 70 — μs tersall Erase All Blocks execution time — 870 7400 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tpgmonce 1 Swap Control execution time tswapx01 • control code 0x01 — 200 — μs tswapx02 • control code 0x02 — 70 150 μs tswapx04 • control code 0x04 — 70 150 μs tswapx08 • control code 0x08 — — 30 μs 1. Assumes 25MHz or greater flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3.4.1.3 Flash high voltage current behaviors Table 25. Flash high voltage current behaviors Symbol Description Min. Typ. Max. Unit IDD_PGM Average current adder during high voltage flash programming operation — 3.5 7.5 mA IDD_ERS Average current adder during high — 1.5 4.0 mA 32 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 25. Flash high voltage current behaviors Symbol Description Min. Typ. Max. Unit voltage flash erase operation 3.4.1.4 Symbol Reliability specifications Table 26. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years tnvmretp1k Data retention after up to 1 K cycles 20 100 — years nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 3.4.2 EzPort switching specifications Table 27. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V — fSYS/2 MHz EP1 EZP_CK frequency of operation (all commands except READ) EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — 18 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 33 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 11. EzPort Timing Diagram 3.4.3 Flexbus switching specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 28. Flexbus limited voltage range switching specifications Num Description Min. Max. Unit Notes Operating voltage 2.7 3.6 V Frequency of operation — FB_CLK MHz FB1 Clock period 20 — ns FB2 Address, data, and control output valid — 11.5 ns 1 FB3 Address, data, and control output hold 0.5 — ns 1 FB4 Data and FB_TA input setup 8.5 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 34 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors 2. Specification is valid for all FB_AD[31:0] and FB_TA. Table 29. Flexbus full voltage range switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V — FB_CLK MHz 1/FB_CLK — ns Frequency of operation Notes FB1 Clock period FB2 Address, data, and control output valid — 13.5 ns 1 FB3 Address, data, and control output hold 0 — ns 1 FB4 Data and FB_TA input setup 15.5 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 35 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors FB1 FB_CLK FB3 FB5 FB_A[Y] Address FB4 FB2 FB_D[X] Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 12. FlexBus read timing diagram 36 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 13. FlexBus write timing diagram 3.5 Security and integrity modules 3.5.1 DryIce Tamper Electrical Specifications Information about security-related modules is not included in this document and is available only after a nondisclosure agreement (NDA) has been signed. To request an NDA, please contact your local Freescale sales representative. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 37 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.6 Analog 3.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 30 and Table 31 are achievable on the differential pins ADCx_DP0, ADCx_DM0. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 3.6.1.1 16-bit ADC operating conditions Table 30. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage VREFL — VREFH V CADIN Input capacitance • 16-bit mode — 8 10 pF • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 RADIN RAS Input series resistance Notes kΩ Analog source resistance (external) 13-bit / 12-bit modes fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 18.0 MHz 4 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 4 Crate ADC conversion rate ≤ 13-bit modes No ADC hardware averaging 3 5 20.000 — 818.330 ksps Continuous conversions enabled, subsequent conversion time Table continues on the next page... 38 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 30. 16-bit ADC operating conditions (continued) Symbol Crate Description Conditions ADC conversion rate 16-bit mode Min. Typ.1 Max. Unit Notes 5 No ADC hardware averaging 37.037 — 461.467 ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Pad leakage due to input protection ZAS RAS ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT RADIN ADC SAR ENGINE VADIN VAS CAS RADIN INPUT PIN INPUT PIN RADIN RADIN INPUT PIN CADIN Figure 14. ADC input impedance equivalency diagram 3.6.1.2 16-bit ADC electrical characteristics Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 39 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 LSB4 VADIN = VDDA5 IDDA_ADC Supply current ADC asynchronous clock source fADACK Sample Time TUE DNL INL Total unadjusted error • 12-bit modes — ±4 ±6.8 • <12-bit modes — ±1.4 ±2.1 Differential nonlinearity • 12-bit modes — ±0.7 –1.1 to +1.9 • <12-bit modes — ±0.2 • 12-bit modes — ±1.0 • <12-bit modes — ±0.5 • 12-bit modes — –4 –5.4 • <12-bit modes — –1.4 –1.8 • 16-bit modes — –1 to 0 — • ≤13-bit modes — — ±0.5 Integral non-linearity EFS Full-scale error EQ Quantization error ENOB See Reference Manual chapter for sample times Effective number of bits –0.3 to 0.5 –2.7 to +1.9 –0.7 to +0.5 LSB4 16-bit differential mode 6 • Avg = 32 12.8 14.5 • Avg = 4 11.9 13.8 — — bits bits 16-bit single-ended mode • Avg = 32 • Avg = 4 SINAD THD Signal-to-noise plus distortion See ENOB Total harmonic distortion 16-bit differential mode • Avg = 32 12.2 13.9 11.4 13.1 — — 6.02 × ENOB + 1.76 bits bits dB dB — -94 7 — dB 16-bit single-ended mode • Avg = 32 SFDR Spurious free dynamic range — -85 82 95 16-bit differential mode • Avg = 32 — — dB — dB 7 Table continues on the next page... 40 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Conditions1 Symbol Description Min. Typ.2 78 90 16-bit single-ended mode Max. Unit Notes mV IIn = leakage current • Avg = 32 EIL Input leakage error IIn × RAS (refer to the MCU's voltage and current operating ratings) Temp sensor slope Across the full temperature range of the device VTEMP25 Temp sensor voltage 25 °C 1.55 1.62 1.69 mV/°C 8 706 716 726 mV 8 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. 