Freescale Semiconductor, Inc. Data Sheet: Technical Data K22P80M120SF7 Rev. 6 10/2015 Kinetis K22F 512KB Flash 80-Pin WLCSP 120 MHz Cortex-M4 Based Microcontroller with FPU MK22FN512CAP12R MK22FN256CAP12R MK22FN512CBP12R The K22 product family members are optimized for spaceconstrained, cost-sensitive applications requiring lowpower, USB connectivity, and processing efficiency with a floating point unit. These devices share the comprehensive enablement and scalability of the Kinetis family. This product offers: • Run power consumption down to 156 μA/MHz and static power consumption down to 3.8 μA, full state retention and 6 μS wakeup. Lowest static mode down to 140 nA. • USB LS/FS OTG 2.0 with embedded 3.3 V, 120 mA LDO voltage regulator. USB FS device crystal-less functionality. Performance • 120 MHz ARM® Cortex®-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz 80 WLCSP (AP) 80 WLCSP (BP) 4.13 x 3.56 x 0.564 mm 4.13 x 3.56 x 0.321 mm Pitch 0.4 mm Pitch 0.4 mm Analog modules • Two 16-bit SAR ADCs (1.2 MS/s in 12bit mode) • Up to two 12-bit DACs • Two analog comparators (CMP) with 6-bit DAC • Accurate internal voltage reference Memories and memory interfaces • 512 or 256 KB of embedded flash, and 128 KB of RAM Communication interfaces • FlexBus external bus interface • Serial programming interface (EzPort) • USB LS/FS OTG 2.0 with on-chip transceiver and • Preprogrammed Kinetis flashloader for one-time, inUSB LDO voltage regulator system factory programming • USB full-speed device crystal-less operation • Two SPI modules System peripherals • Three UART modules and one low-power UART • Flexible low-power modes, multiple wake up sources • Two I2C: Support for up to 1 Mbps operation • 16-channel DMA controller • I2S module • Independent external and software watchdog monitor Timers Clocks • Two 8-ch general-purpose/PWM timers • Two crystal oscillators: 32 kHz (RTC) and 32-40 kHz or • Two 2-ch general-purpose timers with quadrature 3-32 MHz decoder functionality • Three internal oscillators: 32 kHz, 4 MHz, and 48 MHz • Periodic interrupt timers • Multi-purpose clock generator with PLL and FLL • 16-bit low-power timer • Real-time clock with independent power domain Security and integrity modules • Programmable delay block • Hardware CRC module • 128-bit unique identification (ID) number per chip Operating Characteristics • Hardware random-number generator • Voltage range (including flash writes): 1.71 to 3.6 V • Flash access control to protect proprietary software • Temperature range (ambient): -40 to 85°C Human-machine interface • 52 general-purpose I/O (GPIO) © 2014–2015 Freescale Semiconductor, Inc. All rights reserved. Ordering Information Part Number Memory Maximum number of I/Os Flash (KB) SRAM (KB) MK22FN512CAP12R 512 128 52 MK22FN256CAP12R 256 128 52 MK22FN512CBP12R 512 128 52 Related Resources Type Description Document Selector Guide The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector KINETISKMCUSELGD Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. K22P121M120SF7RM Data Sheet The Data Sheet is this document. It includes electrical characteristics and signal connections. K22P80M120SF7 Chip Errata The chip mask set Errata provides additional or corrective information for a particular device mask set. KINETIS_xN50M1 Package drawing Package dimensions are provided by part number: • MK22FN512CAP12R • MK22FN256CAP12R • MK22FN512CBP12R Package drawing: • 98ASA00710D • 98ASA00710D • 98ASA00820D 1. To find the associated resource, go to freescale.com and perform a search using this term with the x replaced by the revision of the device you are using. Figure 1 shows the functional modules in the chip. 2 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 ARM ®Cortex™-M4 Core System DMA (16ch) Program flash (512 KB) FlexBus Debug interfaces DSP Low-leakage wakeup Interrupt contoller FPU Internal and external watchdogs Security and Integrity Memories and Memory Interfaces RAM (128 KB) Phaselocked loop Frequencylocked loop Low/high frequency oscillators Serial programming interface (EzPort) Internal reference clocks Communication Interfaces Human-Machine Interface (HMI) Analog Timers CRC 16-bit ADC x2 Timers x2 (8ch) x2 (2ch) 2 I C x2 2 I S Random number generator Comparator with 6-bit DAC x2 Programmable delay block UART x3 USB OTG LS/FS 12-bit DAC x2 Periodic interrupt timers LPUART x1 USB LS/FS transceiver High performance voltage ref 16-bit low-power timer SPI x2 USB voltage regulator Flash access control Clocks Up to 52 GPIOs Independent real-time clock Figure 1. Functional block diagram Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 3 Freescale Semiconductor, Inc. Table of Contents 1 Ratings.................................................................................... 5 1.1 Thermal handling ratings................................................. 5 1.2 Moisture handling ratings................................................ 5 1.3 ESD handling ratings....................................................... 5 1.4 Voltage and current operating ratings............................. 5 2 General................................................................................... 6 2.1 AC electrical characteristics.............................................6 2.2 Nonswitching electrical specifications..............................6 2.2.1 Voltage and current operating requirements....... 6 2.2.2 LVD and POR operating requirements................7 2.2.3 Voltage and current operating behaviors.............8 2.2.4 Power mode transition operating behaviors........ 9 2.2.5 Power consumption operating behaviors............ 10 2.2.6 EMC radiated emissions operating behaviors..... 17 2.2.7 Designing with radiated emissions in mind..........18 2.2.8 Capacitance attributes.........................................18 2.3 Switching specifications...................................................18 2.3.1 Device clock specifications..................................18 2.3.2 General switching specifications......................... 19 2.4 Thermal specifications..................................................... 20 2.4.1 Thermal operating requirements......................... 20 2.4.2 Thermal attributes................................................20 3 Peripheral operating requirements and behaviors.................. 21 3.1 Core modules.................................................................. 21 3.1.1 SWD electricals .................................................. 21 3.1.2 JTAG electricals.................................................. 22 3.2 System modules.............................................................. 25 3.3 Clock modules................................................................. 25 3.3.1 MCG specifications..............................................25 3.3.2 IRC48M specifications.........................................28 3.3.3 Oscillator electrical specifications........................28 3.3.4 32 kHz oscillator electrical characteristics........... 31 3.4 Memories and memory interfaces................................... 31 3.4.1 4 5 6 7 3.4.2 EzPort switching specifications........................... 33 3.4.3 Flexbus switching specifications..........................34 3.5 Security and integrity modules........................................ 37 3.6 Analog............................................................................. 37 3.6.1 ADC electrical specifications............................... 38 3.6.2 CMP and 6-bit DAC electrical specifications....... 42 3.6.3 12-bit DAC electrical characteristics....................44 3.6.4 Voltage reference electrical specifications.......... 47 3.7 Timers..............................................................................48 3.8 Communication interfaces............................................... 48 3.8.1 USB electrical specifications............................... 49 3.8.2 USB VREG electrical specifications.................... 49 3.8.3 DSPI switching specifications (limited voltage range).................................................................. 50 3.8.4 DSPI switching specifications (full voltage range).................................................................. 52 3.8.5 Inter-Integrated Circuit Interface (I2C) timing...... 53 3.8.6 UART switching specifications............................ 55 3.8.7 I2S/SAI switching specifications.......................... 55 Dimensions............................................................................. 61 4.1 Obtaining package dimensions....................................... 61 Pinout...................................................................................... 