Data Sheet

Freescale Semiconductor, Inc.
Data Sheet: Technical Data
K02P64M100SFA
Rev. 3, 4/2015
Kinetis K02 64 KB/128 KB Flash
100 MHz Cortex-M4 Based Microcontroller with FPU
Ideal for low-power applications that require processing
efficiency. These devices share the comprehensive enablement
and scalability of the Kinetis family.
This product offers:
• Run power consumption down to 117.5 µA/MHz and static
power consumption down to 2.8 µA with full state retention
and 5.7 µs wakeup. Lowest static mode down to 70 nA.
• Excellent processing efficiency, 100 MHz ARM® Cortex®M4-based device with floating-point unit in a tiny form factor
MK02FN128Vxx10
MK02FN64Vxx10
64 LQFP (LH)
10 x 10 x 1.4 Pitch 0.5
mm
48 LQFP (LF)
7 x 7 x 1.4 Pitch 0.5
mm
32 QFN (FM)
5 x 5 x 1 Pitch 0.5 mm
Performance
• 100 MHz ARM Cortex-M4 core with DSP instructions
delivering 1.25 Dhrystone MIPS per MHz
Memories and memory interfaces
• Up to 128 KB of embedded flash and 16 KB of RAM
• Preprogrammed Kinetis flashloader for one-time, insystem factory programming
Analog modules
• One 16-bit SAR ADC (1.2 MS/s in 12bit mode)
• One 12-bit DAC
• Two analog comparators (CMP) with 6- bit DAC
• Accurate internal voltage reference (not available in
32-pin QFN package)
Communication interfaces
• One SPI module
• Two UART modules
• One I2C: Support for up to 1 Mbps operation
System peripherals
• Flexible low-power modes, multiple wake up sources
• 4-channel DMA controller
• Independent External and Software Watchdog monitor Timers
• One 6-channel general-purpose/PWM timer
Clocks
• Two 2-channel general-purpose timers with
• Crystal oscillator: 32-40 kHz or 3-32 MHz
quadrature decoder functionality (FTM2 does not
• Three internal oscillators: 32 kHz, 4 MHz, and 48 MHz
have external pins on the 32-pin QFN or the 48-pin
• Multi-purpose clock generator with FLL
LQFP package)
• Periodic interrupt timers
Security and integrity modules
• 16-bit low-power timer
• Hardware CRC module
• Programmable delay block
• 128-bit unique identification (ID) number per chip
• Flash access control to protect proprietary software
Operating Characteristics
• Voltage range (including flash writes): 1.71 to 3.6 V
Human-machine interface
• Temperature range (ambient): -40 to 105°C
• Up to 46 general-purpose I/O (GPIO)
© 2014–2015 Freescale Semiconductor, Inc. All rights reserved.
Ordering Information
Part Number
Memory
Number of GPIOs
Flash (KB)
SRAM (KB)
MK02FN128VLH10
128
16
46
MK02FN128VLF10
128
16
35
MK02FN128VFM10
128
16
26
MK02FN64VLH10
64
16
46
MK02FN64VLF10
64
16
35
MK02FN64VFM10
64
16
26
Related Resources
Type
Description
Selector Guide
The Freescale Solution Advisor is a web-based tool that features interactive application wizards and
a dynamic product selector.
Product Brief
The Product Brief contains concise overview/summary information to enable quick evaluation of a
device for design suitability.
Reference Manual
The Reference Manual contains a comprehensive description of the structure and function
(operation) of a device.
Data Sheet
The Data Sheet includes electrical characteristics and signal connections.
Chip Errata
The chip mask set Errata provides additional or corrective information for a particular device mask
set.
Package drawing
Package dimensions are provided in package drawings.
Figure 1 shows the functional modules in the chip.
2
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
ARM ® Cortex™-M4
Core
Debug
interfaces
Interrupt
controller
System
DMA (4 ch)
DSP
FPU
Program
flash
(Up to 128 KB)
RAM
(16 KB)
Clocks
Frequencylocked loop
Low-leakage
wakeup
Low/high
frequency
oscillators
Internal
and external
watchdogs
Internal
reference
clocks
Security
Analog
Timers
CRC
16-bit
SAR ADC x1
Timers
x1 (6ch)
x2 (2ch)
Flash access
control
Comparator
with 6-bit DAC
x2
Programmable
12-bit DAC
x1
Periodic
interrupt
timers
High
performance
voltage ref
16-bit
low-power
timer
and Integrity
Memories and Memory Interfaces
delay block
Communication Interfaces
2
I C
x1
UART
x2
Human-Machine
Interface (HMI)
Up to
46 GPIOs
SPI
x1
Figure 1. Functional block diagram
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
3
Freescale Semiconductor, Inc.
Table of Contents
1 Ratings................................................................................................5
1.1 Thermal handling ratings........................................................... 5
1.2 Moisture handling ratings.......................................................... 5
1.3 ESD handling ratings................................................................. 5
1.4 Voltage and current operating ratings........................................5
2 General............................................................................................... 6
2.1 AC electrical characteristics...................................................... 6
2.2 Nonswitching electrical specifications...................................... 6
2.2.1 Voltage and current operating requirements................ 6
2.2.2 LVD and POR operating requirements........................ 7
2.2.3 Voltage and current operating behaviors......................8
2.2.4 Power mode transition operating behaviors................. 9
2.2.5 Power consumption operating behaviors..................... 10
2.2.6 EMC radiated emissions operating behaviors.............. 15
2.2.7 Designing with radiated emissions in mind................. 16
2.2.8 Capacitance attributes...................................................16
2.3 Switching specifications............................................................ 16
2.3.1 Device clock specifications.......................................... 16
2.3.2 General switching specifications..................................17
2.4 Thermal specifications...............................................................17
2.4.1 Thermal operating requirements.................................. 17
2.4.2 Thermal attributes.........................................................18
3 Peripheral operating requirements and behaviors.............................. 19
3.1 Core modules............................................................................. 19
3.1.1 SWD electricals ...........................................................19
3.1.2 JTAG electricals........................................................... 21
3.2 System modules......................................................................... 23
3.3 Clock modules........................................................................... 23
3.3.1 MCG specifications......................................................23
4
Freescale Semiconductor, Inc.
4
5
6
7
3.3.2 IRC48M specifications.................................................25
3.3.3 Oscillator electrical specifications................................25
3.4 Memories and memory interfaces..............................................28
3.4.1 Flash electrical specifications.......................................28
3.5 Security and integrity modules.................................................. 29
3.6 Analog........................................................................................29
3.6.1 ADC electrical specifications.......................................29
3.6.2 CMP and 6-bit DAC electrical specifications.............. 34
3.6.3 12-bit DAC electrical characteristics........................... 36
3.6.4 Voltage reference electrical specifications...................39
3.7 Timers........................................................................................ 40
3.8 Communication interfaces......................................................... 40
3.8.1 DSPI switching specifications (limited voltage range) 41
3.8.2 DSPI switching specifications (full voltage range)......42
3.8.3 Inter-Integrated Circuit Interface (I2C) timing............ 44
3.8.4 UART switching specifications....................................45
Dimensions.........................................................................................46
4.1 Obtaining package dimensions.................................................. 46
Pinout................................................................................................. 46
5.1 K02F Signal Multiplexing and Pin Assignments...................... 46
5.2 K02F Pinouts............................................................................. 49
Part identification............................................................................... 51
6.1 Description.................................................................................51
6.2 Format........................................................................................51
6.3 Fields..........................................................................................52
6.4 Example..................................................................................... 52
6.5 48-pin LQFP part marking.........................................................53
6.6 32-pin QFN part marking.......................................................... 53
Revision History.................................................................................53
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Ratings
1 Ratings
1.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device
model
-500
+500
V
2
Latch-up current at ambient temperature of 105°C
-100
+100
mA
3
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
1.4 Voltage and current operating ratings
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
5
Freescale Semiconductor, Inc.
General
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
145
mA
VDIO
Digital input voltage
–0.3
VDD + 0.3
V
VAIO
Analog1
–0.3
VDD + 0.3
V
–25
25
mA
VDD – 0.3
VDD + 0.3
V
ID
VDDA
Maximum current single pin limit (applies to all digital pins)
Analog supply voltage
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
2 General
2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
VIH
Input Signal
High
Low
80%
50%
20%
Midpoint1
Fall Time
VIL
Rise Time
The midpoint is VIL + (VIH - VIL) / 2
Figure 2. Input signal measurement reference
2.2 Nonswitching electrical specifications
2.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
Notes
Table continues on the next page...