8. ADC conversion clock < 3 MHz Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input 15.00 14.70 14.40 14.10 ENOB 13.80 13.50 13.20 12.90 12.60 Hardware Averaging Disabled Averaging of 4 samples Averaging of 8 samples Averaging of 32 samples 12.30 12.00 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 15. Typical ENOB vs. ADC_CLK for 16-bit differential mode Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 41 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input 14.00 13.75 13.50 13.25 13.00 ENOB 12.75 12.50 12.25 12.00 11.75 11.50 11.25 11.00 Averaging of 4 samples Averaging of 32 samples 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 16. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode 3.6.2 CMP and 6-bit DAC electrical specifications Table 32. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns — — 40 μs — 7 — μA Analog comparator initialization IDAC6b delay2 6-bit DAC current adder (enabled) INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 42 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 0.08 0.07 CMP Hystereris (V) 0.06 HYSTCTR Setting 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vin level (V) Figure 17. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0) Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 43 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0.18 0.16 0.14 CMP Hysteresis (V) 0.12 HYSTCTR Setting 0.1 00 01 10 11 0.08 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1) 3.6.3 12-bit DAC electrical characteristics 3.6.3.1 Symbol 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage Notes 1.13 3.6 V 1 CL Output load capacitance — 100 pF 2 IL Output load current — 1 mA 1. The DAC reference can be selected to be VDDA or VREFH. 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. 44 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors 3.6.3.2 Symbol 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 150 μA — — 700 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and highspeed mode Vdacoutl DAC output voltage range low — highspeed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C AC Offset aging coefficient — — 100 μV/yr Rop Output resistance (load = 3 kΩ) — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR 1. 2. 3. 4. 5. V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 CT Channel to channel cross talk BW 3dB bandwidth 6 dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 45 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device 8 6 4 DAC12 INL (LSB) 2 0 -2 -4 -6 -8 0 500 1000 1500 2000 2500 3000 3500 4000 Digital Code Figure 19. Typical INL error vs. digital code 46 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors 1.499 DAC12 Mid Level Code Voltage 1.4985 1.498 1.4975 1.497 1.4965 1.496 55 25 -40 85 105 125 Temperature °C Figure 20. Offset at half scale vs. temperature 3.6.4 Voltage reference electrical specifications Table 35. VREF full-range operating requirements Symbol Description Min. Max. Unit Notes VDDA Supply voltage 1.71 3.6 V — Operating temperature range of the device °C — 100 nF 1, 2 TA Temperature CL Output load capacitance 1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference. 2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of the device. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 47 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 36. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Notes Vout Voltage reference output with factory trim at nominal VDDA and temperature= 25 °C 1.192 1.195 1.198 V 1 Vout Voltage reference output with user trim at nominal VDDA and temperature= 25 °C 1.1945 1.195 1.1955 V 1 Vstep Voltage reference trim step — 0.5 — mV 1 Vtdrift Temperature drift (Vmax -Vmin across the full temperature range) — 2 15 mV 1 Ibg Bandgap only current — 60 80 µA 1 Ilp Low-power buffer current — 180 360 uA 1 Ihp High-power buffer current — 480 960 mA 1 µV 1, 2 — ΔVLOAD Load regulation • current = ± 1.0 mA Tstup Buffer startup time — 200 — — — 100 µs 35 ms 2 mV Tchop_osc_st Internal bandgap start-up delay with chop oscillator enabled up Vvdrift Voltage drift (Vmax -Vmin across the full voltage range) — 0.5 1 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 37. VREF limited-range operating requirements Symbol Description Min. Max. Unit Notes TA Temperature 0 50 °C — Table 38. VREF limited-range operating behaviors Symbol Vout Description Voltage reference output with factory trim Min. Max. Unit Notes 1.173 1.225 V — 3.7 Timers See General switching specifications. 