62 5.1 K22F Signal Multiplexing and Pin Assignments.............. 62 5.2 Recommended connection for unused analog and digital pins........................................................................65 5.3 K22 Pinouts..................................................................... 66 Part identification.....................................................................67 6.1 Description.......................................................................67 6.2 Format............................................................................. 67 6.3 Fields............................................................................... 67 6.4 Example...........................................................................68 6.5 80-pin WLCSP part marking............................................ 68 Revision History...................................................................... 69 Flash electrical specifications.............................. 31 4 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Ratings 1 Ratings 1.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 1 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 1.4 Voltage and current operating ratings Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 5 Freescale Semiconductor, Inc. General Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 169 mA VDIO Digital input voltage –0.3 VDD + 0.3 V VAIO Analog1 –0.3 VDD + 0.3 V ID VDDA Maximum current single pin limit (applies to all digital pins) Analog supply voltage –25 25 mA VDD – 0.3 VDD + 0.3 V VUSB0_DP USB0_DP input voltage –0.3 3.63 V VUSB0_DM USB0_DM input voltage –0.3 3.63 V VREGIN USB regulator input –0.3 6.0 V RTC battery supply voltage –0.3 3.8 V VBAT 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 2 General 2.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VIH Input Signal High Low 80% 50% 20% Midpoint1 Fall Time VIL Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 2. Input signal measurement reference 2.2 Nonswitching electrical specifications 6 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 General 2.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V 0.7 × VDD — V 0.75 × VDD — V — 0.35 × VDD V — 0.3 × VDD V 0.06 × VDD — V VBAT VIH RTC battery supply voltage Input high voltage • 2.7 V ≤ VDD ≤ 3.6 V Notes • 1.7 V ≤ VDD ≤ 2.7 V VIL Input low voltage • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VHYS Input hysteresis IICIO Analog and I/O pin DC injection current — single pin 1 -3 — mA -25 — mA VDD VDD V 1.2 — V VPOR_VBAT — V • VIN < VSS-0.3V (Negative current injection) IICcont Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection VODPU Open drain pullup voltage level VRAM VDD voltage required to retain RAM VRFVBAT VBAT voltage required to retain the VBAT register file 2 1. All analog and I/O pins are internally clamped to VSS through ESD protection diodes. If VIN is less than VIO_MIN or greater than VIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VIO_MIN-VIN)/|IICIO|. 2. Open drain outputs must be pulled to VDD. 2.2.2 LVD and POR operating requirements Table 2. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range VLVW1H • Level 1 falling (LVWV=00) Notes 1 2.62 2.70 2.78 V Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 7 Freescale Semiconductor, Inc. General Table 2. VDD supply LVD and POR operating requirements (continued) Symbol Min. Typ. Max. Unit VLVW2H Description • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — 80 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — 60 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs 1. Rising threshold is the sum of falling threshold and hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes 2.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH VOH IOHT Description Min. Typ. Max. Unit Notes 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA VDD – 0.5 — — V 1 1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA VDD – 0.5 — — V 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA VDD – 0.5 — — V 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA VDD – 0.5 — — V Output high current total for all ports — — 100 mA Output high voltage — Normal drive pad except RESET_B Output high voltage — High drive pad except RESET_B 1 Table continues on the next page... 8 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 General Table 4. Voltage and current operating behaviors (continued) Symbol Min. Typ. Max. Unit Notes 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA — — 0.5 V 1 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA — — 0.5 V 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA — — 0.5 V 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA — — 0.5 V 2.7 V ≤ VDD ≤ 3.6 V, IOL = 3 mA — — 0.5 V 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA — — 0.5 V Output low current total for all ports — — 100 mA All pins other than high drive port pins — 0.002 0.5 μA High drive port pins — 0.004 0.5 μA Input leakage current (total all pins) for full temperature range — — 1.0 μA 2 RPU Internal pullup resistors 20 — 50 kΩ 3 RPD Internal pulldown resistors 20 — 50 kΩ 4 VOL VOL VOL IOLT IIN IIN Description Output low voltage — Normal drive pad except RESET_B Output low voltage — High drive pad except RESET_B 1 Output low voltage — RESET_B Input leakage current (per pin) for full temperature range 1, 2 1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. 2. Measured at VDD=3.6V 3. Measured at VDD supply voltage = VDD min and Vinput = VSS 4. Measured at VDD supply voltage = VDD min and Vinput = VDD 2.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • • CPU and system clocks = 80 MHz Bus clock = 40 MHz FlexBus clock = 20 MHz Flash clock = 20 MHz MCG mode: FEI Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 9 Freescale Semiconductor, Inc. General Table 5. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. Min. Typ. Max. Unit Notes — — 300 μs 1 — — 140 μs — — 140 μs — — 80 μs — — 80 μs — — — — — — 5.7 μs — — 5.7 μs • VLLS0 → RUN • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • LLS2 → RUN 6 • LLS3 → RUN μs 6 μs • VLPS → RUN • STOP → RUN 1. Normal boot (FTFA_OPT[LPBOOT]=1) 2.2.5 Power consumption operating behaviors The current parameters in the table below are derived from code executing a while(1) loop from flash, unless otherwise noted. The IDD typical values represent the statistical mean at 25°C, and the IDD maximum values for RUN, WAIT, VLPR, and VLPW represent data collected at 125°C junction temperature unless otherwise noted. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma). Table 6. Power consumption operating behaviors Symbol IDDA Description Analog supply current Min. Typ. Max. Unit Notes — — See note mA 1 IDD_HSRUN High Speed Run mode current - all peripheral clocks disabled, CoreMark benchmark code executing from flash Table continues on the next page... 10 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Notes @ 1.8V — 28.0 29.33 mA 2, 3, 4 @ 3.0V — 28.0 29.33 mA @ 1.8V — 25.6 26.93 mA @ 3.0V — 25.7 27.03 mA @ 1.8V — 35.5 36.83 mA @ 3.0V — 35.6 36.93 mA @ 1.8V — 17.5 18.83 mA @ 3.0V — 17.5 18.83 mA @ 1.8V — 15.10 17.10 mA @ 3.0V — 15.10 17.33 mA @ 1.8V — 16.6 17.93 mA @ 3.0V — 16.8 18.13 mA — 22.8 24.13 mA • @ 25°C — 22.9 24.23 mA • @ 70°C — 23.1 24.43 mA • @ 85°C — 23.5 24.83 mA — 15.1 16.43 mA • @ 25°C — 15.1 16.43 mA • @ 70°C — 15.4 16.73 mA • @ 85°C — 15.6 16.93 mA — 9.3 10.63 mA IDD_HSRUN High Speed Run mode current - all peripheral clocks disabled, code executing from flash 2 IDD_HSRUN High Speed Run mode current — all peripheral clocks enabled, code executing from flash IDD_RUN IDD_RUN IDD_RUN IDD_RUN 5 Run mode current in Compute operation — CoreMark benchmark code executing from flash 3, 4, 6 Run mode current in Compute operation — code executing from flash 6 Run mode current — all peripheral clocks disabled, code executing from flash 7 Run mode current — all peripheral clocks enabled, code executing from flash @ 1.8V 8 @ 3.0V IDD_RUN Run mode current — Compute operation, code executing from flash @ 1.8V 9 @ 3.0V IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled 7 Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 11 Freescale Semiconductor, Inc. General Table 6. Power consumption operating behaviors (continued) Symbol Description IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled IDD_VLPR Very-low-power run mode current in Compute operation — CoreMark benchmark code executing from flash IDD_VLPR Min. Typ. Max. Unit Notes — 5.4 6.73 mA 10 @ 1.8V — 0.88 1.02 mA 3, 4, 11 @ 3.0V — 0.89 1.03 mA @ 1.8V — 0.62 0.77 mA Very-low-power run mode current in Compute