6
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
General
Table 1. Voltage and current operating requirements (continued)
Symbol
Description
Min.
Max.
Unit
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
0.7 × VDD
—
V
0.75 × VDD
—
V
—
0.35 × VDD
V
—
0.3 × VDD
V
0.06 × VDD
—
V
VDDA
VIH
Input high voltage
• 2.7 V ≤ VDD ≤ 3.6 V
Notes
• 1.7 V ≤ VDD ≤ 2.7 V
VIL
Input low voltage
• 2.7 V ≤ VDD ≤ 3.6 V
• 1.7 V ≤ VDD ≤ 2.7 V
VHYS
Input hysteresis
IICIO
Analog and I/O pin DC injection current — single pin
• VIN < VSS-0.3V (Negative current injection)
IICcont
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
• Negative current injection
1
-3
—
mA
-25
—
mA
VODPU
Open drain pullup voltage level
VDD
VDD
V
VRAM
VDD voltage required to retain RAM
1.2
—
V
2
1. All analog and I/O pins are internally clamped to VSS through ESD protection diodes. If VIN is less than VIO_MIN or
greater than VIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is
calculated as R=(VIO_MIN-VIN)/|IICIO|.
2. Open drain outputs must be pulled to VDD.
2.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
2.48
2.56
2.64
V
Low-voltage warning thresholds — high range
Notes
1
VLVW1H
• Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV=01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV=10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV=11)
2.92
3.00
3.08
V
Table continues on the next page...
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
7
Freescale Semiconductor, Inc.
General
Table 2. VDD supply LVD and POR operating requirements (continued)
Symbol
Description
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low
range (LVDV=00)
Min.
Typ.
Max.
Unit
—
80
—
mV
1.54
1.60
1.66
V
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV=01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV=10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV=11)
2.04
2.10
2.16
V
—
60
—
mV
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
Notes
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
1. Rising threshold is the sum of falling threshold and hysteresis voltage
2.2.3 Voltage and current operating behaviors
Table 3. Voltage and current operating behaviors
Symbol
Min.
Typ.
Max.
Unit
Notes
2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA
VDD – 0.5
—
—
V
1
1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA
VDD – 0.5
—
—
V
2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA
VDD – 0.5
—
—
V
1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA
VDD – 0.5
—
—
V
IOHT
Output high current total for all ports
—
—
100
mA
VOL
Output low voltage — Normal drive pad except
RESET_B
2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA
—
—
0.5
V
1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA
—
—
0.5
V
2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA
—
—
0.5
V
1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA
—
—
0.5
V
VOH
VOH
VOL
VOL
Description
Output high voltage — Normal drive pad except
RESET_B
Output high voltage — High drive pad except
RESET_B
1
1
Output low voltage — High drive pad except
RESET_B
1
Output low voltage — RESET_B
Table continues on the next page...
8
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
General
Table 3. Voltage and current operating behaviors (continued)
Symbol
Min.
Typ.
Max.
Unit
2.7 V ≤ VDD ≤ 3.6 V, IOL = 3 mA
—
—
0.5
V
1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA
—
—
0.5
V
Output low current total for all ports
—
—
100
mA
All pins other than high drive port pins
—
0.002
0.5
μA
High drive port pins
—
0.004
0.5
μA
Input leakage current (total all pins) for full
temperature range
—
—
1.0
μA
2
RPU
Internal pullup resistors
20
—
50
kΩ
3
RPD
Internal pulldown resistors
20
—
50
kΩ
4
IOLT
IIN
IIN
Description
Notes
Input leakage current (per pin) for full
temperature range
1, 2
1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7 I/O have both high drive and normal drive capability
selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
2. Measured at VDD=3.6V
3. Measured at VDD supply voltage = VDD min and Vinput = VSS
4. Measured at VDD supply voltage = VDD min and Vinput = VDD
2.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx→RUN recovery times in the following
table assume this clock configuration:
•
•
•
•
CPU and system clocks = 72 MHz
Bus clock = 36 MHz
Flash clock = 24 MHz
MCG mode: FEI
Table 4. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the
point VDD reaches 1.71 V to execution of the
first instruction across the operating
temperature range of the chip.
Min.
Typ.
Max.
Unit
Notes
—
—
300
μs
1
—
—
135
μs
—
—
135
μs
—
—
75
μs
• VLLS0 → RUN
• VLLS1 → RUN
• VLLS2 → RUN
Table continues on the next page...
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
9
Freescale Semiconductor, Inc.
General
Table 4. Power mode transition operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
—
—
75
μs
—
—
5.7
μs
—
—
5.7
μs
Notes
• VLLS3 → RUN
• VLPS → RUN
• STOP → RUN
1. Normal boot (FTFA_OPT[LPBOOT]=1)
2.2.5 Power consumption operating behaviors
The current parameters in the table below are derived from code executing a while(1)
loop from flash, unless otherwise noted.
The IDD typical values represent the statistical mean at 25°C, and the IDD maximum
values for RUN, WAIT, VLPR, and VLPW represent data collected at 125°C junction
temperature unless otherwise noted. The maximum values represent characterized
results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).
Table 5. Power consumption operating behaviors
Symbol
IDDA
Description
Min.
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
@ 1.8V
—
18.70
19.37
mA
2, 3, 4
@ 3.0V
—
18.71
19.38
mA
@ 1.8V
—
18.13
18.80
mA
@ 3.0V
—
18.19
18.86
mA
@ 1.8V
—
22.2
22.87
mA
@ 3.0V
—
22.4
23.07
mA
@ 1.8V
—
12.74
13.41
mA
@ 3.0V
—
12.82
13.49
mA
Analog supply current
IDD_HSRUN High Speed Run mode current - all peripheral
clocks disabled, CoreMark benchmark code
executing from flash
IDD_HSRUN High Speed Run mode current - all peripheral
clocks disabled, code executing from flash
4
IDD_HSRUN High Speed Run mode current — all peripheral
clocks enabled, code executing from flash
IDD_RUN
5
Run mode current in Compute operation —
CoreMark benchmark code executing from flash
2, 3, 6
Table continues on the next page...
10
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
General
Table 5. Power consumption operating behaviors (continued)
Symbol
Description
IDD_RUN
Run mode current in Compute operation —
code executing from flash
IDD_RUN
IDD_RUN
Min.
Typ.
Max.
Unit
Notes
@ 1.8V
—
12.10
13.10
mA
6
@ 3.0V
—
12.20
13.37
mA
@ 1.8V
—
12.8
13.47
mA
@ 3.0V
—
12.9
13.57
mA
—
14.8
15.47
mA
• @ 25°C
—
14.9
15.57
mA
• @ 70°C
—
14.9
15.57
mA
• @ 85°C
—
14.9
15.57
mA
• @ 105°C
—
15.5
16.20
mA
—
12.1
12.77
mA
• @ 25°C
—
12.2
12.87
mA
• @ 70°C
—
12.2
12.87
mA
• @ 85°C
—
12.2
12.87
mA
• @ 105°C
—
12.7
13.37
mA
Run mode current — all peripheral clocks
disabled, code executing from flash
7
Run mode current — all peripheral clocks
enabled, code executing from flash
@ 1.8V
8
@ 3.0V
IDD_RUN
Run mode current — Compute operation, code
executing from flash
@ 1.8V
9
@ 3.0V
IDD_WAIT
Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
—
5.5
6.17
mA
7
IDD_WAIT
Wait mode reduced frequency current at 3.0 V
— all peripheral clocks disabled
—
3.5
4.17
mA
10
IDD_VLPR
Very-low-power run mode current in Compute
operation — CoreMark benchmark code
executing from flash
@ 1.8V
—
0.58
0.86
mA
2, 11, 3
@ 3.0V
—
0.59
0.87
mA
@ 1.8V
—
0.47
0.75
mA
@ 3.0V
—
0.47
0.75
mA
Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
—
0.62
0.90
mA
IDD_VLPR
IDD_VLPR
Very-low-power run mode current in Compute
operation, code executing from flash
11
12
Table continues on the next page...
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
11
Freescale Semiconductor, Inc.
