Infineon® LITIX™ Power H-Bridge DC/DC Controller H-Bridge DC/DC Controller for High Power LED Lighting TLD5190QV Data Sheet Rev. 1.0, 2016-05-20 Automotive Power H-Bridge DC/DC Controller TLD5190QV Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Different Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 6.5 6.6 6.7 Regulator Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regulator Diagram Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adjustable Soft Start Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Frequency setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of 4 switches H-Bridge architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boost mode (VIN < VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Buck mode (VIN > VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Buck-Boost mode (VIN ~ VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flexible current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming Output Voltage (Constant Voltage Regulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7.1 7.2 Digital Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8 8.1 8.2 Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9 9.1 9.2 Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 IVCC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10 10.1 10.2 10.2.1 10.2.2 10.2.3 10.3 10.4 10.5 10.6 10.7 Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage, Open Load, Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage monitoring, protection and power derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device Temperature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11.1 Infineon FLAT SPECTRUM Featureset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Data Sheet 2 11 11 13 13 19 19 21 21 22 22 23 24 25 26 27 38 38 39 39 39 40 40 42 42 43 44 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Table of Contents 11.2 11.3 11.4 11.5 11.6 Synchronization Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLKOUT Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMC optimized schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 14 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Data Sheet 3 45 45 47 48 49 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller for High Power LED Lighting 1 TLD5190QV Overview Features • MOSFET H-Bridge with Single Inductor DC/DC Controller for HIGH POWER BUCK-BOOST LED control • Constant Current and Constant Voltage Regulation • Wide VIN Range (Device 4.5V to 40V, Power Stage 4.5V to 55V) • Wide LED forward voltage Range (2V up to 55V) • Maximum Efficiency in every condition (up to 96%) • Flexible current sense (Highside or Lowside) • LED current accuracy+/-3% at Tj=25° and 4% over the whole automotive temperature range • EMC optimized device: Features an auto Spread Spectrum concept to ensure best in class EMC performance • Open Load, Overvoltages, Shorted LED fault and Overtemperature Diagnostic Outputs • LED and Input current sense with dedicated monitor Outputs • Smart power protection features for device and load (open load, short of Load, Overtemperature) • Switching Frequency Range from 200 kHz to 700 kHz • Capability to supply Gate Drivers via external Voltage Regulator • Adjustable Soft Start • Enhanced Dimming features to adjust average LED current and PWM dimming • Available in a small thermally enhanced PG-VQFN-48-31 package • Automotive AEC Qualified PG-VQFN-48-31 Description The TLD5190QV is a synchronous MOSFET H-Bridge DC/DC controller with built in protection features. This concept is beneficial for driving high power LEDs with maximum system efficiency and minimum number of external components. The TLD5190QV offers both analog and digital (PWM) dimming.The switching frequency is adjustable in the range of 200 kHz to 700 kHz. It can be synchronized to an external clock source. A built in Spread Spectrum switching frequency modulation and the forced continuous current regulation mode improve the overall EMC behavior. Furthermore the current mode regulation scheme provides a stable regulation loop maintained by small external compensation components. The adjustable soft start feature limits the current peak as well as voltage overshoot at start-up. The