operation, code executing from flash 11 @ 3.0V — 0.63 0.77 mA IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 0.76 0.90 mA 12 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 1.2 1.34 mA 13 IDD_VLPW Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled — 0.45 0.59 mA 14 IDD_STOP Stop mode current at 3.0 V @ -40°C to 25°C — 0.28 0.37 mA @ 70°C — 0.34 0.51 mA @ 85°C — 0.38 0.55 mA @ -40°C to 25°C — 8.7 18.10 µA @ 70°C — 31.1 79.55 µA @ 85°C — 50.3 110.15 µA @ -40°C to 25°C — 3.8 5.65 µA @ 70°C — 12.5 28.75 µA @ 85°C — 20.2 47.60 µA @ -40°C to 25°C — 3.0 4.10 µA @ 70°C — 7.8 16.40 µA @ 85°C — 12.3 30.15 µA @ -40°C to 25°C — 2.8 3.95 µA @ 70°C — 9.5 21.25 µA @ 85°C — 15.3 34.65 µA @ -40°C to 25°C — 1.9 2.45 µA @ 70°C — 4.5 8.50 µA @ 85°C — 6.8 12.15 µA IDD_VLPS IDD_LLS3 IDD_LLS2 Very-low-power stop mode current at 3.0 V Low leakage stop mode 3 current at 3.0 V Low leakage stop mode 2 current at 3.0 V IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V Table continues on the next page... 12 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit @ -40°C to 25°C — 0.73 1.42 µA @ 70°C — 1.8 3.90 µA @ 85°C — 3.0 5.25 µA @ -40°C to 25°C — 0.43 0.55 µA @ 70°C — 1.4 2.45 µA @ 85°C — 2.6 4.00 µA @ -40°C to 25°C — 0.14 0.24 µA @ 70°C — 1.1 2.15 µA @ 85°C — 2.3 3.85 µA @ -40°C to 25°C — 0.18 0.21 µA @ 70°C — 0.66 0.86 µA @ 85°C — 1.52 2.24 µA • @ -40°C to 25°C — 0.59 0.70 µA • @ 70°C — 1.00 1.3 µA • @ 85°C — 1.76 2.59 µA • @ -40°C to 25°C — 0.71 0.84 µA • @ 70°C — 1.22 1.59 µA • @ 85°C — 2.08 3.06 µA Notes IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled IDD_VBAT IDD_VBAT Average current with RTC and 32kHz disabled at 3.0 V Average current when CPU is not accessing RTC registers @ 1.8V 15 @ 3.0V 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 120MHz core and system clock, 60MHz bus clock, 24MHz FlexBus clock, and 24MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled. 3. Cache on and prefetch on, low compiler optimization. 4. Coremark benchmark compiled using IAR 7.2 with optimization level low. 5. 120MHz core and system clock, 60MHz bus clock, 24MHz FlexBus clock, and 24MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled. 6. 80 MHz core and system clock, 40 MHz bus clock, and 26.67 MHz flash clock. MCG configured for PEE mode. Compute operation. 7. 80MHz core and system clock, 40MHz bus clock, 20MHz FlexBus clock, and 26.67MHz flash clock. MCG configured for FEI mode. All peripheral clocks disabled. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 13 Freescale Semiconductor, Inc. General 8. 80MHz core and system clock, 40MHz bus clock, 20MHz FlexBus clock, and 26.67MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled. 9. 80MHz core and system clock, 40MHz bus clock, and 26.67MHz flash clock. MCG configured for FEI mode. Compute operation. 10. 25MHz core and system clock, 25MHz bus clock, and 25MHz FlexBus and flash clock. MCG configured for FEI mode. 11. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. Compute operation. Code executing from flash. 12. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 13. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 14. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 15. Includes 32kHz oscillator current and RTC operation. Table 7. Low power mode peripheral adders—typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled. 56 56 56 56 56 56 µA IIREFSTEN32KHz 32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled. 52 52 52 52 52 52 µA IEREFSTEN4MHz External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled. 206 228 237 245 251 258 uA IEREFSTEN32KHz External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. VLLS1 440 490 540 560 570 580 nA VLLS3 440 490 540 560 570 580 LLS 490 490 540 560 570 680 VLPS 510 560 560 560 610 680 STOP 510 560 560 560 610 680 48 Mhz internal reference clock 350 350 350 350 350 350 µA ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. 22 22 22 22 22 22 µA IRTC RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption. 432 357 388 475 532 810 nA I48MIRC Table continues on the next page... 14 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 General Table 7. Low power mode peripheral adders—typical value (continued) Symbol IUART Description Temperature (°C) Unit -40 25 50 70 85 105 66 66 66 66 66 66 214 237 246 254 260 268 UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. MCGIRCLK (4 MHz internal reference clock) >OSCERCLK (4 MHz external crystal) µA IBG Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode. 45 45 45 45 45 45 µA IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions. 42 42 42 42 42 42 µA 2.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at frequencies between 50 MHz and 100MHz. MCG in PEE mode at frequencies greater than 100 MHz. • USB regulator disabled • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFA Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 15 Freescale Semiconductor, Inc. General Run Mode Current vs Core Frequency Current Consumption on VDD (A) Temp (C)=25, VDD=3.6V, CACHE=ENABLE, Code Residence=Flash All Peripheral Clk Gates ALLOFF ALLON Clk Ratio Core-Bus-FlexBus-Flash Core Freq (Mhz) Figure 3. Run mode supply current vs. core frequency 16 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 General Very Low Power Run (VLPR) Current vs Core Frequency Current Consumption on VDD (A) Temp (C)=25, VDD=3.6V, CACHE=ENABLE, Code Residence=Flash All Peripheral Clk Gates ALLOFF ALLON Clk Ratio Core-Bus-FlexBus-Flash Core Freq (Mhz) Figure 4. VLPR mode supply current vs. core frequency 2.2.6 EMC radiated emissions operating behaviors Table 8. EMC radiated emissions operating behaviors for 64 LQFP package Parame Conditions ter VEME Clocks Frequency range Level (Typ.) Unit Notes dBuV 1, 2, 3 Device configuration, FSYS = 120 MHz test conditions and EM FBUS = 60 MHz testing per standard IEC External crystal = 8 MHz 61967-2. 150 kHz–50 MHz 14 50 MHz–150 MHz 23 150 MHz–500 MHz 23 Supply voltages: • VREGIN (USB) = 5.0 V • VDD = 3.3 V 500 MHz–1000 MHz 9 IEC level L 4 Temp = 25°C 1. Measurements were made per IEC 61967-2 while the device was running typical application code. 2. Measurements were performed on the 64LQFP device, MK22FN512VLH12 . Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 17 Freescale Semiconductor, Inc. General 3. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 4. IEC Level Maximums: M ≤ 18dBmV, L ≤ 24dBmV, K ≤ 30dBmV, I ≤ 36dBmV, H ≤ 42dBmV . 2.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 2.2.8 Capacitance attributes Table 9. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 2.3 Switching specifications 2.3.1 Device clock specifications Table 10. Device clock specifications Symbol Description Min. Max. Unit Notes High Speed run mode fSYS System and core clock — 120 MHz fBUS Bus clock — 60 MHz Normal run mode (and High Speed run mode unless otherwise specified above) fSYS System and core clock — 80 MHz System and core clock when Full Speed USB in operation 20 — MHz Bus clock — 50 MHz FlexBus clock — 30 MHz fFLASH Flash clock — 26.67 MHz fLPTMR LPTMR clock — 25 MHz fSYS_USB fBUS FB_CLK VLPR mode1 Table continues on the next page... 18 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 General Table 10. Device clock specifications (continued) Symbol Description Min. Max. Unit fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz FlexBus clock — 4 MHz fFLASH Flash clock — 1 MHz fERCLK External reference clock — 16 MHz LPTMR clock — 25 MHz — 16 MHz FB_CLK fLPTMR_pin fLPTMR_ERCLK LPTMR external reference clock fI2S_MCLK I2S master clock — 12.5 MHz fI2S_BCLK I2S bit clock — 4 MHz Notes 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 2.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, and timers. Table 11. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 External RESET and NMI pin interrupt pulse width — Asynchronous path 100 — ns 3 GPIO pin interrupt pulse width (digital glitch filter disabled, passive filter disabled) — Asynchronous path 50 — ns 4 Mode select (EZP_CS) hold time after reset deassertion 2 — Bus clock cycles Port rise and fall time • Slew disabled • 1.71 ≤ VDD ≤ 2.7V 5 — — • 2.7 ≤ VDD ≤ 3.6V • Slew enabled • 1.71 ≤ VDD ≤ 2.7V • 2.7 ≤ VDD ≤ 3.6V 10 ns 5 ns 30 ns 16 ns — — 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 19 Freescale Semiconductor, Inc. General 2. The greater of synchronous and asynchronous timing must be met. 3. These pins have a passive filter enabled on the inputs. This is the shortest pulse width that is guaranteed to be recognized. 4. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized. 5. 