General
Table 5. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
—
0.76
1.04
mA
13
IDD_VLPW
Very-low-power wait mode current at 3.0 V — all
peripheral clocks disabled
—
0.28
0.56
mA
14
IDD_STOP
Stop mode current at 3.0 V
@ -40°C to 25°C
—
0.26
0.33
mA
@ 70°C
—
0.30
0.47
mA
@ 85°C
—
0.35
0.52
mA
@ 105°C
—
0.43
0.60
mA
IDD_VLPS
Very-low-power stop mode current at 3.0 V
@ -40°C to 25°C
—
2.80
8.30
µA
@ 70°C
—
13.30
29.90
µA
@ 85°C
—
26.90
46.45
µA
@ 105°C
—
56.80
67.05
µA
@ -40°C to 25°C
—
1.3
1.71
µA
@ 70°C
—
3.8
5.35
µA
@ 85°C
—
7.6
8.50
µA
@ 105°C
—
15.1
19.05
µA
@ -40°C to 25°C
—
1.3
1.55
µA
@ 70°C
—
3.1
4.05
µA
@ 85°C
—
7.2
8.60
µA
@ 105°C
—
12.0
14.10
µA
@ -40°C to 25°C
—
0.63
0.87
µA
@ 70°C
—
1.70
2.35
µA
@ 85°C
—
2.8
3.40
µA
@ 105°C
—
7.6
8.80
µA
@ -40°C to 25°C
—
0.35
0.46
µA
@ 70°C
—
1.38
1.94
µA
@ 85°C
—
2.4
2.95
µA
@ 105°C
—
7.3
8.45
µA
@ -40°C to 25°C
—
0.07
0.16
µA
@ 70°C
—
1.05
1.78
µA
@ 85°C
—
2.1
2.80
µA
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
Table continues on the next page...
12
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
General
Table 5. Power consumption operating behaviors (continued)
Symbol
Description
@ 105°C
Min.
Typ.
Max.
Unit
—
6.9
8.25
µA
Notes
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.
See each module's specification for its supply current.
2. Cache on and prefetch on, low compiler optimization
3. CoreMark benchmark compiled using IAR 7.2 with optimization level low
4. 100 MHz core and system clock, 50 MHz bus clock, and 25 MHz flash clock. MCG configured for FEE mode. All
peripheral clocks disabled.
5. 100 MHz core and system clock, 50 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All
peripheral clocks enabled.
6. 72 MHz core and system clock, 36 MHz bus clock and 24 MHz flash clock. MCG configured for FEE mode. All
peripheral clocks disabled. Compute operation.
7. 72 MHz core and system clock, 36 MHz bus clock, and 24 MHz flash clock. MCG configured for FEI mode. All
peripheral clocks disabled.
8. 72 MHz core and system clock, 36 MHz bus clock, and 24 MHz flash clock. MCG configured for FEI mode. All
peripheral clocks enabled.
9. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEI mode. Compute
operation.
10. 25 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode.
11. 4 MHz core, system, and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. Compute operation.
Code executing from flash.
12. 4 MHz core, system, and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
disabled. Code executing from flash.
13. 4 MHz core, system, and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
enabled, but peripherals are not in active operation. Code executing from flash.
14. 4 MHz core, system, and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks
disabled.
2.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
• MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at
frequencies between 50 MHz and 100MHz.
• No GPIOs toggled
• Code execution from flash with cache enabled
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
13
Freescale Semiconductor, Inc.
General
Figure 3. Run mode supply current vs. core frequency
14
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
General
Figure 4. VLPR mode supply current vs. core frequency
2.2.6 EMC radiated emissions operating behaviors
Table 6. EMC radiated emissions operating behaviors for 64 LQFP package
Parame Conditions
ter
VEME
Clocks
Frequency range
Level
(Typ.)
Unit
Notes
Device configuration,
FSYS = 100 MHz
150 kHz–50 MHz
test conditions and EM
50 MHz–150 MHz
FBUS = 50 MHz
testing per standard IEC
External crystal = 10 MHz 150 MHz–500 MHz
61967-2.
500 MHz–1000 MHz
Supply voltage: VDD =
11
dBuV
1, 2, 3
3.3 V
N
IEC level
12
11
8
4
Temp = 25°C
1. Measurements were made per IEC 61967-2 while the device was running typical application code.
2. Measurements were performed on a similar 64LQFP device.
3. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number,
from among the measured orientations in each frequency range.
4. IEC Level Maximums: N ≤ 12dBmV, M ≤ 18dBmV, L ≤ 24dBmV, K ≤ 30dBmV, I ≤ 36dBmV .
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
15
Freescale Semiconductor, Inc.
General
2.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”
2.2.8 Capacitance attributes
Table 7. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
2.3 Switching specifications
2.3.1 Device clock specifications
Table 8. Device clock specifications
Symbol
Description
Min.
Max.
Unit
Notes
High Speed run mode
fSYS
System and core clock
—
100
MHz
fBUS
Bus clock
—
50
MHz
Normal run mode (and High Speed run mode unless otherwise specified above)
fSYS
System and core clock
—
72
MHz
fBUS
Bus clock
—
50
MHz
fFLASH
Flash clock
—
25
MHz
fLPTMR
LPTMR clock
—
25
MHz
VLPR
mode1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
4
MHz
fFLASH
Flash clock
—
1
MHz
fERCLK
External reference clock
—
16
MHz
LPTMR clock
—
25
MHz
—
16
MHz
fLPTMR_pin
fLPTMR_ERCLK LPTMR external reference clock
16
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
General
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for
any other module.
2.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
and timers.
Table 9. General switching specifications
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5
—
Bus clock
cycles
1, 2
External RESET and NMI pin interrupt pulse width —
Asynchronous path
100
—
ns
3
GPIO pin interrupt pulse width (digital glitch filter
disabled, passive filter disabled) — Asynchronous
path
50
—
ns
4
Port rise and fall time
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
5
—
—
• 2.7 ≤ VDD ≤ 3.6V
• Slew enabled
• 1.71 ≤ VDD ≤ 2.7V
• 2.7 ≤ VDD ≤ 3.6V
10
ns
5
ns
30
ns
16
ns
—
—
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses
may or may not be recognized. In Stop, VLPS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can
be recognized in that case.
2. The greater of synchronous and asynchronous timing must be met.
3. These pins have a passive filter enabled on the inputs. This is the shortest pulse width that is guaranteed to be
recognized.
4. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be
recognized.
5. 25 pF load
2.4 Thermal specifications
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
17
Freescale Semiconductor, Inc.
General
2.4.1 Thermal operating requirements
Table 10. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
Notes
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to
determine TJ is: TJ = TA + ΘJA X chip power dissipation.
2.4.2 Thermal attributes
Board type
Symbol
Description
64 LQFP
48 LQFP
32 QFN
Unit
Notes
Single-layer
(1s)
RθJA
Thermal
resistance,
junction to
ambient
(natural
convection)
66
TBD
97
°C/W
1
Four-layer
(2s2p)
RθJA
Thermal
resistance,
junction to
ambient
(natural
convection)
48
TBD
33
°C/W
1
Single-layer
(1s)
RθJMA
Thermal
resistance,
junction to
ambient (200
ft./min. air
speed)
54
TBD
81
°C/W
1
Four-layer
(2s2p)
RθJMA
Thermal
resistance,
junction to
ambient (200
ft./min. air
speed)
41
TBD
28
°C/W
1
—
RθJB
Thermal
resistance,
junction to
board
30
TBD
13
°C/W
2
—
RθJC
Thermal
resistance,
junction to
case
17
TBD
2.0
°C/W
3
—
ΨJT
Thermal
3
characterizati
on
TBD
6
°C/W
4
18
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
Board type
Symbol
Description
64 LQFP
48 LQFP
32 QFN
Unit
Notes
parameter,
junction to
package top
outside
center
(natural
convection)
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test
Method Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
NOTES:
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits
Thermal Test Method Environmental Conditions—Natural Convection (Still Air)
with the single layer board horizontal. Board meets JESD51-9 specification.
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal
Test Method Environmental Conditions—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method
Standard, Microcircuits, with the cold plate temperature used for the case
temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits
Thermal Test Method Environmental Conditions—Natural Convection (Still Air).