TLD5190QV is suitable for use in the harsh automotive environment. Type Package Marking TLD5190QV PG-VQFN-48-31 TLD5190QV Data Sheet 4 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Overview Table 1 Product Summary Power Stage input voltage range Device Input supply voltage range Maximum output voltage (depending by the application conditions) Switching Frequency range, Typical NMOS driver on-state resistance at Tj = 25°C (Gate Pull Up) Typical NMOS driver on-state resistance at Tj = 25°C (Gate Pull Down) VPOW VVIN VOUT(max) 4.5 V … 55 V 4.5 V … 40 V 55 V as LED Driver Boost Mode 50 V as LED Driver Buck Mode 50 V as Voltage regulator fSW RDS(ON_PU) 200 kHz... 700 kHz RDS(ON_PD) 1.2 Ω 2.3 Ω Protective Functions • Over load protection of external MOSFETs • Shorted load, open load, output overvoltage protection • Input overvoltage and undervoltage protection • Thermal shutdown of device with autorestart behavior • Electrostatic discharge protection (ESD) Diagnostic Functions • Diagnostic information via Error Flags • Open load detection in ON-state • Device Overtemperature shutdown • Advanced diagnostic functions provide ILED and IIN information Applications • Especially designed for driving high power LEDs in automotive applications • Automotive Exterior Lighting: full LED headlamp assemblies (Low Beam, High Beam, Matrix Beam, Pixel Light) • General purpose current/voltage controlled DC/DC LED driver Data Sheet 5 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Block Diagram 2 Block Diagram Figure 1 Block Diagram - TLD5190QV Data Sheet 6 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Pin Configuration 3 Pin Configuration 3.1 Pin Assignment Figure 2 Pin Configuration - TLD5190QV Data Sheet 7 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Pin Configuration 3.2 Pin Pin Definitions and Functions Symbol I/O 1) Function Power Supply 1, 12, n.c. 15, 45, 48 - Not connected, tie to AGND on the Layout; 44 VIN - Power Supply Voltage; Supply for internal biasing. 47 IVCC_EXT I 5, 8 PGND1, 2 - Power Ground; Ground for power potential. Connect externally close to the chip. 26 VSS - Digital GPIO Ground; Ground for GPIO pins 40 AGND - Analog Ground; Ground Reference - EP - Exposed Pad; Connect to external heatspreading Cu area (e.g. inner GND layer of multilayer PCB with thermal vias). PD External LDO input; Input to alternatively supply internal Gate Drivers via an external LDO. Connect to IVCC pin to use internal LDO to supply gate drivers. Must not be left open. Gate Driver Stages 2 HSGD1 O Highside Gate Driver Output 1; Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT superimposed on the switch node voltage SWN1. Connect to gate of external switching MOSFET. 11 HSGD2 O Highside Gate Driver Output 2; Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT superimposed on the switch node voltage SWN2. Connect to gate of external switching MOSFET. 6 LSGD1 O Lowside Gate Driver Output 1; Drives the lowside n-channel MOSFET between GND and VIVCC_EXT Connect to gate of external switching MOSFET. 7 LSGD2 O Lowside Gate Driver Output 2; Drives the lowside n-channel MOSFET between GND and VIVCC_EXT Connect to gate of external switching MOSFET. 4 SWN1 IO Switch Node 1; SWN1 pin swings from a diode voltage drop below ground up to VIN 9 SWN2 IO Switch Node 2; SWN2 pin swings from ground up to a diode voltage drop above VOUT 46 IVCC O Internal LDO output; Used for internal biasing and gate driver supply. Bypass with external capacitor close to the pin. Pin must not be left open. Inputs and Outputs Data Sheet 8 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Pin Configuration 1) Pin Symbol I/O 23 TEST1 - Test Pin; Used for Infineon end of line test, connect to GND in application 25 TEST2 - Test Pin; Used for Infineon end of line test, connect to GND in application 28 TEST3 - Test Pin; Used for Infineon end of line test, connect to GND in application 29 TEST4 - Test Pin; Used for Infineon end of line test, connect to GND in application 30 TEST5 - Test Pin; Used for Infineon end of line test, connect to GND in application 31 TEST6 - Test Pin; Used for Infineon end of line test, connect to GND in application 41 EN/INUVLO I 35 FREQ I 34 SYNC I PD Synchronization