25 pF load 2.4 Thermal specifications 2.4.1 Thermal operating requirements Table 12. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 95 °C TA Ambient temperature –40 85 °C Notes 1 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to determine TJ is: TJ = TA + RΘJA × chip power dissipation. 2.4.2 Thermal attributes Board type Symbol Description 80 WLCSP (AP) 80 WLCSP (BP) Unit Notes Single-layer (1s) RθJA Thermal resistance, junction to ambient (natural convection) 49.0 102.4 °C/W 1 Four-layer (2s2p) RθJA Thermal resistance, junction to ambient (natural convection) 36.6 47.3 °C/W 2 Single-layer (1s) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 39.3 86.4 °C/W 3 Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 32.1 42.7 °C/W 3 Table continues on the next page... 20 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors Board type Symbol Description 80 WLCSP (AP) 80 WLCSP (BP) Unit Notes ft./min. air speed) — RθJB Thermal resistance, junction to board — RθJC — ΨJT 36.8 25.7 °C/W 4 Thermal 0.2 resistance, junction to case 4.2 °C/W 5 Thermal 0.1 characterization parameter, junction to package top outside center (natural convection) 0.2 °C/W 6 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)with the single layer board horizontal. Board meets JESD51-9 specification. 2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air) with the board horizontal. 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. 3 Peripheral operating requirements and behaviors 3.1 Core modules 3.1.1 SWD electricals Table 13. SWD full voltage range electricals Symbol S1 Description Min. Max. Unit Operating voltage 1.71 3.6 V 0 33 MHz 1/S1 — ns SWD_CLK frequency of operation • Serial wire debug S2 SWD_CLK cycle period Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 21 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 13. SWD full voltage range electricals (continued) Symbol S3 Description Min. Max. Unit 15 — ns SWD_CLK clock pulse width • Serial wire debug S4 SWD_CLK rise and fall times — 3 ns S9 SWD_DIO input data setup time to SWD_CLK rise 8 — ns S10 SWD_DIO input data hold time after SWD_CLK rise 1.4 — ns S11 SWD_CLK high to SWD_DIO data valid — 25 ns S12 SWD_CLK high to SWD_DIO high-Z 5 — ns S2 S3 S3 SWD_CLK (input) S4 S4 Figure 5. Serial wire clock input timing SWD_CLK S9 SWD_DIO S10 Input data valid S11 SWD_DIO Output data valid S12 SWD_DIO S11 SWD_DIO Output data valid Figure 6. Serial wire data timing 22 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors 3.1.2 JTAG electricals Table 14. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 1 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 19 ns J12 TCLK low to TDO high-Z — 19 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 TCLK cycle period J3 TCLK clock pulse width Table 15. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 15 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 33 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 1.4 — ns J7 TCLK low to boundary scan output data valid — 27 ns J2 TCLK cycle period J3 TCLK clock pulse width Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 23 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 15. JTAG full voltage range electricals (continued) Symbol Description Min. Max. Unit J8 TCLK low to boundary scan output high-Z — 27 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 26.2 ns J12 TCLK low to TDO high-Z — 26.2 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 7. Test clock input timing TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 8. Boundary scan (JTAG) timing 24 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 9. Test Access Port timing TCLK J14 J13 TRST Figure 10. TRST timing 3.2 System modules There are no specifications necessary for the device's system modules. 3.3 Clock modules Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 25 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.3.1 MCG specifications Table 16. MCG specifications Symbol Description Min. Typ. Max. Unit Notes fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C — 32.768 — kHz Δfints_t Total deviation of internal reference frequency (slow clock) over voltage and temperature — +0.5/-0.7 ±2 % 31.25 — 39.0625 kHz — ± 0.3 ± 0.6 %fdco 1 fints_t Internal reference frequency (slow clock) — user trimmed Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — +0.5/-0.7 ±2 %fdco 1, 2 Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.3 ± 1.5 %fdco 1 Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz Δfintf_ft Frequency deviation of internal reference clock (fast clock) over temperature and voltage — factory trimmed at nominal VDD and 25 °C — +1/-2 ±5 %fintf_ft fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz fintf_ft floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 3, 4 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) 5, 6 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) Table continues on the next page... 26 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors Table 16. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit — 95.98 — MHz Notes 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter — • fVCO = 48 MHz • fVCO = 98 MHz tfll_acquire — — 180 — ps — 150 FLL target frequency acquisition time — — 1 ms 48.0 — 120 MHz — 1060 — µA — 600 — µA 2.0 — 4.0 MHz — 120 — ps — 75 — ps — 1350 — ps — 600 — ps 7 PLL fvco VCO operating frequency Ipll PLL operating current • PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 48) Ipll PLL operating current • PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 24) fpll_ref PLL reference frequency range Jcyc_pll PLL period jitter (RMS) • fvco = 48 MHz 8 8 9 • fvco = 100 MHz Jacc_pll PLL accumulated jitter over 1µs (RMS) • fvco = 48 MHz 9 • fvco = 100 MHz Dlock Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % tpll_lock Lock detector detection time — — 150 × 10-6 + 1075(1/ fpll_ref) s 10 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. 2.0 V <= VDD <= 3.6 V. 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Excludes any oscillator currents that are also consuming power while PLL is in operation. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 27 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.3.2 IRC48M specifications Table 17. IRC48M specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDD48M Supply current — 400 500 μA firc48m Internal reference frequency — 48 — MHz — ± 0.2 ± 0.5 %firc48m 1 — ± 0.4 ±1 %firc48m 1 Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over 0°C to 70°C Notes — Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over full temperature Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over full temperature 1 Regulator disable (USB_CLK_RECOVER_IRC_EN[REG_EN]=0) — ± 0.4 ±1 Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) — ± 0.5 ± 1.5 Δfirc48m_cl Closed loop total deviation of IRC48M frequency over voltage and temperature — — ± 0.1 Jcyc_irc48m Period Jitter (RMS) — 35 150 ps Startup time — 2 3 μs tirc48mst %firc48m %fhost 2 3 1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard deviation (mean ± 3 sigma). 2. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1). 3. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by one of the following settings: • USB_CLK_RECOVER_IRC_EN[IRC_EN]=1 or • MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10 or MCG_C5[PLLCLKEN0]=1, or • SIM_SOPT2[PLLFLLSEL]=11 3.3.3 Oscillator electrical specifications 28 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors 3.3.3.1 Oscillator DC electrical specifications Table 18. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high-gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, lowpower mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ — 0.6 — V RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Vpp5 Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 29 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 18. Oscillator DC electrical specifications (continued) Symbol 1. 2. 3. 4. 5. Description Min. Typ. Max. Unit Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V Notes VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx and Cy can be provided by using either integrated capacitors or external components. When low-power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device. 3.3.3.2 Symbol Oscillator frequency specifications Table 19. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — highfrequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 50 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 30 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 3.3.4 32 kHz oscillator electrical characteristics 3.3.4.1 32 kHz oscillator DC electrical specifications Table 20. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Cpara RF Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 3.3.4.2 Symbol fosc_lo tstart 32 kHz oscillator frequency specifications Table 21. 32 kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time Notes — 1000 — ms 1 fec_extal32 Externally provided input clock frequency — 32.768 — kHz 2 vec_extal32 Externally provided input clock amplitude 700 — VBAT mV 2, 3 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VBAT. 3.4 Memories and memory interfaces 3.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 31 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 22. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit Notes thvpgm4 Longword Program high-voltage time — 7.5 18 μs — thversscr Sector Erase high-voltage time — 13 113 ms 1 — 104 904 ms 1 Unit Notes thversblk256k Erase Block high-voltage time for 256 KB 1. Maximum time based on expectations at cycling end-of-life. 3.4.1.2 Symbol Flash timing specifications — commands Table 23. Flash command timing specifications Description Min. Typ. Max. Read 1s Block execution time trd1blk256k 1 • 256 KB program flash — — 1.7 ms trd1sec2k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs — Erase Flash Block execution time tersblk256k • 256 KB program flash 2 — 250 1500 ms tersscr Erase Flash Sector execution time — 14 114 ms 2 trd1all Read 1s All Blocks execution time — — 1.8 ms 1 trdonce Read Once execution time — — 30 μs 1 Program Once execution time — 100 — μs — tersall Erase All Blocks execution time — 500 3000 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tpgmonce 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3.4.1.3 Flash high voltage current behaviors Table 24. Flash high voltage current behaviors Symbol Description IDD_PGM Average current adder during high voltage flash programming operation Min. Typ. Max. Unit — 2.5 6.0 mA Table continues on the next page... 32 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors Table 24. Flash high voltage current behaviors (continued) Symbol Description IDD_ERS Average current adder during high voltage flash erase operation 3.4.1.4 Symbol Min. Typ. Max. Unit — 1.5 4.0 mA Reliability specifications Table 25. NVM reliability specifications Description Typ.1 Max. Unit Notes 50 — years — 20 100 — years — 10 K 50 K — cycles 2 Min. Program Flash tnvmretp10k Data retention after up to 10 K cycles tnvmretp1k Data retention after up to 1 K cycles nnvmcycp Cycling endurance 5 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C. 3.4.2 EzPort switching specifications Table 26. EzPort switching specifications Num Description Min. Operating voltage Max. Unit 1.71 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — 25 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 33 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 11. EzPort Timing Diagram 3.4.3 Flexbus switching specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 27. Flexbus limited voltage range switching specifications Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 30 MHz 33.3 — ns FB1 Clock period FB2 Address, data, and control output valid — 15 ns FB3 Address, data, and control output hold 0.5 — ns FB4 Data and FB_TA input setup 14.5 — ns FB5 Data and FB_TA input hold 0.5 — ns Notes 1 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 34 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors 2. Specification is valid for all FB_AD[31:0] and FB_TA. Table 28. Flexbus full voltage range switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V — 30 MHz 33.3 — ns Frequency of operation FB1 Clock period FB2 Address, data, and control output valid — 21.5 ns FB3 Address, data, and control output hold –1.0 — ns FB4 Data and FB_TA input setup 20.0 — ns FB5 Data and FB_TA input hold 0.5 — ns Notes 1 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 35 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors FB1 FB_CLK FB3 FB5 FB_A[Y] Address FB4 FB2 FB_D[X] Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 12. FlexBus read timing diagram 36 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 13. FlexBus write timing diagram 3.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 3.6 Analog Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 37 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 29 and Table 30 are achievable on the differential pins ADCx_DPx, ADCx_DMx. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 3.6.1.1 16-bit ADC operating conditions Table 29. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage • 16-bit differential mode VREFL — 31/32 * VREFH V • All other modes VREFL — • 16-bit mode — 8 10 • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 CADIN RADIN RAS Input capacitance Input series resistance Notes VREFH pF kΩ Analog source resistance (external) 13-bit / 12-bit modes fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 24.0 MHz 4 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 4 Crate ADC conversion rate ≤ 13-bit modes No ADC hardware averaging 3 5 20 — 1200 Ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 38 Freescale Semiconductor, Inc. 16-bit mode No ADC hardware averaging 5 37 — 461 Ksps Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors Table 29. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS ADC SAR ENGINE RADIN VADIN CAS VAS RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 14. ADC input impedance equivalency diagram 3.6.1.2 16-bit ADC electrical characteristics Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description Conditions1 IDDA_ADC Supply current Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 39 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol Description ADC asynchronous clock source fADACK Sample Time TUE DNL INL EFS EQ ENOB Conditions1 Min. Typ.2 Max. Unit Notes • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 LSB4 VADIN = VDDA5 See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • <12-bit modes — ±1.4 ±2.1 Differential nonlinearity • 12-bit modes — ±0.7 –1.1 to +1.9 • <12-bit modes — ±0.2 • 12-bit modes — ±1.0 • <12-bit modes — ±0.5 • 12-bit modes — –4 –5.4 • <12-bit modes — –1.4 –1.8 • 16-bit modes — –1 to 0 — • ≤13-bit modes — — ±0.5 Integral non-linearity Full-scale error Quantization error Effective number of bits –0.3 to 0.5 –2.7 to +1.9 –0.7 to +0.5 LSB4 16-bit differential mode 6 • Avg = 32 12.8 14.5 • Avg = 4 11.9 13.8 — — bits bits 16-bit single-ended mode • Avg = 32 • Avg = 4 SINAD THD Signal-to-noise plus See ENOB distortion Total harmonic distortion 12.2 13.9 11.4 13.1 — — 6.02 × ENOB + 1.76 16-bit differential mode • Avg = 32 bits bits dB dB — -94 7 — dB 16-bit single-ended mode • Avg = 32 SFDR Spurious free dynamic range — -85 82 95 16-bit differential mode • Avg = 32 16-bit single-ended mode 78 — — dB — dB 7 90 Table continues on the next page... 40 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Conditions1 Symbol Description Typ.2 Min. Max. Unit Notes mV IIn = leakage current • Avg = 32 EIL Input leakage error IIn × RAS (refer to the MCU's voltage and current operating ratings) Temp sensor slope VTEMP25 Temp sensor voltage Across the full temperature range of the device 1.55 1.62 1.69 mV/°C 8 25 °C 706 716 726 mV 8 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. 8. ADC conversion clock < 3 MHz Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input 15.00 14.70 14.40 14.10 ENOB 13.80 13.50 13.20 12.90 12.60 Hardware Averaging Disabled Averaging of 4 samples Averaging of 8 samples Averaging of 32 samples 12.30 12.00 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 15. Typical ENOB vs. ADC_CLK for 16-bit differential mode Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 41 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input 14.00 13.75 13.50 13.25 13.00 ENOB 12.75 12.50 12.25 12.00 11.75 11.50 11.25 11.00 Averaging of 4 samples Averaging of 32 samples 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 16. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode 3.6.2 CMP and 6-bit DAC electrical specifications Table 31. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns — — 40 μs — 7 — μA Analog comparator initialization IDAC6b delay2 6-bit DAC current adder (enabled) INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 42 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 0.08 0.07 CMP Hystereris (V) 0.06 HYSTCTR Setting 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vin level (V) Figure 17. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0) Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 43 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0.18 0.16 0.14 CMP Hysteresis (V) 0.12 HYSTCTR Setting 0.1 00 01 10 11 0.08 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1) 3.6.3 12-bit DAC electrical characteristics 3.6.3.1 Symbol 12-bit DAC operating requirements Table 32. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V 1 2 CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1. The DAC reference can be selected to be VDDA or VREFH. 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. 44 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors 3.6.3.2 Symbol 12-bit DAC operating behaviors Table 33. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 330 μA — — 1200 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and highspeed mode Vdacoutl DAC output voltage range low — highspeed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C Rop Output resistance (load = 3 kΩ) — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR BW 1. 2. 3. 4. 5. 6. 6 V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — 3dB bandwidth kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 45 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 8 6 4 DAC12 INL (LSB) 2 0 -2 -4 -6 -8 0 500 1000 1500 2000 2500 3000 3500 4000 Digital Code Figure 19. Typical INL error vs. digital code 46 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors 1.499 DAC12 Mid Level Code Voltage 1.4985 1.498 1.4975 1.497 1.4965 1.496 25 -40 55 85 105 125 Temperature °C Figure 20. Offset at half scale vs. temperature 3.6.4 Voltage reference electrical specifications Table 34. VREF full-range operating requirements Symbol Description Min. Max. Unit VDDA Supply voltage 1.71 3.6 V TA Temperature CL Output load capacitance Operating temperature range of the device °C 100 nF Notes 1, 2 1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference. 2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of the device. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 47 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 35. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Notes Vout Voltage reference output with factory trim at nominal VDDA and temperature=25°C 1.1920 1.1950 1.1980 V 1 Vout Voltage reference output with user trim at nominal VDDA and temperature=25°C 1.1945 1.1950 1.1955 V 1 Vstep Voltage reference trim step — 0.5 — mV 1 Vtdrift Temperature drift (Vmax -Vmin across the full temperature range) — — 15 mV 1 Ibg Bandgap only current — — 80 µA Ilp Low-power buffer current — — 360 uA 1 Ihp High-power buffer current — — 1 mA 1 µV 1, 2 ΔVLOAD Load regulation • current = ± 1.0 mA Tstup Buffer startup time Tchop_osc_st Internal bandgap start-up delay with chop oscillator enabled up Vvdrift Voltage drift (Vmax -Vmin across the full voltage range) — 200 — — — 100 µs — — 35 ms — 2 — mV 1 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 36. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 70 °C Notes Table 37. VREF limited-range operating behaviors Symbol Vtdrift Description Temperature drift (Vmax -Vmin across the limited temperature range) Min. Max. Unit — 10 mV Notes 3.7 Timers See General switching specifications. 3.8 Communication interfaces 48 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors 3.8.1 USB electrical specifications The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-todate standards, visit usb.org. NOTE The MCGPLLCLK meets the USB jitter specifications for certification with the use of an external clock/crystal for both Device and Host modes. The MCGFLLCLK does not meet the USB jitter specifications for certification. The IRC48M meets the USB jitter specifications for certification in Device mode when the USB clock recovery mode is enabled. It does not meet the USB jitter specifications for certification in Host mode operation. 3.8.2 USB VREG electrical specifications Table 38. USB VREG electrical specifications Symbol Description Min. Typ.1 Max. Unit VREGIN Input supply voltage 2.7 — 5.5 V IDDon Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V — 125 186 μA IDDstby Quiescent current — Standby mode, load current equal zero — 1.1 10 μA IDDoff Quiescent current — Shutdown mode — 650 — nA — — 4 μA • VREGIN = 5.0 V and temperature=25 °C • Across operating voltage and temperature ILOADrun Maximum load current — Run mode — — 120 mA ILOADstby Maximum load current — Standby mode — — 1 mA 3 3.3 3.6 V 2.1 2.8 3.6 V Notes VReg33out Regulator output voltage — Input supply (VREGIN) > 3.6 V • Run mode • Standby mode Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 49 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 38. USB VREG electrical specifications (continued) Symbol Description VReg33out Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode Min. Typ.1 Max. Unit Notes 2.1 — 3.6 V 2 1.76 2.2 8.16 μF COUT External output capacitor ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. 3.8.3 DSPI switching specifications (limited voltage range) The Deserial Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 39. Master mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 30 MHz 2 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid -2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 16.2 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. 50 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors DSPI_PCSn DS3 DS4 DS8 DS7 (CPOL=0) DS1 DS2 DSPI_SCK DSPI_SIN Data First data DSPI_SOUT Last data DS5 DS6 First data Data Last data Figure 21. DSPI classic SPI timing — master mode Table 40. Slave mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 15 MHz 4 x tBUS — ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 21.4 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2.6 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 17 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 17 ns (tSCK/2) − 2 (tSCK/2) + 2 Notes 1 ns 1. The maximum operating frequency is measured with noncontinuous CS and SCK. When DSPI is configured with continuous CS and SCK, the SPI clock must not be greater than 1/6 of the bus clock. For example, when the bus clock is 60 MHz, the SPI clock must not be greater than 10 MHz. DSPI_SS DS10 DS9 DSPI_SCK (CPOL=0) DS15 DSPI_SOUT First data DS13 DSPI_SIN DS12 DS16 DS11 Data Last data DS14 First data Data Last data Figure 22. DSPI classic SPI timing — slave mode Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 51 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.8.4 DSPI switching specifications (full voltage range) The Deserial Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 41. Master mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 15 MHz 4 x tBUS — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 4 — ns 3 DS5 DSPI_SCK to DSPI_SOUT valid — 10 ns DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 — ns DS7 DSPI_SIN to DSPI_SCK input setup 24.6 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DSPI_SCK DS7 (CPOL=0) DSPI_SIN DS4 DS8 First data DSPI_SOUT DS1 DS2 First data Data Last data DS5 DS6 Data Last data Figure 23. DSPI classic SPI timing — master mode 52 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors Table 42. Slave mode DSPI timing (full voltage range) Num Description Min. Max. Unit 1.71 3.6 V — 7.5 MHz 8 x tBUS — ns Operating voltage Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS11 DSPI_SCK to DSPI_SOUT valid — 29.5 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 3.2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 25 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 25 ns DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Last data Data DS14 First data Data Last data Figure 24. DSPI classic SPI timing — slave mode 3.8.5 Inter-Integrated Circuit Interface (I2C) timing Table 43. I 2C timing Characteristic Symbol Standard Mode Fast Mode Minimum Maximum Minimum Maximum Unit SCL Clock Frequency fSCL 0 100 0 4001 kHz Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 4 — 0.6 — µs LOW period of the SCL clock tLOW 4.7 — 1.25 — µs HIGH period of the SCL clock tHIGH 4 — 0.6 — µs Set-up time for a repeated START condition tSU; STA 4.7 — 0.6 — µs Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 53 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 43. I 2C timing (continued) Characteristic Data hold time for I2C Symbol bus devices Data set-up time Standard Mode Fast Mode Unit Minimum Maximum Minimum Maximum tHD; DAT 02 3.453 04 0.92 µs tSU; DAT 2505 — 1003, 6 Rise time of SDA and SCL signals tr — 1000 — ns 7 300 ns 6 20 +0.1Cb Fall time of SDA and SCL signals tf — 300 20 +0.1Cb 300 ns Set-up time for STOP condition tSU; STO 4 — 0.6 — µs Bus free time between STOP and START condition tBUF 4.7 — 1.3 — µs Pulse width of spikes that must be suppressed by the input filter tSP N/A N/A 0 50 ns 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using the High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V. 2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines. 