3 Peripheral operating requirements and behaviors
3.1 Core modules
3.1.1 SWD electricals
Table 11. SWD full voltage range electricals
Symbol
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
Table continues on the next page...
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
19
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 11. SWD full voltage range electricals (continued)
Symbol
S1
Description
Min.
Max.
Unit
0
33
MHz
1/S1
—
ns
15
—
ns
SWD_CLK frequency of operation
• Serial wire debug
S2
SWD_CLK cycle period
S3
SWD_CLK clock pulse width
• Serial wire debug
S4
SWD_CLK rise and fall times
—
3
ns
S9
SWD_DIO input data setup time to SWD_CLK rise
8
—
ns
S10
SWD_DIO input data hold time after SWD_CLK rise
1.4
—
ns
S11
SWD_CLK high to SWD_DIO data valid
—
25
ns
S12
SWD_CLK high to SWD_DIO high-Z
5
—
ns
S2
S3
S3
SWD_CLK (input)
S4
S4
Figure 5. Serial wire clock input timing
SWD_CLK
S9
SWD_DIO
S10
Input data valid
S11
SWD_DIO
Output data valid
S12
SWD_DIO
S11
SWD_DIO
Output data valid
Figure 6. Serial wire data timing
20
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
3.1.2 JTAG electricals
Table 12. JTAG limited voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
20
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
25
—
ns
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
1
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1
—
ns
J11
TCLK low to TDO data valid
—
19
ns
J12
TCLK low to TDO high-Z
—
19
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
Table 13. JTAG full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
15
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
33
—
ns
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
Table continues on the next page...
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
21
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 13. JTAG full voltage range electricals (continued)
Symbol
Description
Min.
Max.
Unit
J6
Boundary scan input data hold time after TCLK rise
1.4
—
ns
J7
TCLK low to boundary scan output data valid
—
27
ns
J8
TCLK low to boundary scan output high-Z
—
27
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1.4
—
ns
J11
TCLK low to TDO data valid
—
26.2
ns
J12
TCLK low to TDO high-Z
—
26.2
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
J2
J3
J3
TCLK (input)
J4
J4
Figure 7. Test clock input timing
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
J8
Data outputs
J7
Data outputs
Output data valid
Figure 8. Boundary scan (JTAG) timing
22
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 9. Test Access Port timing
TCLK
J14
J13
TRST
Figure 10. TRST timing
3.2 System modules
There are no specifications necessary for the device's system modules.
3.3 Clock modules
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
23
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.3.1 MCG specifications
Table 14. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
—
32.768
—
kHz
Δfints_t
Total deviation of internal reference frequency
(slow clock) over voltage and temperature
—
+0.5/-0.7
±2
%
31.25
—
39.0625
kHz
—
± 0.3
± 0.6
%fdco
1
fints_t
Internal reference frequency (slow clock) —
user trimmed
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
+0.5/-0.7
±2
%fdco
1, 2
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
—
± 0.3
± 1.5
%fdco
1
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
—
4
—
MHz
Δfintf_ft
Frequency deviation of internal reference clock
(fast clock) over temperature and voltage —
factory trimmed at nominal VDD and 25 °C
—
+1/-2
±5
%fintf_ft
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
fintf_ft
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
71.99
—
MHz
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS=00)
3, 4
640 × ffll_ref
Mid range (DRS=01)
1280 × ffll_ref
Mid-high range (DRS=10)
1920 × ffll_ref
High range (DRS=11)
2560 × ffll_ref
fdco_t_DMX3 DCO output
frequency
2
Low range (DRS=00)
5, 6
732 × ffll_ref
Mid range (DRS=01)
1464 × ffll_ref
Mid-high range (DRS=10)
Table continues on the next page...
24
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
Table 14. MCG specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
—
95.98
—
MHz
Notes
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
Jcyc_fll
FLL period jitter
• fVCO = 48 MHz
• fVCO = 98 MHz
tfll_acquire
—
—
180
—
ps
—
—
150
FLL target frequency acquisition time
—
—
1
ms
7
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. 2.0 V <= VDD <= 3.6 V.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency
deviation (Δfdco_t) over voltage and temperature should be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
3.3.2 IRC48M specifications
Table 15. IRC48M specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDD48M
Supply current
—
400
500
μA
firc48m
Internal reference frequency
—
48
—
MHz
Δfirc48m_lv
Total deviation of IRC48M frequency at low voltage
(VDD=1.71V-1.89V) over full temperature
—
± 0.5
± 2.0
%firc48m
Δfirc48m_hv
Total deviation of IRC48M frequency at high voltage
(VDD=1.89V-3.6V) over full temperature
—
± 0.5
± 1.5
%firc48m
Δfirc48m_hv
Total deviation of IRC48M frequency at high voltage
(VDD=1.89V-3.6V) over -40°C to 85°C
—
± 0.5
± 1.0
%firc48m
Jcyc_irc48m
Period Jitter (RMS)
—
35
150
ps
Startup time
—
2
3
μs
tirc48mst
Notes
1
1. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable
the clock by one of the following settings:
• MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10, or
• SIM_SOPT2[PLLFLLSEL]=11
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
25
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.3.3 Oscillator electrical specifications
3.3.3.1
Oscillator DC electrical specifications
Table 16. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
IDDOSC
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high-gain mode (HGO=1)
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain
mode (HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
RS
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
Table continues on the next page...
26
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
Table 16. Oscillator DC electrical specifications (continued)
Symbol
5
Vpp
1.
2.
3.
4.
5.
Description
Min.
Typ.
Max.
Unit
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Notes
VDD=3.3 V, Temperature =25 °C
See crystal or resonator manufacturer's recommendation
Cx and Cy can be provided by using either integrated capacitors or external components.
When low-power mode is selected, RF is integrated and must not be attached externally.
The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other device.
3.3.3.2
Symbol
Oscillator frequency specifications
Table 17. Oscillator frequency specifications
Min.
Typ.
Max.
Unit
Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency —
high-frequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency —
high frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
50
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
fosc_lo
tcst
Description
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
27
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
3.4 Memories and memory interfaces
3.4.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
3.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 18. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
thvpgm4
Longword Program high-voltage time
—
7.5
18
μs
—
thversscr
Sector Erase high-voltage time
—
13
113
ms
1
thversall
Erase All high-voltage time
—
52
452
ms
1
1. Maximum time based on expectations at cycling end-of-life.
3.4.1.2
Flash timing specifications — commands
Table 19. Flash command timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
trd1sec2k
tpgmchk
Read 1s Section execution time (flash sector)
—
—
60
μs
1
Program Check execution time
—
—
45
μs
1
trdrsrc
Read Resource execution time
—
—
30
μs
1
tpgm4
Program Longword execution time
—
65
145
μs
—
tersscr
Erase Flash Sector execution time
—
14
114
ms
2
trd1all
Read 1s All Blocks execution time
—
—
0.9
ms
1
trdonce
Read Once execution time
—
—
30
μs
1
Program Once execution time
—
100
—
μs
—
tersall
Erase All Blocks execution time
—
140
1150
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
tpgmonce
1. Assumes 25 MHz flash clock frequency.
28
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3.4.1.3
Flash high voltage current behaviors
Table 20. Flash high voltage current behaviors
Symbol
Description
IDD_PGM
IDD_ERS
3.4.1.4
Symbol
Min.
Typ.
Max.
Unit
Average current adder during high voltage
flash programming operation
—
2.5
6.0
mA
Average current adder during high voltage
flash erase operation
—
1.5
4.0
mA
Reliability specifications
Table 21. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles
5
50
—
years
—
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
—
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.