Input; Apply external clock signal for synchronization 24 PWMI I PD Control Input; Digital input 5Vor 3.3V. 13 FBH I Output current Feedback Positive; Non inverting Input (+) 14 FBL I Output current Feedback Negative; Inverting Input (-) 3 BST1 IO Bootstrap capacitor; Used for internal biasing and to drive the Highside Switch HSGD1. Bypass to SWN1 with external capacitor close to the pin. Pin must not be left open. 10 BST2 IO Bootstrap capacitor; Used for internal biasing and to drive the Highside Switch HSGD2. Bypass to SWN2 with external capacitor close to the pin. Pin must not be left open. 17 SWCS I Current Sense Input; Inductor current measurement - Non Inverting Input (+) 18 SGND I Current Sense Ground; Inductor current sense - Inverting Input (-) Route as Differential net with SWCS on the Layout 42 IIN1 I Input Current Monitor Positive; Non Inverting Input (+), connect to VIN if input current monitor is not needed 43 IIN2 I Input Current Monitor Negative; Inverting Input (-), connect to VIN if input current monitor is not needed 19 COMP O Compensation Network Pin; Connect R and C network to pin for stability phase margin adjustment 38 SOFT_START O Softstart configuration Pin; Connect a capacitor CSOFT_START to GND to fix a soft start ramp default time. Data Sheet Function PD Enable/Input Under Voltage Lock Out; Used to put the device in a low current consumption mode, with additional capability to fix an undervoltage threshold via external components. Pin must not be left open. Frequency Select Input; Connect external resistor to GND to set frequency. 9 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Pin Configuration 1) Pin Symbol I/O Function 36 INOVLO I Input Overvoltage Protection Pin; Define an upper voltage threshold and switches OFF the device in case of overvoltages on the VIN supply. Must not be left open. 20 VFB I Voltage Loop Feedback Pin; VFB is intended to set output protection functions. 22 SET I Analog current sense adjustment Pin; A voltage VSET between 0.2V and 1.5V will adjust the ILED or VOUT in a linear relation. 37 SPREAD_SPECT I RUM 39 IINMON O Input current monitor output; Monitor pin that produces a voltage that is 20 times the voltage VIN1-IN2. IINMON will be equal 1V when VIIN1-VIIN2=50mV 16 IOUTMON O Output current monitor output; Monitor pin that produces a voltage that is 200mV + 8 times the voltage VFBH-FBL. IOUTMON will be equal 1.4V when VFBH-FBL = 150mV. 21 VREF O PD Spread Spectrum Pin; This pin is enabling and disabling the SPREAD SPECTRUM function. This feature is beneficial to improve the EMC performance. PD Voltage Reference Output Pin; Supplies an accurate 2V output voltage for standalone analog dimming and LED temperature compensation via external resistors. Bypass with an external 100nF capacitor close to the pin. Pin must not be left open. Logic Outputs 27 CLKOUT O Clock Output Pin; Switching Oscillator output signal to supply additional SYNC Inputs of other DCDC devices (beneficial for standalone operations without µC) 33 EF1 O Error Flag 1; An open drain output which is pulled to LOW when an output Short to GND or Overtemperature occurs 32 EF2 O Error Flag 2; An open drain output which is pulled to LOW when an OPEN load, Overvoltages or Overtemperature occurs 1) O: Output, I: Input, PD: pull-down circuit integrated, PU: pull-up circuit integrated Data Sheet 10 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings1) Tj = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number -0.3 – 60 V – P_4.1.1 -0.3 – 6 V – P_4.1.3 IVCC_EXT External Linear Voltage Regulator Input voltage VIVCC_EXT -0.3 – 6 V – P_4.1.4 VREF Voltage reference output VREF -0.3 – 3.6 V – P_4.1.5 LSGD1,2 - PGND1,2 Lowside Gatedriver voltage VLSGD1,2- -0.3 – 5.5 V – P_4.1.54 HSGD1,2 - SWN1,2 Highside Gatedriver voltage VHSGD1,2- -0.3 – 5.5 V – P_4.1.55 SWN1, SWN2 switching node voltage VSWN1, 2 -1 – 60 V – P_4.1.6 (BST1-SWN1), (BST2-SWN2) Boostrap voltage VBSTx- -0.3 – 6 V – P_4.1.7 BST1, BST2 Boostrap voltage related to GND VBST1, 2 -0.3 – 65 V – P_4.1.8 SWCS Switch Current Sense Input voltage VSWCS -0.3 – 0.3 V – P_4.1.9 SGND Switch Current Sense GND voltage VSGND -0.3 – 0.3 V – P_4.1.10 -0.5 – 0.5 V – P_4.1.11 VPGND1,2 -0.3 – 0.3 V – P_4.1.28 