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal. 4. Input signal Slew = 10 ns and Output Load = 50 pF 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; 2 DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification) before the SCL line is released. 7. Cb = total capacitance of the one bus line in pF. Table 44. I 2C 1 Mbps timing Characteristic Symbol Minimum Maximum Unit MHz SCL Clock Frequency fSCL 0 11 Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 0.26 — µs LOW period of the SCL clock tLOW 0.5 — µs HIGH period of the SCL clock tHIGH 0.26 — µs Set-up time for a repeated START condition tSU; STA 0.26 — µs Data hold time for I2C bus devices tHD; DAT 0 — µs Data set-up time tSU; DAT 50 Rise time of SDA and SCL signals tr — ns ,2 120 ns 2 120 ns — µs 20 +0.1Cb Fall time of SDA and SCL signals tf 20 +0.1Cb Set-up time for STOP condition tSU; STO 0.26 Bus free time between STOP and START condition tBUF 0.5 — µs Pulse width of spikes that must be suppressed by the input filter tSP 0 50 ns 1. The maximum SCL clock frequency of 1 Mbps can support maximum bus loading when using the High drive pins across the full voltage range. 2. Cb = total capacitance of the one bus line in pF. 54 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors SDA tf tLOW tSU; DAT tr tf tHD; STA tr tSP tBUF SCL S HD; STA tHD; DAT tHIGH tSU; STA tSU; STO SR P S Figure 25. Timing definition for devices on the I2C bus 3.8.6 UART switching specifications See General switching specifications. 3.8.7 I2S/SAI switching specifications This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures. 3.8.7.1 Normal Run, Wait and Stop mode performance over a limited operating voltage range This section provides the operating performance over a limited operating voltage for the device in Normal Run, Wait and Stop modes. Table 45. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage range) Num. Characteristic Min. Max. Unit Operating voltage 2.7 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 55 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 45. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage range) (continued) Num. Characteristic Min. Max. Unit S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 18 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 26. I2S/SAI timing — master modes Table 46. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage range) Num. Characteristic Min. Max. Unit Operating voltage 2.7 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 4.5 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns Table continues on the next page... 56 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors Table 46. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage range) (continued) Num. Characteristic Min. S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid S16 Unit 20 ns I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 4.5 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 25 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 — Max. 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 27. I2S/SAI timing — slave modes 3.8.7.2 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 47. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 57 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 47. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued) Num. Characteristic Min. Max. Unit S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid -1.0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 27 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 28. I2S/SAI timing — master modes Table 48. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 5.8 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns Table continues on the next page... 58 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Peripheral operating requirements and behaviors Table 48. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued) Num. Characteristic Min. S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid S16 Unit 28.5 ns I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 5.8 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 26.3 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 — Max. 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 29. I2S/SAI timing — slave modes 3.8.7.3 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 49. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 59 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 49. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued) Num. Characteristic Min. Max. Unit S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid -1 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 45 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 30. I2S/SAI timing — master modes Table 50. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 7 — ns Table continues on the next page... 60 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Dimensions Table 50. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued) Num. Characteristic Min. S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid S16 Unit 63 ns I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 4 — ns — 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 — Max. 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 31. I2S/SAI timing — slave modes 4 Dimensions 4.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 80-pin WLCSP (AP) 98ASA00710D 80-pin WLCSP (BP) 98ASA00820D Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 61 Freescale Semiconductor, Inc. Pinout 5 Pinout 5.1 K22F Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. This table applies to both the standard and the thin height packages. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 80 WLC SP Pin Name Default ALT0 ALT1 ALT6 ALT7 E7 PTE0/ CLKOUT32K ADC1_SE4a ADC1_SE4a PTE0/ CLKOUT32K SPI1_PCS1 UART1_TX I2C1_SDA RTC_ CLKOUT A8 PTE1/ LLWU_P0 ADC1_SE5a ADC1_SE5a PTE1/ LLWU_P0 SPI1_SOUT UART1_RX I2C1_SCL SPI1_SIN A9 PTE2/ LLWU_P1 ADC1_SE6a ADC1_SE6a PTE2/ LLWU_P1 SPI1_SCK UART1_CTS_ b A10 PTE3 ADC1_SE7a ADC1_SE7a PTE3 SPI1_SIN UART1_RTS_ b B8 PTE4/ LLWU_P2 DISABLED PTE4/ LLWU_P2 SPI1_PCS0 LPUART0_TX C8 PTE5 DISABLED PTE5 SPI1_PCS2 LPUART0_RX B9 VDD VDD VDD B10 VSS VSS VSS D8 VSS VSS VSS C10 USB0_DP USB0_DP USB0_DP D10 USB0_DM USB0_DM USB0_DM C9 VOUT33 VOUT33 VOUT33 D9 VREGIN VREGIN VREGIN E10 ADC1_DP1/ ADC0_DP2 ADC1_DP1/ ADC0_DP2 ADC1_DP1/ ADC0_DP2 F10 ADC1_DM1/ ADC0_DM2 ADC1_DM1/ ADC0_DM2 ADC1_DM1/ ADC0_DM2 E9 ADC0_DP0/ ADC1_DP3 ADC0_DP0/ ADC1_DP3 ADC0_DP0/ ADC1_DP3 F9 ADC0_DM0/ ADC1_DM3 ADC0_DM0/ ADC1_DM3 ADC0_DM0/ ADC1_DM3 G9 VDDA VDDA VDDA G10 VREFH VREFH VREFH H10 VREFL VREFL VREFL H9 VSSA VSSA VSSA 62 Freescale Semiconductor, Inc. ALT2 ALT3 ALT4 ALT5 EzPort SPI1_SOUT FTM3_CH0 Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Pinout 80 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 E8 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 F8 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 DAC0_OUT/ CMP1_IN3/ ADC0_SE23 G7 RTC_ WAKEUP_B RTC_ WAKEUP_B RTC_ WAKEUP_B G8 XTAL32 XTAL32 XTAL32 H8 EXTAL32 EXTAL32 EXTAL32 H7 VBAT VBAT VBAT F7 PTA0 JTAG_TCLK/ SWD_CLK/ EZP_CLK PTA0 UART0_CTS_ FTM0_CH5 b JTAG_TCLK/ SWD_CLK EZP_CLK F6 PTA1 JTAG_TDI/ EZP_DI PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI F5 PTA2 JTAG_TDO/ TRACE_ SWO/ EZP_DO PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ EZP_DO TRACE_SWO F4 PTA3 JTAG_TMS/ SWD_DIO PTA3 UART0_RTS_ FTM0_CH0 b G6 PTA4/ LLWU_P3 NMI_b/ EZP_CS_b PTA4/ LLWU_P3 H5 PTA5 DISABLED PTA5 H6 PTA12 DISABLED H4 PTA13/ LLWU_P4 G5 NMI_b FTM0_CH2 I2S0_TX_ BCLK JTAG_TRST_ b PTA12 FTM1_CH0 I2S0_TXD0 FTM1_QD_ PHA DISABLED PTA13/ LLWU_P4 FTM1_CH1 I2S0_TX_FS FTM1_QD_ PHB PTA14 DISABLED PTA14 SPI0_PCS0 UART0_TX I2S0_RX_ BCLK G4 PTA15 DISABLED PTA15 SPI0_SCK UART0_RX I2S0_RXD0 H3 PTA16 DISABLED PTA16 SPI0_SOUT UART0_CTS_ b I2S0_RX_FS G3 PTA17 ADC1_SE17 ADC1_SE17 PTA17 SPI0_SIN UART0_RTS_ b I2S0_MCLK E6 VDD VDD VDD G2 VSS VSS VSS H2 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN0 H1 PTA19 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN1 G1 RESET_b RESET_b RESET_b Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 EzPort JTAG_TMS/ SWD_DIO FTM0_CH1 USB_CLKIN ALT7 EZP_CS_b LPTMR0_ ALT1 63 Freescale Semiconductor, Inc. Pinout 80 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 F3 PTB0/ LLWU_P5 ADC0_SE8/ ADC1_SE8 ADC0_SE8/ ADC1_SE8 PTB0/ LLWU_P5 I2C0_SCL FTM1_CH0 FTM1_QD_ PHA E3 PTB1 ADC0_SE9/ ADC1_SE9 ADC0_SE9/ ADC1_SE9 PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_ PHB F2 PTB2 ADC0_SE12 ADC0_SE12 PTB2 I2C0_SCL UART0_RTS_ b FTM0_FLT3 F1 PTB3 ADC0_SE13 ADC0_SE13 PTB3 I2C0_SDA UART0_CTS_ b FTM0_FLT0 E2 PTB10 ADC1_SE14 ADC1_SE14 PTB10 SPI1_PCS0 LPUART0_RX FB_AD19 FTM0_FLT1 E1 PTB11 ADC1_SE15 ADC1_SE15 PTB11 SPI1_SCK LPUART0_TX FB_AD18 FTM0_FLT2 E4 VSS VSS VSS D5 VDD VDD VDD D1 PTB16 DISABLED PTB16 SPI1_SOUT UART0_RX FTM_CLKIN0 FB_AD17 EWM_IN D2 PTB17 DISABLED PTB17 SPI1_SIN UART0_TX FTM_CLKIN1 FB_AD16 EWM_OUT_b D3 PTB18 DISABLED PTB18 FTM2_CH0 I2S0_TX_ BCLK FB_AD15 FTM2_QD_ PHA D4 PTB19 DISABLED PTB19 FTM2_CH1 I2S0_TX_FS FB_OE_b FTM2_QD_ PHB C1 PTC0 ADC0_SE14 ADC0_SE14 PTC0 SPI0_PCS4 PDB0_ EXTRG USB_SOF_ OUT FB_AD14 B1 PTC1/ LLWU_P6 ADC0_SE15 ADC0_SE15 PTC1/ LLWU_P6 SPI0_PCS3 UART1_RTS_ FTM0_CH0 b FB_AD13 I2S0_TXD0 LPUART0_ RTS_b C2 PTC2 ADC0_SE4b/ CMP1_IN0 ADC0_SE4b/ CMP1_IN0 PTC2 SPI0_PCS2 UART1_CTS_ FTM0_CH1 b FB_AD12 I2S0_TX_FS LPUART0_ CTS_b C3 PTC3/ LLWU_P7 CMP1_IN1 CMP1_IN1 PTC3/ LLWU_P7 SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT I2S0_TX_ BCLK LPUART0_RX E5 VSS VSS VSS D6 VDD VDD VDD A1 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11 CMP1_OUT LPUART0_TX B2 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ ALT2 I2S0_RXD0 FB_AD10 CMP0_OUT FTM0_CH2 A2 PTC6/ LLWU_P10 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 SPI0_SOUT PDB0_ EXTRG I2S0_RX_ BCLK FB_AD9 I2S0_MCLK B3 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN USB_SOF_ OUT I2S0_RX_FS FB_AD8 A3 PTC8 ADC1_SE4b/ CMP0_IN2 ADC1_SE4b/ CMP0_IN2 PTC8 FTM3_CH4 I2S0_MCLK FB_AD7 C4 PTC9 ADC1_SE5b/ CMP0_IN3 ADC1_SE5b/ CMP0_IN3 PTC9 FTM3_CH5 I2S0_RX_ BCLK FB_AD6 B4 PTC10 ADC1_SE6b ADC1_SE6b PTC10 I2C1_SCL FTM3_CH6 I2S0_RX_FS FB_AD5 A4 PTC11/ LLWU_P11 ADC1_SE7b ADC1_SE7b PTC11/ LLWU_P11 I2C1_SDA FTM3_CH7 64 Freescale Semiconductor, Inc. EzPort FTM2_FLT0 FB_RW_b Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Pinout 80 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 B5 PTC16 DISABLED PTC16 LPUART0_RX FB_CS5_b/ FB_TSIZ1/ FB_BE23_ 16_BLS15_8_ b A5 PTC17 DISABLED PTC17 LPUART0_TX FB_CS4_b/ FB_TSIZ0/ FB_BE31_ 24_BLS7_0_b C5 PTD0/ LLWU_P12 DISABLED PTD0/ LLWU_P12 SPI0_PCS0 UART2_RTS_ FTM3_CH0 b FB_ALE/ FB_CS1_b/ FB_TS_b LPUART0_ RTS_b B6 PTD1 ADC0_SE5b PTD1 SPI0_SCK UART2_CTS_ FTM3_CH1 b FB_CS0_b LPUART0_ CTS_b A6 PTD2/ LLWU_P13 DISABLED PTD2/ LLWU_P13 SPI0_SOUT UART2_RX FTM3_CH2 FB_AD4 LPUART0_RX I2C0_SCL C6 PTD3 DISABLED PTD3 SPI0_SIN UART2_TX FTM3_CH3 FB_AD3 LPUART0_TX I2C0_SDA B7 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 SPI0_PCS1 UART0_RTS_ FTM0_CH4 b FB_AD2 EWM_IN A7 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_CTS_ FTM0_CH5 b FB_AD1 EWM_OUT_b SPI1_SCK C7 PTD6/ LLWU_P15 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0 FTM0_FLT0 SPI1_SOUT D7 PTD7 DISABLED UART0_TX FTM0_CH7 FTM0_FLT1 SPI1_SIN ADC0_SE5b PTD7 EzPort SPI1_PCS0 5.2 Recommended connection for unused analog and digital pins The following table shows the recommended connections for analog interface pins if those analog interfaces are not used in the customer's application. Table 51. Recommended connection for unused analog interfaces Pin Type Short recommendation Detailed recommendation Analog/non GPIO PGAx/ADCx Float Analog input - Float Analog/non GPIO ADCx/CMPx Float Analog input - Float Analog/non GPIO VREF_OUT Float Analog output - Float Analog/non GPIO DACx_OUT Float Analog output - Float Analog/non GPIO RTC_WAKEUP_B Float Analog output - Float Analog/non GPIO XTAL32 Float Analog output - Float Analog/non GPIO EXTAL32 Float Analog input - Float GPIO/Analog PTA18/EXTAL0 Float Analog input - Float Table continues on the next page... Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 65 Freescale Semiconductor, Inc. Pinout Table 51. Recommended connection for unused analog interfaces (continued) Pin Type Short recommendation Detailed recommendation GPIO/Analog PTA19/XTAL0 Float Analog output - Float GPIO/Analog PTx/ADCx Float Float (default is analog input) GPIO/Analog PTx/CMPx Float Float (default is analog input) GPIO/Digital PTA0/JTAG_TCLK Float Float (default is JTAG with pulldown) GPIO/Digital PTA1/JTAG_TDI Float Float (default is JTAG with pullup) GPIO/Digital PTA2/JTAG_TDO Float Float (default is JTAG with pullup) GPIO/Digital PTA3/JTAG_TMS Float Float (default is JTAG with pullup) GPIO/Digital PTA4/NMI_b 10kΩ pullup or disable and float Pull high or disable in PCR & FOPT and float GPIO/Digital PTx Float Float (default is disabled) USB USB0_DP Float Float USB USB0_DM Float Float USB VOUT33 Tie to input and ground through 10kΩ Tie to input and ground through 10kΩ USB VREGIN Tie to output and ground through 10kΩ Tie to output and ground through 10kΩ VBAT VBAT Float Float VDDA VDDA Always connect to VDD potential Always connect to VDD potential VREFH VREFH Always connect to VDD potential Always connect to VDD potential VREFL VREFL Always connect to VSS potential Always connect to VSS potential VSSA VSSA Always connect to VSS potential Always connect to VSS potential 5.3 K22 Pinouts The following figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. 66 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Part identification 1 2 3 4 5 6 7 8 9 10 PTD5 PTE1/ LLWU_P0 PTE2/ LLWU_P1 PTE3 A VDD VSS B A PTC4/ PTC6/ LLWU_P8 LLWU_P10 PTC8 PTC11/ LLWU_P11 PTC17 PTD2/ LLWU_P13 B PTC1/ LLWU_P6 PTC5/ LLWU_P9 PTC7 PTC10 PTC16 PTD1 PTD4/ PTE4/ LLWU_P14 LLWU_P2 C PTC0 PTC2 PTC3/ LLWU_P7 PTC9 PTD0/ LLWU_P12 PTD3 PTD6/ LLWU_P15 PTE5 VOUT33 USB0_DP C D PTB16 PTB17 PTB18 PTB19 VDD VDD PTD7 VSS VREGIN USB0_DM D E PTB11 PTB10 PTB1 VSS VSS VDD F PTB3 PTB2 PTB0/ LLWU_P5 PTA3 PTA2 PTA1 G RESET_b VSS PTA17 PTA15 PTA14 H PTA19 PTA18 PTA16 PTA13/ LLWU_P4 PTA5 VREF_OUT/ PTE0/ CMP1_IN5/ ADC0_DP0/ ADC1_DP1/ CLKOUT32K CMP0_IN5/ ADC1_DP3 ADC0_DP2 ADC1_SE18 PTA0 DAC0_OUT/ CMP1_IN3/ ADC0_DM0/ ADC1_DM1/ ADC0_SE23ADC1_DM3 ADC0_DM2 PTA4/ RTC_ LLWU_P3 WAKEUP_B PTA12 VBAT E F XTAL32 VDDA VREFH G EXTAL32 VSSA VREFL H Figure 32. K22F 80 WLCSP pinout diagram (transparent top view) 6 Part identification 6.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 6.2 Format Part numbers for this device have the following format: Q K## A M FFF R T PP CC N Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 67 Freescale Semiconductor, Inc. Part identification 6.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow, full reel • P = Prequalification • K = Fully qualified, general market flow, 100 piece reel K## Kinetis family • K22 A Key attribute • D = Cortex-M4 w/ DSP • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory FFF Program flash memory size • 128 = 128 KB • 256 = 256 KB • 512 = 512 KB R Silicon revision • Z = Initial • (Blank) = Main • A = Revision after main T Temperature range (°C) • C = –40 to 85 PP Package identifier • AP = 80 WLCSP (4.13 mm x 3.56 mm x 0.564 mm) • BP = 80 WLCSP (4.13 mm x 3.56 mm x 0.321 mm) CC Maximum CPU frequency (MHz) • 12 = 120 MHz N Packaging type • R = Tape and reel 6.4 Example This is an example part number: MK22FN512CAP12R 6.5 80-pin WLCSP part marking The 80-pin WLCSP package parts follow the part-marking scheme in the following table. 68 Freescale Semiconductor, Inc. Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 Revision History Table 52. 80-pin WLCSP part marking MK Part number MK Part Marking MK22FN512CAP12R MK22FN512CAP12 MK22FN256CAP12R MK22FN256CAP12 MK22FN512CBP12R MK22FN512CBP12 7 Revision History The following table provides a revision history for this document. Table 53. Revision History Rev. No. Date 6 10/2015 5 4/2015 Substantial Changes • Throughout: Removed notes related to limited availability of the 80-pin WLCSP (BP) • In "Power consumption operating behaviors" section, added "Low power mode peripheral adders—typical value" table • In "Thermal operating requirements" table, in footnote, corrected "TJ = TA + ΘJA" to "TJ = TA + RΘJA" • Updated "IRC48M specifications" table • Updated "NVM program/erase timing specifications" table; removed row for thversall and added row for thversblk256k • Updated "Flash command timing specifications" table; added rows for trd1blk256k and tersblk256k • In "Slave mode DSPI timing (limited voltage range)" table, added footnote regarding maximum frequency of operation • Added new section, "Recommended connections for unused analog and digital pins" Initial public release Kinetis K22F 512KB Flash 80-Pin WLCSP, Rev. 6 10/2015 69 Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. The USB-IF Logo is a registered trademark of USB Implementers Forum, Inc. All rights reserved. © 2014–2015 Freescale Semiconductor, Inc. Document Number K22P80M120SF7 Revision 6 10/2015