3.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
3.6 Analog
3.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 22 and Table 23 are achievable on
the differential pins ADCx_DPx, ADCx_DMx.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
29
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.6.1.1
16-bit ADC operating conditions
Table 22. 16-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDD – VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS – VSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
VREFL
ADC reference
voltage low
VSSA
VSSA
VSSA
V
VADIN
Input voltage
• 16-bit differential mode
VREFL
—
31/32 *
VREFH
V
• All other modes
VREFL
—
• 16-bit mode
—
8
10
• 8-bit / 10-bit / 12-bit
modes
—
4
5
—
2
5
CADIN
RADIN
RAS
Input
capacitance
Input series
resistance
Notes
VREFH
pF
kΩ
Analog source
resistance
(external)
13-bit / 12-bit modes
fADCK < 4 MHz
—
—
5
kΩ
fADCK
ADC conversion
clock frequency
≤ 13-bit mode
1.0
—
24.0
MHz
4
fADCK
ADC conversion
clock frequency
16-bit mode
2.0
—
12.0
MHz
4
Crate
ADC conversion
rate
≤ 13-bit modes
No ADC hardware averaging
3
5
20
—
1200
Ksps
Continuous conversions
enabled, subsequent
conversion time
Crate
ADC conversion
rate
16-bit mode
No ADC hardware averaging
5
37
—
461
Ksps
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The
RAS/CAS time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
30
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
ZAS
RAS
ADC SAR
ENGINE
RADIN
VADIN
CAS
VAS
RADIN
INPUT PIN
RADIN
INPUT PIN
RADIN
INPUT PIN
CADIN
Figure 11. ADC input impedance equivalency diagram
3.6.1.2
16-bit ADC electrical characteristics
Table 23. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
Conditions1
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
• ADLPC = 1, ADHSC = 0
1.2
2.4
3.9
MHz
• ADLPC = 1, ADHSC = 1
2.4
4.0
6.1
MHz
tADACK =
1/fADACK
• ADLPC = 0, ADHSC = 0
3.0
5.2
7.3
MHz
• ADLPC = 0, ADHSC = 1
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
IDDA_ADC Supply current
fADACK
ADC
asynchronous
clock source
Sample Time
TUE
DNL
INL
See Reference Manual chapter for sample times
Total
unadjusted
error
• 12-bit modes
—
±4
±6.8
• <12-bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12-bit modes
—
±0.7
–1.1 to
+1.9
• <12-bit modes
—
±0.2
• 12-bit modes
—
±1.0
Integral nonlinearity
–0.3 to
0.5
–2.7 to
+1.9
Table continues on the next page...
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
31
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 23. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
Description
Conditions1
Min.
Typ.2
Max.
—
±0.5
–0.7 to
+0.5
• 12-bit modes
—
–4
–5.4
• <12-bit modes
—
–1.4
–1.8
• 16-bit modes
—
–1 to 0
—
• ≤13-bit modes
—
—
±0.5
• <12-bit modes
EFS
EQ
ENOB
Full-scale error
Quantization
error
Effective
number of bits
16-bit differential mode
12.8
14.5
• Avg = 4
11.9
13.8
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16-bit differential mode
• Avg = 32
LSB4
VADIN =
VDDA5
LSB4
6
bits
—
—
16-bit single-ended mode
• Avg = 4
Notes
bits
• Avg = 32
• Avg = 32
Unit
bits
bits
12.2
13.9
—
11.4
13.1
—
6.02 × ENOB + 1.76
dB
dB
—
-94
7
—
dB
16-bit single-ended mode
• Avg = 32
SFDR
Spurious free
dynamic range
—
-85
82
95
16-bit differential mode
• Avg = 32
16-bit single-ended mode
78
—
—
dB
—
dB
7
90
• Avg = 32
EIL
Input leakage
error
IIn × RAS
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and
current
operating
ratings)
VTEMP25
Temp sensor
slope
Across the full temperature range
of the device
1.55
1.62
1.69
mV/°C
8
Temp sensor
voltage
25 °C
706
716
726
mV
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
32
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with
1 MHz ADC conversion clock speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Typical ADC 16-bit Differential ENOB vs ADC Clock
100Hz, 90% FS Sine Input
15.00
14.70
14.40
14.10
ENOB
13.80
13.50
13.20
12.90
12.60
Hardware Averaging Disabled
Averaging of 4 samples
Averaging of 8 samples
Averaging of 32 samples
12.30
12.00
1
2
3
4
5
6
7
8
9
10
11
12
ADC Clock Frequency (MHz)
Figure 12. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90% FS Sine Input
14.00
13.75
13.50
13.25
13.00
ENOB
12.75
12.50
12.25
12.00
11.75
11.50
11.25
11.00
Averaging of 4 samples
Averaging of 32 samples
1
2
3
4
5
6
7
8
9
10
11
12
ADC Clock Frequency (MHz)
Figure 13. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
33
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.6.2 CMP and 6-bit DAC electrical specifications
Table 24. Comparator and 6-bit DAC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, High-speed mode (EN=1, PMODE=1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN=1, PMODE=0)
—
—
20
μA
VAIN
Analog input voltage
VSS – 0.3
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
VH
Analog comparator
hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN=1, PMODE=1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN=1, PMODE=0)
80
250
600
ns
—
—
40
μs
—
7
—
μA
Analog comparator initialization
IDAC6b
delay2
6-bit DAC current adder (enabled)
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
34
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
0.08
0.07
CMP Hystereris (V)
0.06
HYSTCTR
Setting
0.05
00
0.04
01
10
11
0.03
0.02
0.01
0
0.1
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
Vin level (V)
Figure 14. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
35
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
0.18
0.16
0.14
CMP Hysteresis (V)
0.12
HYSTCTR
Setting
0.1
00
01
10
11
0.08
0.06
0.04
0.02
0
0.1
0.4
0.7
1
1.3
1.6
1.9
Vin level (V)
2.2
2.5
2.8
3.1
Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
3.6.3 12-bit DAC electrical characteristics
3.6.3.1
Symbol
12-bit DAC operating requirements
Table 25. 12-bit DAC operating requirements
Desciption
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VDACR
Reference voltage
1.13
3.6
V
1
2
CL
Output load capacitance
—
100
pF
IL
Output load current
—
1
mA
Notes
1. The DAC reference can be selected to be VDDA or VREFH.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
36
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
3.6.3.2
Symbol
12-bit DAC operating behaviors
Table 26. 12-bit DAC operating behaviors
Description
IDDA_DACL Supply current — low-power mode
Min.
Typ.
Max.
Unit
—
—
330
μA
—
—
1200
μA
Notes
P
IDDA_DACH Supply current — high-speed mode
P
tDACLP
Full-scale settling time (0x080 to 0xF7F) —
low-power mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) —
high-power mode
—
15
30
μs
1
—
0.7
1
μs
1
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08) — low-power mode and highspeed mode
Vdacoutl
DAC output voltage range low — highspeed mode, no load, DAC set to 0x000
—
—
100
mV
Vdacouth
DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed
mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2
V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREF_OUT
—
—
±1
LSB
4
—
±0.4
±0.8
%FSR
5
Gain error
—
±0.1
±0.6
%FSR
5
Power supply rejection ratio, VDDA ≥ 2.4 V
60
—
90
dB
TCO
Temperature coefficient offset voltage
—
3.7
—
μV/C
TGE
Temperature coefficient gain error
—
0.000421
—
%FSR/C
Rop
Output resistance (load = 3 kΩ)
—
—
250
Ω
SR
Slew rate -80h→ F7Fh→ 80h
VOFFSET Offset error
EG
PSRR
BW
1.
2.
3.
4.
5.
6.
6
V/μs
• High power (SPHP)
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
3dB bandwidth
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Settling within ±1 LSB
The INL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC
set to 0x800, temperature range is across the full range of the device
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
37
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
8
6
4
DAC12 INL (LSB)
2
0
-2
-4
-6
-8
0
500
1000
1500
2000
2500
3000
3500
4000
Digital Code
Figure 16. Typical INL error vs. digital code
38
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
1.499
DAC12 Mid Level Code Voltage
1.4985
1.498
1.4975
1.497
1.4965
1.496
25
-40
55
85
105
125
Temperature °C
Figure 17. Offset at half scale vs. temperature
3.6.4 Voltage reference electrical specifications
Table 27. VREF full-range operating requirements
Symbol
Description
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
TA
Temperature
CL
Output load capacitance
Operating temperature
range of the device
°C
100
nF
Notes
1, 2
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature
range of the device.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
39
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 28. VREF full-range operating behaviors
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
Vout
Voltage reference output with factory trim at
nominal VDDA and temperature=25°C
1.1920
1.1950
1.1980
V
1
Vout
Voltage reference output with user trim at
nominal VDDA and temperature=25°C
1.1945
1.1950
1.1955
V
1
Vstep
Voltage reference trim step
—
0.5
—
mV
1
Vtdrift
Temperature drift (Vmax -Vmin across the full
temperature range)
—
—
15
mV
1
Ibg
Bandgap only current
—
—
80
µA
Ilp
Low-power buffer current
—
—
360
uA
1
Ihp
High-power buffer current
—
—
1
mA
1
µV
1, 2
ΔVLOAD
Load regulation
• current = ± 1.0 mA
Tstup
Buffer startup time
Tchop_osc_st Internal bandgap start-up delay with chop
oscillator enabled
up
Vvdrift
Voltage drift (Vmax -Vmin across the full voltage
range)
—
200
—
—
—
100
µs
—
—
35
ms
—
2
—
mV
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load
Table 29. VREF limited-range operating requirements
Symbol
Description
Min.