VIIN1, 2 -0.3 – 60 V – P_4.1.12 -0.5 – 0.5 V – P_4.1.13 Supply Voltages VIN Supply Input VVIN IVCC VIVCC Internal Linear Voltage Regulator Output voltage Gate Driver Stages PGND SWN1,2 SWNx SWCS-SGND VSWCSSwitch Current Sense differential voltage SGND PGND1,2 Power GND voltage High voltage Pins IIN1, IIN2 Input Current monitor voltage IIN1-IIN2 VIIN1-IIN2 Input Current monitor differential voltage Data Sheet 11 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV General Product Characteristics Table 2 Absolute Maximum Ratings1) (cont’d) Tj = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number FBH, FBL Feedback Error Amplifier voltage VFBH, FBL -0.3 – 60 V – P_4.1.14 FBH-FBL Feedback Error Amplifier differential voltage VFBH-FBL -0.5 – 0.5 V – P_4.1.15 EN/INUVLO Device enable/input undervoltage lockout VEN/INUVLO -0.3 – 60 V – P_4.1.16 PWMI Digital Input voltage VPWMI -0.3 – 5.5 V – P_4.1.17 SYNC Synchronization Input voltage VSYNC -0.3 – 5.5 V – P_4.1.22 CLKOUT Clock Output voltage VCLKOUT -0.3 – 5.5 V – P_4.1.23 SPREAD_SPECTRUM Spread Spectrum Input voltage VSPREAD_S -0.3 – 5.5 V – P_4.1.24 Digital (I/O) Pins PECTRUM Analog Pins VFB Loop Input voltage VVFB -0.3 – 5.5 V – P_4.1.25 INOVLO Input overvoltage lockout VINOVLO -0.3 – 5.5 V – P_4.1.26 EF1, 2 Error Flags output voltage VEF1,2 -0.3 – 5.5 V – P_4.1.27 SET Analog dimming Input voltage VSET -0.3 – 5.5 V – P_4.1.29 COMP Compensation Input voltage VCOMP -0.3 – 3.6 V – P_4.1.30 SOFT_START Softstart Voltage VSOFT_STA -0.3 – 3.6 V – P_4.1.31 FREQ Voltage at frequency selection pin VFREQ -0.3 – 3.6 V – P_4.1.32 IINMON Voltage at input monitor pin VIINMON -0.3 – 3.6 V – P_4.1.33 IOUTMON Voltage at output monitor pin VIOUTMON -0.3 – 5.5 V – P_4.1.34 Tj Tstg -40 – 150 °C – P_4.1.35 -55 – 150 °C – P_4.1.36 VESD,HBM -2 – 2 kV HBM2) P_4.1.37 RT Temperatures Junction Temperature Storage Temperature ESD Susceptibility ESD Resistivity of all Pins Data Sheet 12 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV General Product Characteristics Table 2 Absolute Maximum Ratings1) (cont’d) Tj = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified) Parameter Symbol Values Min. ESD Resistivity to GND ESD Resistivity of corner Pins to GND VESD,CDM -500 VESD,CDM_ -750 Typ. Max. Unit Note / Test Condition – V CDM3) P_4.1.38 V 3) P_4.1.39 500 – 750 CDM Number corner 1) Not subject to production test, specified by design. 2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5k Ω, 100 pF) 3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1 Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 1. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Functional Range Table 3 Functional Range Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Device Extended Supply Voltage Range VVIN 4.5 – 40 V 1) P_4.2.1 Device Nominal Supply Voltage Range VVIN 8 – 36 V – P_4.2.2 Power Stage Voltage Range VPOW Tj 4.5 – 55 V 1) P_4.2.5 -40 – 150 °C – P_4.2.4 Junction Temperature 1) Not subject to production test, specified by design. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 4 Parameter Junction to Case Junction to Ambient Symbol RthJC RthJA Values Unit Note / Test Condition Number Min. Typ. Max. – 0.9 – K/W 1) 2) P_4.3.1 – 25 – K/W 3) P_4.3.2 2s2p 1) Not subject to production test, specified by design. Data Sheet 13 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV General Product Characteristics 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to ambient temperature). Ta=25°C; The IC is dissipating 1W. 3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu). A thermal via (diameter = 0.3 mm and 25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second outer layer (bottom) of the JEDEC PCB. Ta=25°C; The IC is dissipating 1W. Data Sheet 14 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Power Supply 5 Power Supply The TLD5190QV is supplied by the following pins: • VIN (main supply voltage) • IVCC_EXT (supply for internal gate driver stages) The VIN supply provides internal supply voltages for the analog and digital blocks. IVCC_EXT is the supply for the low side driver stages. This supply is used also to charge, through external schottky diodes, the bootstrap capacitors which provide supply voltages to the high