3.8 Communication interfaces 48 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors 3.8.1 Ethernet switching specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 3.8.1.1 MII signal switching specifications The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices. Table 39. MII signal switching specifications Symbol — MII1 Description RXCLK frequency RXCLK pulse width high Min. Max. Unit — 25 MHz 35% 65% RXCLK period MII2 RXCLK pulse width low 35% 65% RXCLK period MII3 RXD[3:0], RXDV, RXER to RXCLK setup 5 — ns MII4 RXCLK to RXD[3:0], RXDV, RXER hold 5 — ns TXCLK frequency — 25 MHz 35% 65% TXCLK — MII5 TXCLK pulse width high period MII6 TXCLK pulse width low 35% 65% TXCLK period MII7 TXCLK to TXD[3:0], TXEN, TXER invalid 2 — ns MII8 TXCLK to TXD[3:0], TXEN, TXER valid — 25 ns MII6 MII5 TXCLK (input) MII8 MII7 TXD[n:0] Valid data TXEN Valid data TXER Valid data Figure 21. RMII/MII transmit signal timing diagram Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 49 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors MII2 MII1 MII3 MII4 RXCLK (input) RXD[n:0] Valid data RXDV Valid data RXER Valid data Figure 22. RMII/MII receive signal timing diagram 3.8.1.2 RMII signal switching specifications The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices. Table 40. RMII signal switching specifications Num — Description EXTAL frequency (RMII input clock RMII_CLK) Min. Max. Unit — 50 MHz RMII1 RMII_CLK pulse width high 35% 65% RMII_CLK period RMII2 RMII_CLK pulse width low 35% 65% RMII_CLK period RMII3 RXD[1:0], CRS_DV, RXER to RMII_CLK setup 4 — ns RMII4 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 — ns RMII7 RMII_CLK to TXD[1:0], TXEN invalid 4 — ns RMII8 RMII_CLK to TXD[1:0], TXEN valid — 15 ns 3.8.1.3 MDIO serial management timing specifications Table 41. MDIO serial management channel signal timing Num Characteristic Symbol Min Max Unit E10 MDC cycle time tMDC 400 — ns E11 MDC pulse width 40 60 % tMDC E12 MDC to MDIO output valid — 375 ns E13 MDC to MDIO output invalid 25 — ns E14 MDIO input to MDC setup 10 — ns E15 MDIO input to MDC hold 0 — ns 50 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors E10 E11 MDC (Output) E11 E12 E13 MDIO (Output) Valid Data E14 MDIO (Input) E15 Valid Data Figure 23. MDIO serial management channel timing diagram 3.8.2 USB electrical specifications The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-todate standards, visit usb.org. NOTE The MCGPLLCLK meets the USB jitter specifications for certification with the use of an external clock/crystal for both Device and Host modes. The MCGFLLCLK does not meet the USB jitter specifications for certification. The IRC48M meets the USB jitter specifications for certification in Device mode when the USB clock recovery mode is enabled. It does not meet the USB jitter specifications for certification in Host mode operation. 3.8.3 USB DCD electrical specifications Table 42. USB0 DCD electrical specifications Symbol Description Min. Typ. Max. Unit VDP_SRC USB_DP source voltage (up to 250 μA) 0.5 — 0.7 V Threshold voltage for logic high 0.8 — 2.0 V VLGC IDP_SRC USB_DP source current 7 10 13 μA IDM_SINK USB_DM sink current 50 100 150 μA Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 51 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 42. USB0 DCD electrical specifications (continued) Symbol Description Min. Typ. Max. Unit RDM_DWN D- pulldown resistance for data pin contact detect 14.25 — 24.8 kΩ VDAT_REF Data detect voltage 0.25 0.33 0.4 V 3.8.4 USB VREG electrical specifications Table 43. USB VREG electrical specifications Symbol Description Min. Typ.1 Max. Unit VREGIN Input supply voltage 2.7 — 5.5 V IDDon Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V — 125 186 μA IDDstby Quiescent current — Standby mode, load current equal zero — 1.1 10 μA IDDoff Quiescent current — Shutdown mode — 650 — nA — — 4 μA • VREGIN = 5.0 V and temperature=25 °C • Across operating voltage and temperature ILOADrun Maximum load current — Run mode — — 120 mA ILOADstby Maximum load current — Standby mode — — 1 mA VReg33out Regulator output voltage — Input supply (VREGIN) > 3.6 V 3 3.3 3.6 V • Run mode • Standby mode 2.1 2.8 3.6 V Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode 2.1 — 3.6 V COUT External output capacitor 1.76 2.2 8.16 μF ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA VReg33out Notes 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. 3.8.5 CAN switching specifications See General switching specifications. 52 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors 3.8.6 DSPI switching specifications (limited voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 44. Master mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 30 MHz 2 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DSPI_SCK (CPOL=0) DS7 DSPI_SIN DS4 DS8 First data DSPI_SOUT DS1 DS2 Data Last data DS5 First data DS6 Data Last data Figure 24. DSPI classic SPI timing — master mode Table 45. Slave mode DSPI timing (limited voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 2.7 3.6 V 151 MHz Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 53 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 45. Slave mode DSPI timing (limited voltage range) (continued) Num Description Min. Max. Unit 4 x tBUS — ns (tSCK/2) − 2 (tSCK/2) + 2 ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 10 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 14 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 14 ns 