Max.
Unit
TA
Temperature
0
70
°C
Notes
Table 30. VREF limited-range operating behaviors
Symbol
Vtdrift
Description
Temperature drift (Vmax -Vmin across the limited
temperature range)
Min.
Max.
Unit
—
10
mV
Notes
3.7 Timers
See General switching specifications.
3.8 Communication interfaces
40
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
3.8.1 DSPI switching specifications (limited voltage range)
The Deserial Serial Peripheral Interface (DSPI) provides a synchronous serial bus
with master and slave operations. Many of the transfer attributes are programmable.
The tables below provide DSPI timing characteristics for classic SPI timing modes.
Refer to the SPI chapter of the Reference Manual for information on the modified
transfer formats used for communicating with slower peripheral devices.
Table 31. Master mode DSPI timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
25
MHz
2 x tBUS
—
ns
Notes
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) − 2 (tSCK/2) + 2
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
2
—
ns
1
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
2
—
ns
2
DS5
DSPI_SCK to DSPI_SOUT valid
—
8.5
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
-2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
16.2
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
DS7
DS1
DS2
DS4
DS8
First data
First data
Data
Last data
DS5
DS6
Data
Last data
Figure 18. DSPI classic SPI timing — master mode
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
41
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 32. Slave mode DSPI timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
12.5
MHz
4 x tBUS
—
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS11
DSPI_SCK to DSPI_SOUT valid
—
21.4
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2.6
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
17
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
17
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Last data
Data
DS14
First data
Data
Last data
Figure 19. DSPI classic SPI timing — slave mode
3.8.2 DSPI switching specifications (full voltage range)
The Deserial Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer
to the SPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 33. Master mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
12.5
MHz
Table continues on the next page...
42
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
Table 33. Master mode DSPI timing (full voltage range) (continued)
Num
Description
Min.
Max.
Unit
4 x tBUS
—
ns
Notes
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
4
—
ns
2
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
4
—
ns
3
DS5
DSPI_SCK to DSPI_SOUT valid
—
10
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
-4.5
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
24.6
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DSPI_SCK
(CPOL=0)
DS7
DSPI_SIN
DS1
DS2
DS4
DS8
First data
DSPI_SOUT
Data
Last data
DS5
First data
DS6
Data
Last data
Figure 20. DSPI classic SPI timing — master mode
Table 34. Slave mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
1.71
3.6
V
—
6.25
MHz
8 x tBUS
—
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS11
DSPI_SCK to DSPI_SOUT valid
—
29.5
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
3.2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
25
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
25
ns
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
43
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Last data
Data
DS14
First data
Data
Last data
Figure 21. DSPI classic SPI timing — slave mode
3.8.3 Inter-Integrated Circuit Interface (I2C) timing
Table 35. I 2C timing
Characteristic
Symbol
Standard Mode
Fast Mode
Minimum
Maximum
Minimum
Maximum
Unit
SCL Clock Frequency
fSCL
0
100
0
4001
kHz
Hold time (repeated) START condition.
After this period, the first clock pulse is
generated.
tHD; STA
4
—
0.6
—
µs
LOW period of the SCL clock
tLOW
4.7
—
1.25
—
µs
HIGH period of the SCL clock
tHIGH
4
—
0.6
—
µs
Set-up time for a repeated START
condition
tSU; STA
4.7
—
0.6
—
µs
Data hold time for I2C bus devices
tHD; DAT
02
3.453
04
0.92
µs
tSU; DAT
2505
—
1003, 6
Data set-up time
Rise time of SDA and SCL signals
tr
—
1000
—
ns
7
300
ns
6
20 +0.1Cb
Fall time of SDA and SCL signals
tf
—
300
20 +0.1Cb
300
ns
Set-up time for STOP condition
tSU; STO
4
—
0.6
—
µs
Bus free time between STOP and
START condition
tBUF
4.7
—
1.3
—
µs
Pulse width of spikes that must be
suppressed by the input filter
tSP
N/A
N/A
0
50
ns
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using the
High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V.
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
4. Input signal Slew = 10 ns and Output Load = 50 pF
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
44
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Peripheral operating requirements and behaviors
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is
released.
7. Cb = total capacitance of the one bus line in pF.
Table 36. I 2C 1 Mbps timing
Characteristic
Symbol
Minimum
Maximum
Unit
MHz
SCL Clock Frequency
fSCL
0
11
Hold time (repeated) START condition. After this
period, the first clock pulse is generated.
tHD; STA
0.26
—
LOW period of the SCL clock
tLOW
0.5
—
HIGH period of the SCL clock
tHIGH
0.26
—
Set-up time for a repeated START condition
tSU; STA
0.26
—
µs
Data hold time for I2C bus devices
tHD; DAT
0
—
µs
Data set-up time
tSU; DAT
50
Rise time of SDA and SCL signals
tr


µs
µs
µs
—
ns
,2
120
ns
2
120
ns
20 +0.1Cb
Fall time of SDA and SCL signals
tf
20 +0.1Cb
Set-up time for STOP condition
tSU; STO
0.26
—
µs
Bus free time between STOP and START
condition
tBUF
0.5
—
µs
Pulse width of spikes that must be suppressed by
the input filter
tSP
0
50
ns
1. The maximum SCL clock frequency of 1 Mbps can support maximum bus loading when using the High drive pins
across the full voltage range.
2. Cb = total capacitance of the one bus line in pF.
SDA
tf
tLOW
tSU; DAT
tr
tf
tHD; STA
tSP
tr
tBUF
SCL
S
HD; STA
tHD; DAT
tHIGH
tSU; STA
SR
tSU; STO
P
S
Figure 22. Timing definition for devices on the I2C bus
3.8.4 UART switching specifications
See General switching specifications.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
45
Freescale Semiconductor, Inc.
Dimensions
4 Dimensions
4.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package
Then use this document number
32-pin QFN
98ARE10566D
48-pin LQFP
98ASH00962A
64-pin LQFP
98ASS23234W
5 Pinout
5.1 K02F Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
64
48
32
LQFP LQFP QFN
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
1
—
—
PTE0/
CLKOUT32K
DISABLED
PTE0/
CLKOUT32K
UART1_TX
2
—
—
PTE1/
LLWU_P0
DISABLED
PTE1/
LLWU_P0
UART1_RX
3
1
1
VDD
VDD
VDD
4
2
2
VSS
VSS
VSS
5
3
3
PTE16
ADC0_SE4a/
ADC0_DP1
ADC0_SE4a/
ADC0_DP1
PTE16
SPI0_PCS0
UART1_TX
FTM_CLKIN0
FTM0_FLT3
6
4
4
PTE17
ADC0_SE5a/
ADC0_DM1
ADC0_SE5a/
ADC0_DM1
PTE17
SPI0_SCK
UART1_RX
FTM_CLKIN1
LPTMR0_
ALT3
7
5
5
PTE18
ADC0_SE6a/
ADC0_DP2
ADC0_SE6a/
ADC0_DP2
PTE18
SPI0_SOUT
UART1_CTS_ I2C0_SDA
b
8
6
6
PTE19
ADC0_SE7a/
ADC0_DM2
ADC0_SE7a/
ADC0_DM2
PTE19
SPI0_SIN
UART1_RTS_ I2C0_SCL
b
46
Freescale Semiconductor, Inc.