1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example, when bus clock is 60MHz, SPI clock should not be greater than 10MHz DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Last data Data DS14 First data Data Last data Figure 25. DSPI classic SPI timing — slave mode 3.8.7 DSPI switching specifications (full voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 46. Master mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 — 3.6 V 1 15 MHz Table continues on the next page... 54 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 46. Master mode DSPI timing (full voltage range) (continued) Num Description Min. Max. Unit 4 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 4 — ns 3 DS5 DSPI_SCK to DSPI_SOUT valid — 10 ns DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 — ns DS7 DSPI_SIN to DSPI_SCK input setup 21 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DSPI_SCK (CPOL=0) DS7 DSPI_SIN DS1 DS2 DS4 DS8 First data DSPI_SOUT Data Last data DS5 First data DS6 Data Last data Figure 26. DSPI classic SPI timing — master mode Table 47. Slave mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 1.71 3.6 V — 7.5 MHz 8 x tBUS — ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS11 DSPI_SCK to DSPI_SOUT valid — 23.5 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 4 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 21 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 19 ns Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 55 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Last data Data DS14 First data Data Last data Figure 27. DSPI classic SPI timing — slave mode 3.8.8 Inter-Integrated Circuit Interface (I2C) timing Table 48. I 2C timing Characteristic Symbol Standard Mode Fast Mode Minimum Maximum Minimum Maximum Unit SCL Clock Frequency fSCL 0 100 0 4001 kHz Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 4 — 0.6 — µs LOW period of the SCL clock tLOW 4.7 — 1.25 — µs HIGH period of the SCL clock tHIGH 4 — 0.6 — µs Set-up time for a repeated START condition tSU; STA 4.7 — 0.6 — µs Data hold time for I2C bus devices tHD; DAT 02 3.453 04 0.92 µs tSU; DAT 2505 — 10036 Data set-up time Rise time of SDA and SCL signals tr — 1000 — ns 7 300 ns 6 20 +0.1Cb Fall time of SDA and SCL signals tf — 300 20 +0.1Cb 300 ns Set-up time for STOP condition tSU; STO 4 — 0.6 — µs Bus free time between STOP and START condition tBUF 4.7 — 1.3 — µs Pulse width of spikes that must be suppressed by the input filter tSP N/A N/A 0 50 ns 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using the High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V. 2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines. 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal. 4. Input signal Slew = 10 ns and Output Load = 50 pF 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 56 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors 6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released. 7. Cb = total capacitance of the one bus line in pF. Table 49. I 2C 1 Mbps timing Characteristic Symbol Minimum Maximum Unit MHz SCL Clock Frequency fSCL 0 11 Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 0.26 — LOW period of the SCL clock tLOW 0.5 — HIGH period of the SCL clock tHIGH 0.26 — Set-up time for a repeated START condition tSU; STA 0.26 — µs Data hold time for I2C bus devices tHD; DAT 0 — µs Data set-up time tSU; DAT 50 Rise time of SDA and SCL signals tr µs µs µs — ns 20 +0.1Cb 2 120 ns 2 120 ns Fall time of SDA and SCL signals tf 20 +0.1Cb Set-up time for STOP condition tSU; STO 0.26 — µs Bus free time between STOP and START condition tBUF 0.5 — µs Pulse width of spikes that must be suppressed by the input filter tSP 0 50 ns 1. The maximum SCL clock frequency of 1 Mbps can support maximum bus loading when using the High drive pins across the full voltage range. 2. Cb = total capacitance of the one bus line in pF. SDA tf tLOW tSU; DAT tr tf tHD; STA tSP tr tBUF SCL S HD; STA tHD; DAT tHIGH tSU; STA SR tSU; STO P S Figure 28. Timing definition for devices on the I2C bus 3.8.9 UART switching specifications See General switching specifications. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 57 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.8.10 SDHC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Table 50. SDHC switching specifications Num Symbol Description Min. Max. Unit Operating voltage 1.71 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\50 MHz fpp Clock frequency (MMC full speed\high speed) 0 20\50 MHz fOD Clock frequency (identification mode) 0 400 kHz SD2 tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 8.3 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tISU SDHC input setup time 5.5 — ns SD8 tIH SDHC input hold time 0 — ns SD3 SD2 SD1 SDHC_CLK SD6 Output SDHC_CMD Output SDHC_DAT[3:0] SD7 SD8 Input SDHC_CMD Input SDHC_DAT[3:0] Figure 29. SDHC timing 58 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors 3.8.11 I2S switching specifications This section provides the AC timings for the I2S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below. Table 51. I2S master mode timing Num Description Min. Max. Unit Operating voltage 2.7 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_BCLK cycle time 80 — ns S4 I2S_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_BCLK to I2S_FS output valid — 15 ns S6 I2S_BCLK to I2S_FS output invalid 0 — ns S7 I2S_BCLK