ALT7
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Pinout
64
48
32
LQFP LQFP QFN
9
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
7
—
ADC0_DP0
ADC0_DP0
ADC0_DP0
10
8
—
ADC0_DM0
ADC0_DM0
ADC0_DM0
11
—
—
ADC0_DP3
ADC0_DP3
ADC0_DP3
12
—
—
ADC0_DM3
ADC0_DM3
ADC0_DM3
13
9
7
VDDA
VDDA
VDDA
14
10
7
VREFH
VREFH
VREFH
15
11
8
VREFL
VREFL
VREFL
16
12
8
VSSA
VSSA
VSSA
17
13
—
VREF_OUT/
CMP1_IN5/
CMP0_IN5
VREF_OUT/
CMP1_IN5/
CMP0_IN5
VREF_OUT/
CMP1_IN5/
CMP0_IN5
18
14
9
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
19
—
—
CMP0_IN4
CMP0_IN4
CMP0_IN4
20
15
10
PTE24
ADC0_SE17
ADC0_SE17
PTE24
I2C0_SCL
EWM_OUT_b
21
16
11
PTE25
ADC0_SE18
ADC0_SE18
PTE25
I2C0_SDA
EWM_IN
22
17
12
PTA0
JTAG_TCLK/
SWD_CLK
PTA0
UART0_CTS_ FTM0_CH5
b
JTAG_TCLK/
SWD_CLK
23
18
13
PTA1
JTAG_TDI
PTA1
UART0_RX
JTAG_TDI
24
19
14
PTA2
JTAG_TDO/
TRACE_SWO
PTA2
UART0_TX
JTAG_TDO/
TRACE_SWO
25
20
15
PTA3
JTAG_TMS/
SWD_DIO
PTA3
UART0_RTS_ FTM0_CH0
b
JTAG_TMS/
SWD_DIO
26
21
16
PTA4/
LLWU_P3
NMI_b
PTA4/
LLWU_P3
FTM0_CH1
NMI_b
27
—
—
PTA5
DISABLED
PTA5
FTM0_CH2
JTAG_TRST_
b
28
—
—
PTA12
DISABLED
PTA12
FTM1_CH0
FTM1_QD_
PHA
29
—
—
PTA13/
LLWU_P4
DISABLED
PTA13/
LLWU_P4
FTM1_CH1
FTM1_QD_
PHB
30
22
—
VDD
VDD
VDD
31
23
—
VSS
VSS
VSS
32
24
17
PTA18
EXTAL0
EXTAL0
PTA18
FTM0_FLT2
FTM_CLKIN0
33
25
18
PTA19
XTAL0
XTAL0
PTA19
FTM1_FLT0
FTM_CLKIN1
34
26
19
RESET_b
RESET_b
RESET_b
35
27
20
PTB0/
LLWU_P5
ADC0_SE8
ADC0_SE8
PTB0/
LLWU_P5
I2C0_SCL
FTM1_CH0
FTM1_QD_
PHA
36
28
21
PTB1
ADC0_SE9
ADC0_SE9
PTB1
I2C0_SDA
FTM1_CH1
FTM1_QD_
PHB
37
29
—
PTB2
ADC0_SE12
ADC0_SE12
PTB2
I2C0_SCL
UART0_RTS_
b
FTM0_FLT3
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
LPTMR0_
ALT1
47
Freescale Semiconductor, Inc.
Pinout
64
48
32
LQFP LQFP QFN
Pin Name
Default
ALT0
ADC0_SE13
ALT1
ALT4
ALT5
ALT7
—
PTB3
ADC0_SE13
39
31
—
PTB16
DISABLED
PTB16
UART0_RX
FTM_CLKIN0
EWM_IN
40
32
—
PTB17
DISABLED
PTB17
UART0_TX
FTM_CLKIN1
EWM_OUT_b
41
—
—
PTB18
DISABLED
PTB18
FTM2_CH0
FTM2_QD_
PHA
42
—
—
PTB19
DISABLED
PTB19
FTM2_CH1
FTM2_QD_
PHB
43
33
—
PTC0
ADC0_SE14
ADC0_SE14
PTC0
SPI0_PCS4
PDB0_
EXTRG
44
34
22
PTC1/
LLWU_P6
ADC0_SE15
ADC0_SE15
PTC1/
LLWU_P6
SPI0_PCS3
UART1_RTS_ FTM0_CH0
b
45
35
23
PTC2
ADC0_SE4b/
CMP1_IN0
ADC0_SE4b/
CMP1_IN0
PTC2
SPI0_PCS2
UART1_CTS_ FTM0_CH1
b
46
36
24
PTC3/
LLWU_P7
CMP1_IN1
CMP1_IN1
PTC3/
LLWU_P7
SPI0_PCS1
UART1_RX
FTM0_CH2
47
—
—
VSS
VSS
VSS
48
—
—
VDD
VDD
VDD
49
37
25
PTC4/
LLWU_P8
DISABLED
PTC4/
LLWU_P8
SPI0_PCS0
UART1_TX
FTM0_CH3
50
38
26
PTC5/
LLWU_P9
DISABLED
PTC5/
LLWU_P9
SPI0_SCK
LPTMR0_
ALT2
51
39
27
PTC6/
LLWU_P10
CMP0_IN0
CMP0_IN0
PTC6/
LLWU_P10
SPI0_SOUT
PDB0_
EXTRG
52
40
28
PTC7
CMP0_IN1
CMP0_IN1
PTC7
SPI0_SIN
53
—
—
PTC8
CMP0_IN2
CMP0_IN2
PTC8
54
—
—
PTC9
CMP0_IN3
CMP0_IN3
PTC9
55
—
—
PTC10
DISABLED
PTC10
56
—
—
PTC11/
LLWU_P11
DISABLED
PTC11/
LLWU_P11
57
41
—
PTD0/
LLWU_P12
DISABLED
PTD0/
LLWU_P12
SPI0_PCS0
58
42
—
PTD1
ADC0_SE5b
PTD1
SPI0_SCK
59
43
—
PTD2/
LLWU_P13
DISABLED
PTD2/
LLWU_P13
SPI0_SOUT
I2C0_SCL
60
44
—
PTD3
DISABLED
PTD3
SPI0_SIN
I2C0_SDA
61
45
29
PTD4/
LLWU_P14
DISABLED
PTD4/
LLWU_P14
SPI0_PCS1
UART0_RTS_ FTM0_CH4
b
EWM_IN
62
46
30
PTD5
ADC0_SE6b
ADC0_SE6b
PTD5
SPI0_PCS2
UART0_CTS_ FTM0_CH5
b
EWM_OUT_b
63
47
31
PTD6/
LLWU_P15
ADC0_SE7b
ADC0_SE7b
PTD6/
LLWU_P15
SPI0_PCS3
UART0_RX
FTM0_CH0
FTM0_FLT0
64
48
32
PTD7
DISABLED
UART0_TX
FTM0_CH1
FTM0_FLT1
48
Freescale Semiconductor, Inc.
UART0_CTS_
b
ALT6
30
PTD7
I2C0_SDA
ALT3
38
ADC0_SE5b
PTB3
ALT2
FTM0_FLT0
CLKOUT
CMP1_OUT
CMP0_OUT
FTM0_CH2
FTM2_FLT0
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Pinout
5.2 K02F Pinouts
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2/LLWU_P13
PTD1
PTD0/LLWU_P12
PTC11/LLWU_P11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
The below figure shows the pinout diagram for the devices supported by this
document. Many signals may be multiplexed onto a single pin. To determine what
signals can be used on which pin, see the previous section.