to I2S_TXD valid — 15 ns S8 I2S_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_FS input setup before I2S_BCLK 17 — ns S10 I2S_RXD/I2S_FS input hold after I2S_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_BCLK (output) S4 S4 S6 S5 I2S_FS (output) S10 S9 I2S_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 30. I2S timing — master mode Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 59 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 52. I2S slave mode timing Num Description Min. Max. Unit Operating voltage 2.7 3.6 V S11 I2S_BCLK cycle time (input) 80 — ns S12 I2S_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_FS input setup before I2S_BCLK 5 — ns S14 I2S_FS input hold after I2S_BCLK 2 — ns S15 I2S_BCLK to I2S_TXD/I2S_FS output valid — 19.5 ns S16 I2S_BCLK to I2S_TXD/I2S_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_BCLK 5 — ns S18 I2S_RXD hold after I2S_BCLK 2 — ns 21 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_BCLK (input) S12 S15 S16 I2S_FS (output) S13 I2S_FS (input) S14 S15 S19 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 31. I2S timing — slave modes 3.8.11.1 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 53. I2S/SAI master mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period Table continues on the next page... 60 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 53. I2S/SAI master mode timing (continued) Num. Characteristic Min. Max. Unit S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid -1 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 22.5 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 32. I2S/SAI timing — master modes Table 54. I2S/SAI slave mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 7 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 61 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 54. I2S/SAI slave mode timing (continued) Num. Characteristic Min. Max. Unit S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 25.5 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 3 — ns S17 I2S_RXD setup before I2S_RX_BCLK 5.8 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 25 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 33. I2S/SAI timing — slave modes 3.8.11.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 55. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period Table continues on the next page... 62 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Peripheral operating requirements and behaviors Table 55. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued) Num. Characteristic Min. Max. Unit S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 45 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 34. I2S/SAI timing — master modes Table 56. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 11 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — ns Table continues on the next page... Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 63 Freescale Semiconductor, Inc. Dimensions Table 56. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued) Num. Characteristic Min. Max. Unit S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 11 — ns — 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 35. I2S/SAI timing — slave modes 4 Dimensions 4.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 144-pin LQFP 98ASS23177W 144-pin MAPBGA 98ASA00222D 64 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Pinout 5 Pinout 5.1 K63 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 144 144 LQFP MAP BGA Pin Name Default ALT0 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 — M3 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 — L3 DAC0_OUT/ DAC0_OUT/ DAC0_OUT/ CMP1_IN3/ CMP1_IN3/ CMP1_IN3/ ADC0_SE23 ADC0_SE23 ADC0_SE23 — L4 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 — J4 TAMPER3 TAMPER3 TAMPER3 — H4 TAMPER4 TAMPER4 TAMPER4 — M4 TAMPER5 TAMPER5 TAMPER5 — M5 NC NC NC — A10 NC NC NC — B10 NC NC NC — C10 NC NC NC 1 D3 PTE0 ADC1_SE4a ADC1_SE4a PTE0 SPI1_PCS1 UART1_TX SDHC0_D1 TRACE_ CLKOUT I2C1_SDA RTC_ CLKOUT 2 D2 PTE1/ LLWU_P0 ADC1_SE5a ADC1_SE5a PTE1/ LLWU_P0 SPI1_SOUT UART1_RX SDHC0_D0 TRACE_D3 I2C1_SCL SPI1_SIN 3 D1 PTE2/ LLWU_P1 ADC0_DP2/ ADC0_DP2/ PTE2/ ADC1_SE6a ADC1_SE6a LLWU_P1 SPI1_SCK UART1_ CTS_b SDHC0_ DCLK TRACE_D2 4 E4 PTE3 ADC0_DM2/ ADC0_DM2/ PTE3 ADC1_SE7a ADC1_SE7a SPI1_SIN UART1_ RTS_b SDHC0_ CMD TRACE_D1 5 E5 VDD VDD VDD 6 F6 VSS VSS VSS 7 E3 PTE4/ LLWU_P2 DISABLED PTE4/ LLWU_P2 SPI1_PCS0 UART3_TX SDHC0_D3 TRACE_D0 8 E2 PTE5 DISABLED PTE5 SPI1_PCS2 UART3_RX SDHC0_D2 FTM3_CH0 9 E1 PTE6 DISABLED PTE6 SPI1_PCS3 UART3_ CTS_b I2S0_MCLK FTM3_CH1 Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. EzPort SPI1_SOUT USB_SOF_ OUT 65 Freescale Semiconductor, Inc. Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ALT1 10 F4 PTE7 DISABLED PTE7 11 F3 PTE8 DISABLED PTE8 12 F2 PTE9 DISABLED PTE9 13 F1 PTE10 DISABLED 14 G4 PTE11 15 G3 16 ALT2 ALT3 ALT4 ALT5 ALT6 UART3_ RTS_b I2S0_RXD0 FTM3_CH2 I2S0_RXD1 UART5_TX I2S0_RX_FS FTM3_CH3 I2S0_TXD1 UART5_RX I2S0_RX_ BCLK FTM3_CH4 PTE10 UART5_ CTS_b I2S0_TXD0 FTM3_CH5 DISABLED PTE11 UART5_ RTS_b I2S0_TX_FS FTM3_CH6 PTE12 DISABLED PTE12 I2S0_TX_ BCLK FTM3_CH7 E6 VDD VDD VDD 17 F7 VSS VSS VSS 18 H3 VSS VSS VSS 19 H1 USB0_DP USB0_DP USB0_DP 20 H2 USB0_DM USB0_DM USB0_DM 21 G1 VOUT33 VOUT33 VOUT33 22 G2 VREGIN VREGIN VREGIN 23 J1 ADC0_DP1 ADC0_DP1 ADC0_DP1 24 J2 ADC0_DM1 ADC0_DM1 ADC0_DM1 25 K1 ADC1_DP1 ADC1_DP1 ADC1_DP1 26 K2 ADC1_DM1 ADC1_DM1 ADC1_DM1 27 L1 ADC0_DP0/ ADC1_DP3 ADC0_DP0/ ADC1_DP3 ADC0_DP0/ ADC1_DP3 28 L2 ADC0_DM0/ ADC0_DM0/ ADC0_DM0/ ADC1_DM3 ADC1_DM3 ADC1_DM3 29 M1 ADC1_DP0/ ADC0_DP3 30 M2 ADC1_DM0/ ADC1_DM0/ ADC1_DM0/ ADC0_DM3 ADC0_DM3 ADC0_DM3 31 H5 VDDA VDDA VDDA 32 G5 VREFH VREFH VREFH 33 G6 VREFL VREFL VREFL 34 H6 VSSA VSSA VSSA 35 K3 ADC1_SE16/ ADC1_SE16/ ADC1_SE16/ CMP2_IN2/ CMP2_IN2/ CMP2_IN2/ ADC0_SE22 ADC0_SE22 ADC0_SE22 36 J3 ADC0_SE16/ ADC0_SE16/ ADC0_SE16/ CMP1_IN2/ CMP1_IN2/ CMP1_IN2/ ADC0_SE21 ADC0_SE21 ADC0_SE21 37 L5 TAMPER0/ TAMPER0/ TAMPER0/ RTC_ RTC_ RTC_ WAKEUP_B WAKEUP_B WAKEUP_B ADC1_DP0/ ADC0_DP3 66 Freescale Semiconductor, Inc. ALT7 EzPort ADC1_DP0/ ADC0_DP3 Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort 38 K5 TAMPER1 TAMPER1 TAMPER1 39 K4 TAMPER2 TAMPER2 TAMPER2 40 M7 XTAL32 XTAL32 XTAL32 41 M6 EXTAL32 EXTAL32 EXTAL32 42 L6 VBAT VBAT VBAT 43 — VDD VDD VDD 44 — VSS VSS VSS 45 — PTE24 ADC0_SE17 ADC0_SE17 PTE24 UART4_TX I2C0_SCL EWM_OUT_ b 46 — PTE25 ADC0_SE18 ADC0_SE18 PTE25 UART4_RX I2C0_SDA EWM_IN 47 — PTE26 DISABLED PTE26 ENET_ UART4_ 1588_CLKIN CTS_b 48 — PTE27 DISABLED PTE27 UART4_ RTS_b 49 — PTE28 DISABLED PTE28 50 J5 PTA0 JTAG_TCLK/ SWD_CLK/ EZP_CLK PTA0 UART0_ CTS_b/ UART0_ COL_b FTM0_CH5 JTAG_TCLK/ EZP_CLK SWD_CLK 51 J6 PTA1 JTAG_TDI/ EZP_DI PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI 52 K6 PTA2 JTAG_TDO/ TRACE_ SWO/ EZP_DO PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ TRACE_ SWO EZP_DO 53 K7 PTA3 JTAG_TMS/ SWD_DIO PTA3 UART0_ RTS_b FTM0_CH0 JTAG_TMS/ SWD_DIO 54 L7 PTA4/ LLWU_P3 NMI_b/ EZP_CS_b PTA4/ LLWU_P3 FTM0_CH1 NMI_b 55 M8 PTA5 DISABLED PTA5 USB_CLKIN FTM0_CH2 56 E7 VDD VDD VDD 57 G7 VSS VSS VSS 58 J7 PTA6 DISABLED PTA6 FTM0_CH3 TRACE_ CLKOUT 59 J8 PTA7 ADC0_SE10 ADC0_SE10 PTA7 FTM0_CH4 TRACE_D3 60 K8 PTA8 ADC0_SE11 ADC0_SE11 PTA8 FTM1_CH0 61 L8 PTA9 DISABLED PTA9 FTM1_CH1 62 M9 PTA10 DISABLED PTA10 FTM2_CH0 Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. RTC_ CLKOUT RMII0_ RXER/ MII0_RXER CMP2_OUT I2S0_TX_ BCLK USB_CLKIN EZP_CS_b JTAG_ TRST_b FTM1_QD_ PHA TRACE_D2 MII0_RXD3 FTM1_QD_ PHB TRACE_D1 MII0_RXD2 FTM2_QD_ PHA TRACE_D0 67 Freescale Semiconductor, Inc. Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ALT1 63 L9 PTA11 DISABLED 64 K9 PTA12 CMP2_IN0 CMP2_IN0 PTA12 65 J9 PTA13/ LLWU_P4 CMP2_IN1 CMP2_IN1 66 L10 PTA14 67 L11 68 ALT2 ALT4 ALT5 ALT6 ALT7 FTM2_CH1 MII0_RXCLK I2C2_SDA FTM2_QD_ PHB CAN0_TX FTM1_CH0 RMII0_ RXD1/ MII0_RXD1 I2C2_SCL I2S0_TXD0 PTA13/ LLWU_P4 CAN0_RX FTM1_CH1 RMII0_ RXD0/ MII0_RXD0 I2C2_SDA I2S0_TX_FS FTM1_QD_ PHB DISABLED PTA14 SPI0_PCS0 UART0_TX RMII0_CRS_ I2C2_SCL DV/ MII0_RXDV I2S0_RX_ BCLK PTA15 DISABLED PTA15 SPI0_SCK UART0_RX RMII0_ TXEN/ MII0_TXEN I2S0_RXD0 K10 PTA16 DISABLED PTA16 SPI0_SOUT UART0_ CTS_b/ UART0_ COL_b RMII0_ TXD0/ MII0_TXD0 I2S0_RX_FS I2S0_RXD1 69 K11 PTA17 ADC1_SE17 ADC1_SE17 PTA17 SPI0_SIN UART0_ RTS_b RMII0_ TXD1/ MII0_TXD1 I2S0_MCLK 70 E8 VDD VDD VDD 71 G8 VSS VSS VSS 72 M12 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_ CLKIN0 73 M11 PTA19 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_ CLKIN1 LPTMR0_ ALT1 74 L12 RESET_b RESET_b RESET_b 75 K12 PTA24 DISABLED PTA24 MII0_TXD2 FB_A29 76 J12 PTA25 DISABLED PTA25 MII0_TXCLK FB_A28 77 J11 PTA26 DISABLED PTA26 MII0_TXD3 FB_A27 78 J10 PTA27 DISABLED PTA27 MII0_CRS FB_A26 79 H12 PTA28 DISABLED PTA28 MII0_TXER FB_A25 80 H11 PTA29 DISABLED PTA29 MII0_COL FB_A24 81 H10 PTB0/ LLWU_P5 ADC0_SE8/ ADC1_SE8 ADC0_SE8/ ADC1_SE8 PTB0/ LLWU_P5 I2C0_SCL FTM1_CH0 RMII0_ MDIO/ MII0_MDIO FTM1_QD_ PHA 82 H9 ADC0_SE9/ ADC1_SE9 ADC0_SE9/ ADC1_SE9 PTB1 I2C0_SDA FTM1_CH1 RMII0_MDC/ MII0_MDC FTM1_QD_ PHB 83 G12 PTB2 ADC0_SE12 ADC0_SE12 PTB2 I2C0_SCL UART0_ RTS_b ENET0_ 1588_TMR0 FTM0_FLT3 84 G11 PTB3 ADC0_SE13 ADC0_SE13 PTB3 I2C0_SDA UART0_ CTS_b/ UART0_ COL_b ENET0_ 1588_TMR1 FTM0_FLT0 PTB1 68 Freescale Semiconductor, Inc. PTA11 ALT3 EzPort FTM1_QD_ PHA I2S0_TXD1 Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 85 G10 PTB4 ADC1_SE10 ADC1_SE10 PTB4 ENET0_ 1588_TMR2 FTM1_FLT0 86 G9 PTB5 ADC1_SE11 ADC1_SE11 PTB5 ENET0_ 1588_TMR3 FTM2_FLT0 87 F12 PTB6 ADC1_SE12 ADC1_SE12 PTB6 88 F11 PTB7 ADC1_SE13 ADC1_SE13 PTB7 89 F10 PTB8 DISABLED PTB8 90 F9 PTB9 DISABLED PTB9 91 E12 PTB10 92 E11 93 H7 94 ALT7 EzPort FB_AD23 FB_AD22 UART3_ RTS_b FB_AD21 SPI1_PCS1 UART3_ CTS_b FB_AD20 ADC1_SE14 ADC1_SE14 PTB10 SPI1_PCS0 UART3_RX FB_AD19 FTM0_FLT1 PTB11 ADC1_SE15 ADC1_SE15 PTB11 SPI1_SCK UART3_TX FB_AD18 FTM0_FLT2 VSS VSS VSS F5 VDD VDD VDD 95 E10 PTB16 DISABLED PTB16 SPI1_SOUT UART0_RX FTM_ CLKIN0 FB_AD17 EWM_IN 96 E9 PTB17 DISABLED PTB17 SPI1_SIN UART0_TX FTM_ CLKIN1 FB_AD16 EWM_OUT_ b 97 D12 PTB18 DISABLED PTB18 CAN0_TX FTM2_CH0 I2S0_TX_ BCLK FB_AD15 FTM2_QD_ PHA 98 D11 PTB19 DISABLED PTB19 CAN0_RX FTM2_CH1 I2S0_TX_FS FB_OE_b FTM2_QD_ PHB 99 D10 PTB20 DISABLED PTB20 SPI2_PCS0 FB_AD31 CMP0_OUT 100 D9 PTB21 DISABLED PTB21 SPI2_SCK FB_AD30 CMP1_OUT 101 C12 PTB22 DISABLED PTB22 SPI2_SOUT FB_AD29 CMP2_OUT 102 C11 PTB23 DISABLED PTB23 SPI2_SIN SPI0_PCS5 103 B12 PTC0 ADC0_SE14 ADC0_SE14 PTC0 SPI0_PCS4 PDB0_ EXTRG USB_SOF_ OUT FB_AD14 I2S0_TXD1 104 B11 PTC1/ LLWU_P6 ADC0_SE15 ADC0_SE15 PTC1/ LLWU_P6 SPI0_PCS3 UART1_ RTS_b FTM0_CH0 FB_AD13 I2S0_TXD0 105 A12 PTC2 ADC0_SE4b/ ADC0_SE4b/ PTC2 CMP1_IN0 CMP1_IN0 SPI0_PCS2 UART1_ CTS_b FTM0_CH1 FB_AD12 I2S0_TX_FS 106 A11 PTC3/ LLWU_P7 CMP1_IN1 CMP1_IN1 PTC3/ LLWU_P7 SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT I2S0_TX_ BCLK 107 H8 VSS VSS VSS 108 — VDD VDD VDD 109 A9 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11 CMP1_OUT 110 D8 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ ALT2 I2S0_RXD0 FB_AD10 CMP0_OUT 111 C8 PTC6/ LLWU_P10 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 SPI0_SOUT PDB0_ EXTRG I2S0_RX_ BCLK FB_AD9 I2S0_MCLK 112 B8 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN USB_SOF_ OUT I2S0_RX_FS FB_AD8 Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. FB_AD28 FTM0_CH2 69 Freescale Semiconductor, Inc. Pinout 144 144 LQFP MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 113 A8 PTC8 ADC1_SE4b/ ADC1_SE4b/ PTC8 CMP0_IN2 CMP0_IN2 FTM3_CH4 I2S0_MCLK FB_AD7 114 D7 PTC9 ADC1_SE5b/ ADC1_SE5b/ PTC9 CMP0_IN3 CMP0_IN3 FTM3_CH5 I2S0_RX_ BCLK FB_AD6 115 C7 PTC10 ADC1_SE6b ADC1_SE6b PTC10 I2C1_SCL FTM3_CH6 I2S0_RX_FS FB_AD5 116 B7 PTC11/ LLWU_P11 ADC1_SE7b ADC1_SE7b PTC11/ LLWU_P11 I2C1_SDA FTM3_CH7 I2S0_RXD1 117 A7 PTC12 DISABLED PTC12 UART4_ RTS_b FB_AD27 118 D6 PTC13 DISABLED PTC13 UART4_ CTS_b FB_AD26 119 C6 PTC14 DISABLED PTC14 UART4_RX FB_AD25 120 B6 PTC15 DISABLED PTC15 UART4_TX FB_AD24 121 — VSS VSS VSS 122 — VDD VDD VDD 123 A6 PTC16 DISABLED PTC16 UART3_RX ENET0_ 1588_TMR0 FB_CS5_b/ FB_TSIZ1/ FB_BE23_ 16_BLS15_ 8_b 124 D5 PTC17 DISABLED PTC17 UART3_TX ENET0_ 1588_TMR1 FB_CS4_b/ FB_TSIZ0/ FB_BE31_ 24_BLS7_0_ b 125 C5 PTC18 DISABLED PTC18 UART3_ RTS_b ENET0_ 1588_TMR2 FB_TBST_b/ FB_CS2_b/ FB_BE15_8_ BLS23_16_b 126 B5 PTC19 DISABLED PTC19 UART3_ CTS_b ENET0_ 1588_TMR3 FB_CS3_b/ FB_TA_b FB_BE7_0_ BLS31_24_b 127 A5 PTD0/ LLWU_P12 DISABLED PTD0/ LLWU_P12 SPI0_PCS0 UART2_ RTS_b FTM3_CH0 FB_ALE/ FB_CS1_b/ FB_TS_b 128 D4 PTD1 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK UART2_ CTS_b FTM3_CH1 FB_CS0_b 129 C4 PTD2/ LLWU_P13 DISABLED PTD2/ LLWU_P13 SPI0_SOUT UART2_RX FTM3_CH2 FB_AD4 I2C0_SCL 130 B4 PTD3 DISABLED PTD3 SPI0_SIN UART2_TX FTM3_CH3 FB_AD3 I2C0_SDA 131 A4 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 SPI0_PCS1 UART0_ RTS_b FTM0_CH4 FB_AD2 EWM_IN 132 A3 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_ CTS_b/ UART0_ COL_b FTM0_CH5 FB_AD1 EWM_OUT_ SPI1_SCK b 70 Freescale Semiconductor, Inc. EzPort FTM2_FLT0 FB_RW_b FTM3_FLT0 SPI1_PCS0 Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Pinout 144 144 LQFP MAP BGA Pin Name PTD6/ LLWU_P15 Default ALT0 ALT1 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 ALT2 ALT3 ALT4 SPI0_PCS3 UART0_RX FTM0_CH6 FTM0_CH7 ALT5 FB_AD0 ALT6 ALT7 FTM0_FLT0 SPI1_SOUT FTM0_FLT1 SPI1_SIN 133 A2 134 M10 VSS VSS VSS 135 F8 VDD VDD VDD 136 A1 PTD7 DISABLED PTD7 CMT_IRO UART0_TX 137 C9 PTD8 DISABLED PTD8 I2C0_SCL UART5_RX FB_A16 138 B9 PTD9 DISABLED PTD9 I2C0_SDA UART5_TX FB_A17 139 B3 PTD10 DISABLED PTD10 UART5_ RTS_b FB_A18 140 B2 PTD11 DISABLED PTD11 SPI2_PCS0 UART5_ CTS_b SDHC0_ CLKIN FB_A19 141 B1 PTD12 DISABLED PTD12 SPI2_SCK FTM3_FLT0 SDHC0_D4 FB_A20 142 C3 PTD13 DISABLED PTD13 SPI2_SOUT SDHC0_D5 FB_A21 143 C2 PTD14 DISABLED PTD14 SPI2_SIN SDHC0_D6 FB_A22 144 C1 PTD15 DISABLED PTD15 SPI2_PCS1 SDHC0_D7 FB_A23 EzPort 5.2 Unused analog interfaces Table 57. Unused analog interfaces Module name Pins Recommendation if unused ADC ADC0_DP1, ADC0_DM1, ADC1_DP1, Ground ADC1_DM1, ADC0_DP0/ADC1_DP3, ADC0_DM0/ADC1_DM3, ADC1_DP0/ ADC0_DP3, ADC1_DM0/ADC0_DM3, ADC1_SE16/ADC0_SE22, ADC0_SE16/ADC0_SE21, ADC1_SE18 DAC 1 DAC0_OUT, DAC1_OUT USB VREGIN, USB0_GND, USB0_DM, USB0_DP VOUT332 Float Connect VREGIN and VOUT33 together and tie to ground through a 10 kΩ resistor. Do not tie directly to ground, as this causes a latch-up risk. Float 1. Unused DAC signals do not apply to all parts. See the Pinout section for details. 2. USB0_VBUS and USB0_GND are board level signals Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 71 Freescale Semiconductor, Inc. Pinout 5.3 K63 Pinouts PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 111 110 109 PTC13 PTC8 PTC14 118 112 PTC15 119 PTC9 VSS 120 113 VDD 121 PTC10 PTC16 122 115 PTC17 123 114 PTC18 124 PTC12 PTC19 125 PTC11/LLWU_P11 PTD0/LLWU_P12 126 116 PTD1 127 117 PTD2/LLWU_P13 VSS 134 128 VDD 135 PTD3 PTD7 136 129 PTD8 137 PTD4/LLWU_P14 PTD9 138 131 PTD10 139 130 PTD11 140 PTD6/LLWU_P15 PTD12 141 PTD5 PTD13 142 132 PTD14 143 133 PTD15 144 The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. PTE0 1 108 VDD PTE1/LLWU_P0 2 107 VSS PTE2/LLWU_P1 3 106 PTC3/LLWU_P7 PTE3 4 105 PTC2 VDD 5 104 PTC1/LLWU_P6 VSS 6 103 PTC0 PTE4/LLWU_P2 7 102 PTB23 PTE5 8 101 PTB22 PTE6 9 100 PTB21 PTE7 10 99 PTB20 PTE8 11 98 PTB19 PTE9 12 97 PTB18 PTE10 13 96 PTB17 PTE11 14 95 PTB16 PTE12 15 94 VDD VDD 16 93 VSS VSS 17 92 PTB11 VSS 18 91 PTB10 USB0_DP 19 90 PTB9 USB0_DM 20 89 PTB8 VOUT33 21 88 PTB7 VREGIN 22 87 PTB6 60 61 62 63 64 65 66 67 68 69 70 71 72 PTA8 PTA9 PTA10 PTA11 PTA12 PTA13/LLWU_P4 PTA14 PTA15 PTA16 PTA17 VDD VSS PTA18 58 PTA6 59 57 VSS PTA7 56 VDD PTA19 55 RESET_b 73 PTA5 74 36 54 35 PTA4/LLWU_P3 ADC1_SE16/CMP2_IN2/ADC0_SE22 ADC0_SE16/CMP1_IN2/ADC0_SE21 53 PTA24 PTA3 75 52 34 PTA2 PTA25 VSSA 51 PTA26 76 50 77 33 PTA1 32 VREFL PTA0 VREFH 49 PTA27 PTE28 78 48 31 PTE27 PTA28 VDDA 47 79 PTE26 30 46 PTA29 ADC1_DM0/ADC0_DM3 PTE25 80 45 29 PTE24 PTB0/LLWU_P5 ADC1_DP0/ADC0_DP3 44 81 VSS 28 43 PTB1 ADC0_DM0/ADC1_DM3 VDD 82 42 27 VBAT PTB2 ADC0_DP0/ADC1_DP3 41 83 EXTAL32 26 40 PTB3 ADC1_DM1 XTAL32 84 39 25 TAMPER2 PTB4 ADC1_DP1 38 PTB5 85 37 86 24 TAMPER1 23 TAMPER0/RTC_WAKEUP_B