ADC0_DP0
9
40
PTB17
ADC0_DM0
10
39
PTB16
ADC0_DP3
11
38
PTB3
ADC0_DM3
12
37
PTB2
VDDA
13
36
PTB1
VREFH
14
35
PTB0/LLWU_P5
VREFL
15
34
RESET_b
VSSA
16
33
PTA19
32
PTB18
PTA18
41
31
8
VSS
PTE19
30
PTB19
VDD
42
29
7
PTA13/LLWU_P4
PTE18
28
PTC0
PTA12
43
27
6
PTA5
PTE17
26
PTC1/LLWU_P6
PTA4/LLWU_P3
44
25
5
PTA3
PTE16
24
PTC2
PTA2
45
23
4
PTA1
VSS
22
PTC3/LLWU_P7
PTA0
46
21
3
PTE25
VDD
20
VSS
PTE24
47
19
2
CMP0_IN4
PTE1/LLWU_P0
18
VDD
DAC0_OUT/CMP1_IN3/ADC0_SE23
48
17
1
VREF_OUT/CMP1_IN5/CMP0_IN5
PTE0/CLKOUT32K
Figure 23. K02F 64 LQFP pinout diagram (top view)
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
49
Freescale Semiconductor, Inc.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2/LLWU_P13
PTD1
PTD0/LLWU_P12
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
48
47
46
45
44
43
42
41
40
39
38
37
Pinout
ADC0_DP0
7
30
PTB3
ADC0_DM0
8
29
PTB2
VDDA
9
28
PTB1
VREFH
10
27
PTB0/LLWU_P5
VREFL
11
26
RESET_b
VSSA
12
25
PTA19
24
PTB16
PTA18
31
23
6
VSS
PTE19
22
PTB17
VDD
32
21
5
PTA4/LLWU_P3
PTE18
20
PTC0
PTA3
33
19
4
PTA2
PTE17
18
PTC1/LLWU_P6
PTA1
34
17
3
PTA0
PTE16
16
PTC2
PTE25
35
15
2
PTE24
VSS
14
PTC3/LLWU_P7
DAC0_OUT/CMP1_IN3/ADC0_SE23
36
13
1
VREF_OUT/CMP1_IN5/CMP0_IN5
VDD
Figure 24. K02F 48 LQFP pinout diagram
50
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
32
31
30
29
28
27
26
25
Part identification
4
21
PTB1
PTE18
5
20
PTB0/LLWU_P5
PTE19
6
19
RESET_b
VDDA VREFH
7
18
PTA19
VREFL VSSA
8
17
PTA18
PTE24
9
DAC0_OUT/CMP1_IN3/ADC0_SE23
16
PTE17
PTA4/LLWU_P3
PTC1/LLWU_P6
15
22
PTA3
3
14
PTE16
PTA2
PTC2
13
23
PTA1
2
12
VSS
PTA0
PTC3/LLWU_P7
11
24
PTE25
1
10
VDD
Figure 25. K02F 32 QFN pinout diagram
6 Part identification
6.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
51
Freescale Semiconductor, Inc.
Part identification
6.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
6.3 Fields
This table lists the possible values for each field in the part number (not all
combinations are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow, full
reel
• P = Prequalification
• K = Fully qualified, general market flow, 100
piece reel
K##
Kinetis family
• K02
A
Key attribute
• D = Cortex-M4 w/ DSP
• F = Cortex-M4 w/ DSP and FPU
M
Flash memory type
• N = Program flash only
• X = Program flash and FlexMemory
FFF
Program flash memory size
•
•
•
•
R
Silicon revision
• Z = Initial
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
• C = –40 to 85
PP
Package identifier
• FM = 32 QFN (5 mm x 5 mm)
• LF = 48 LQFP (7 mm x 7 mm)
• LH = 64 LQFP (10 mm x 10 mm)
CC
Maximum CPU frequency (MHz)
•
•
•
•
•
N
Packaging type
• R = Tape and reel
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
6.4 Example
This is an example part number:
52
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Revision History
MK02FN128VLH10
6.5 48-pin LQFP part marking
The 48-pin LQFP package parts follow the part-marking scheme in the following
table.
Table 37. 48-pin LQFP part marking
MK Partnumber
MK Part Marking
MK02FN128VLF10
M02J7V
MK02FN64VLF10
M02J6V
6.6 32-pin QFN part marking
The 32-pin QFN package parts follow the part-marking scheme in the following table.
Table 38. 32-pin QFN part marking
MK Part number
MK Part Marking
MK02FN128VFM10
M02J7V
MK02FN64VFM10
M02J6V
7 Revision History
The following table provides a revision history for this document.
Table 39. Revision History
Rev. No.
Date
3
4/2015
Substantial Changes
• Throughout: Modified notes related to 48-pin LQFP to say, "The 48-pin LQFP
package for this product is not yet available; however, it is included in a Package
Your Way program for Kinetis MCUs. Please visit www.Freescale.com/KPYW for
more details."
• On page 1:
• In first bullet of introduction, updated power consumption data to align with the
data in the "Power consumption operating behaviors" table
• Under "Clocks," corrected second and third bullets—moved "with FLL" from
"internal oscillators" to "multipurpose clock generator" bullet
Table continues on the next page...
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
53
Freescale Semiconductor, Inc.
Revision History
Table 39. Revision History (continued)
Rev. No.
Date
Substantial Changes
•
•
•
•
•
•
•
•
•
•
•
2
8/2014
• Under "Communication interfaces," updated I2C bullet to indicate support for
up to 1 Mbps operation
• Under "Operating characteristics," specified that voltage range includes flash
writes
In "Voltage and current operating requirements" table:
• Removed content related to positive injection
• Updated footnote 1 to say that all analog and I/O pins are internally clamped
to VSS only (not VSS and VDD)through ESD protection diodes.
In "Power mode transition operating behaviors" table, removed rows for LLS2 and
LLS3
In "Power consumption operating behaviors" table:
• Provided additional temperature data
• Added Max IDD values based on characterization results equivalent to mean
+ 3 sigma
• Removed rows for LLS2 and LLS3
Updated "EMC radiated emissions operating behaviors" table
In "Thermal operating requirements" table, added the following footnote for ambient
temperature: "Maximum TA can be exceeded only if the user ensures that TJ does
not exceed maximum TJ. The simplest method to determine TJ is: TJ = TA + ΘJA x
chip power dissipation"
Updated "IRC48M Specifications":
• Updated maximum values for Δfirc48m_lv and Δfirc48m_hv (full temperature)
• Added specifications for Δfirc48m_hv (-40°C to 85°C)
In "I2C timing" table,
• Added the following footnote on maximum Fast mode value for SCL Clock
Frequency: "The maximum SCL Clock Frequency in Fast mode with
maximum bus loading can only be achieved when using the High drive pins
across the full voltage range and when using the Normal drive pins and VDD
≥ 2.7 V."
• Updated minimum Fast mode value for LOW period of the SCL clock to 1.25 µ
Added "I2C 1 Mbps timing" table
Removed Section 6, "Ordering parts."
Added "48-pin LQFP part marking" section
Added "32-pin QFN part marking" section
• On p. 1, under "Memories and memory interfaces," added bullet, "Preprogrammed
Kinetis flashloader for one-time, in-system factory programming"
• On p. 1, added parenthetical element to the following bullet under "Analog
modules":Accurate internal voltage reference (not available for 32-pin QFN
package)
• On p. 1, added parenthetical element to the following bullet under "Timers":Two 2channel motor-control general-purpose timers with quadrature decoder
functionality (FTM2 does not have external pins on the 32-pin QFN or the 48-pin
LQFP package)
• In "Voltage and current operating ratings" section, updated digital supply current
maximum value
• In "Voltage and current operating behaviors" section, updated input leakage
information
• In "Power consumption operating behaviors table":
• Updated existing typical and maximum power measurements
• Added new typical power measurements for the following:
• IDD_HSRUN (High Speed Run mode, all peripheral clocks disabled,
current executing CoreMark code)
Table continues on the next page...
54
Freescale Semiconductor, Inc.
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
Revision History
Table 39. Revision History (continued)
Rev. No.
Date
Substantial Changes
•
•
•
•
•
1
3/2014
• IDD_HSRUN (High Speed Run mode, all peripheral clocks disabled,
current executing while(1) loop)
• IDD_RUN (Run mode current in Compute operation, all peripheral
clocks disabled, executing CoreMark code)
• IDD_RUN (Run mode current in Compute operation, all peripheral
clocks disabled, executing while(1) loop)
• IDD_VLPR (Very Low Power mode current in Compute operation, all
peripheral clocks disabled, executing CoreMark code)
• IDD_VLPR (Very Low Power Run mode current in Compute operation,
all peripheral clocks disabled, executing while(1) loop)
Updated section, "EMC radiated emissions operating behaviors for 64 LQFP
package"
In "Thermal attributes" section, added 64-pin LQFP and 32-pin QFN package values
Updated "MCG specifications" table
Updated "VREF full-range operating behaviors" table
In the "Part identification" section, added "Format" and "Fields" subsections
Initial public release
Kinetis K02 64 KB/128 KB Flash, Rev. 3, 4/2015
55
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.
Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.
Freescale, the Freescale logo, and Kinetis are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners. ARM and
Cortex are registered trademarks of ARM Limited (or its subsidiaries) in
the EU and/or elsewhere. All rights reserved.
© 2014–2015 Freescale Semiconductor, Inc.
Document Number K02P64M100SFA
Revision 3, 4/2015