ADC0_DP1 ADC0_DM1 Figure 36. K63 144 LQFP Pinout Diagram 72 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Ordering parts 1 2 3 4 5 6 7 8 9 10 11 12 A PTD7 PTD6/ LLWU_P15 PTD5 PTD4/ LLWU_P14 PTD0/ LLWU_P12 PTC16 PTC12 PTC8 PTC4/ LLWU_P8 NC PTC3/ LLWU_P7 PTC2 A B PTD12 PTD11 PTD10 PTD3 PTC19 PTC15 PTC11/ LLWU_P11 PTC7 PTD9 NC PTC1/ LLWU_P6 PTC0 B C PTD15 PTD14 PTD13 PTD2/ LLWU_P13 PTC18 PTC14 PTC10 PTC6/ LLWU_P10 PTD8 NC PTB23 PTB22 C D PTE2/ LLWU_P1 PTE1/ LLWU_P0 PTE0 PTD1 PTC17 PTC13 PTC9 PTC5/ LLWU_P9 PTB21 PTB20 PTB19 PTB18 D E PTE6 PTE5 PTE4/ LLWU_P2 PTE3 VDD VDD VDD VDD PTB17 PTB16 PTB11 PTB10 E F PTE10 PTE9 PTE8 PTE7 VDD VSS VSS VDD PTB9 PTB8 PTB7 PTB6 F G VOUT33 VREGIN PTE12 PTE11 VREFH VREFL VSS VSS PTB5 PTB4 PTB3 PTB2 G H USB0_DP USB0_DM VSS TAMPER4 VDDA VSSA VSS VSS PTB1 PTB0/ LLWU_P5 PTA29 PTA28 H J ADC0_DP1 ADC0_DM1 ADC0_SE16/ CMP1_IN2/ ADC0_SE21 TAMPER3 PTA0 PTA1 PTA6 PTA7 PTA13/ LLWU_P4 PTA27 PTA26 PTA25 J K ADC1_DP1 ADC1_DM1 ADC1_SE16/ CMP2_IN2/ ADC0_SE22 TAMPER2 TAMPER1 PTA2 PTA3 PTA8 PTA12 PTA16 PTA17 PTA24 K L ADC0_DP0/ ADC1_DP3 ADC0_DM0/ ADC1_DM3 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 TAMPER0/ RTC_ WAKEUP_B VBAT PTA4/ LLWU_P3 PTA9 PTA11 PTA14 PTA15 RESET_b L M ADC1_DP0/ ADC0_DP3 ADC1_DM0/ ADC0_DM3 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 TAMPER5 NC EXTAL32 XTAL32 PTA5 PTA10 VSS PTA19 PTA18 M 2 3 4 5 6 7 8 9 10 11 12 1 Figure 37. K63 144 MAPBGA Pinout Diagram 6 Ordering parts Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 73 Freescale Semiconductor, Inc. Part identification 6.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK63 and MK63 7 Part identification 7.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 7.2 Format Part numbers for this device have the following format: Q K## A M FFF R T PP CC N 7.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K63 = Ethernet, Tamper, and high RAM density A Key attribute • D = Cortex-M4 w/ DSP • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory FFF Program flash memory size • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB Table continues on the next page... 74 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Terminology and guidelines Field Description Values • 1M0 = 1 MB • 2M0 = 2 MB R Silicon revision • Z = Initial • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • • • • • • • • • • • FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) CC Maximum CPU frequency (MHz) • • • • • • • 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz 16 = 168 MHz 18 = 180 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 7.4 Example This is an example part number: MK63FN1M0VMD12 8 Terminology and guidelines 8.1 Definitions Key terms are defined in the following table: Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 75 Freescale Semiconductor, Inc. Terminology and guidelines Term Rating Definition A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions Typical value A specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed. 8.2 Examples EX AM PL E Operating rating: EX AM PL E Operating requirement: EX AM PL E Operating behavior that includes a typical value: 76 Freescale Semiconductor, Inc. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. Terminology and guidelines 8.3 Typical-value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 8.4 Relationship between ratings and operating requirements .) ) era Op g tin ng ) in. (m i rat in. (m g tin era Op t en rem ax (m .) ui req g tin era Op ng i rat ax (m Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) g lin nd Ha in rat n.) mi g( –∞ g tin era Op m e uir req t en g( ng li nd Ha in rat .) x ma Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure ∞ Handling (power off) 8.5 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. 77 Freescale Semiconductor, Inc. Revision History 9 Revision History The following table provides a revision history for this document. Table 58. Revision History Rev. No. Date 2 01/2014 3 04/2014 • Format changes 4 09/2014 • Updated Table 6 "Power consumption operating behavior." • Updated Table 17 "IRC48M specifications • Updated Table 35 "VREF full-range operating behavior" 5 12/2014 • Updated Table 6 "Power consumption operating behavior." • Added a note to the section "Power consumption operating behaviors." 6 08/2015 • Added a footnote to the maximum SCL clock frequency value in the table "I2C timing" • Changed the title of the table "I2C 1 MHZ timing" to "I2C 1 Mbps timing" • Added a footnote and updated the table "IRC48M specifications" for open loop total deviation of IRC48M frequency at high voltage and low voltage. • Added a footnote on the ambient temperature entry to the section "Thermal operating requirements." • Added a note to the section "Power consumption operating behaviors" and updated values in the table "Power consumption operating behaviors." • Added a note to the maximum frequency value in the table "Slave mode DSPI timing (limited voltage range)." • Redeveloped the section "Terminology and guidelines." 78 Freescale Semiconductor, Inc. Substantial Changes Initial public release. Kinetis K63F Sub-Family Data Sheet, Rev.6, 08/2015. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. The USB-IF Logo is a registered trademark of USB Implementers Forum, Inc. All rights reserved. ©2014-2015 Freescale Semiconductor, Inc. Document Number K63P144M120SF5 Revision 6, 08/2015