side driver stages. If no external voltage is available this pin must be shorted to IVCC, which is the output of an internal 5V LDO. The supply pins VIN and IVCC_EXT have undervoltage detections. Undervoltage on IVCC_EXT or IVCC voltages forces a deactivation of the driver stages, thus stopping the switching activity. Moreover the double function pin EN/INUVLO can be used as an input undervoltage protection by placing a resistor divider from VIN to GND (refer to Chapter 10.3). If EN/INUVLO undervoltage is detected, it will turn-off the IVCC voltage regulator,and stop switching. Figure 3 shows a basic concept drawing of the supply domains and interactions among pins VIN and IVCC/IVCC_EXT. VIN VREG (5V) R1 EN/INUVLO IVCC Internal pre-regulated voltage Supply Undervoltage detection R2 IVCC_EXT VREG digital VREG analog LS - Drivers PGND BSTx Bandgap Reference HS - Drivers LOGIC SWNx Figure 3 Data Sheet Power Supply Concept Drawing 15 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Power Supply Usage of EN/INUVLO pin in different applications The pin EN/INUVLO is a double function pin and can be used to put the device into a low current consumption mode. An undervoltage threshold should be fixed by placing an external resistor divider (A) in order to avoid low voltage operating conditions. This pin can be driven by a µC-port as shown in (B) . A B Vin Vin VIN VIN R1 R1 EN/INUVLO R2 Figure 4 Data Sheet GND EN/INUVLO µC Port R2 GND Usage of EN/INUVLO pin in different applications 16 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Power Supply 5.1 Different Power States TLD5190QV has the following power states: • SLEEP state • IDLE state • ACTIVE state The transition between the power states is determined according to these variables after a filter time of max. 3 clock cycles: • VIN level • EN/INUVLO level • IVCC level • IVCC_EXT level The state diagram including the possible transitions is shown in Figure 5. The Power-up condition is entered when the supply voltage VVIN exceeds its minimum supply voltage threshold VVIN(ON). SLEEP When the TLD5190QV is in the SLEEP state, all outputs are OFF, independently from the supply voltages VIN, IVCC and IVCC_EXT. The current consumption is low. Refer to parameter: IVIN(SLEEP). The transition from SLEEP to ACTIVE state requires a specified time: tACTIVE. IDLE In IDLE state the internal voltage regulator is working. Diagnosis functions are not available. The output drivers are switched OFF, independently from the supply voltages VIN, IVCC and IVCC_EXT. ACTIVE In active state the device will start switching activity to provide power at the output only when PWMI = HIGH. To start the Highside gate drivers HSGDx the voltage level VBSTx - VSWNx needs to be above the threshold VBSTxVSWNx_UVth. In ACTIVE state the device current consumption via VIN is dependent on the external MOSFET used and the switching frequency fSW. Power-up EN/INUVLO = HIGH EN/INUVLO = LOW SLEEP EN/INUVLO = LOW IDLE EN/INUVLO = LOW VIN = LOW or IVCC = LOW or IVCC_EXT = LOW VIN = HIGH & IVCC = HIGH & IVCC_EXT = HIGH Figure 5 Data Sheet ACTIVE Simplified State Diagram 17 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Power Supply 5.2 Electrical Characteristics Table 5 EC Power Supply VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. – – 4.7 Unit Note / Test Condition Number V VIN increasing; VEN/INUVLO = HIGH; P_5.3.1 Power Supply VIN Input Voltage Startup VVIN(ON) IVCC = IVCC_EXT = 10 mA; Input Undervoltage switch OFF VVIN(OFF) – – 4.5 V VIN decreasing; VEN/INUVLO = HIGH; P_5.3.14 IVCC = IVCC_EXT = 10 mA; Device operating current IVIN(ACTIVE) – 4.4 6 mA 1) VIN Sleep mode supply current IVIN(SLEEP) – – 1.5 µA VEN/INUVLO= 0 V; P_5.3.3 VIN = 13.5 V; VIVCC = VIVCC_EXT= 0 V; ACTIVE mode; CLKOUT freq. 300KHz; VPWMI = 0 V; P_5.3.2 EN/INUVLO Pin characteristics Input Undervoltage falling Threshold VEN/INUVLOth 1.6 1.75 1.9 V – P_5.3.7 EN/INUVLO Rising Hysteresis VEN/INUVLO(h – 90 – mV 1) P_5.3.8 0.89 1.34 µA VEN/INUVLO = 0.8 V; P_5.3.9 2.2 3.3 µA VEN/INUVLO = 2 V; P_5.3.10 – 0.7 ms 1) P_5.3.11 yst) EN/INUVLO input Current LOW IEN/INUVLO(LO 0.45 W) EN/INUVLO input Current HIGH IEN/INUVLO(HI 1.1 GH) Timings SLEEP mode to ACTIVE time tACTIVE – VIVCC = VIVCC_EXT; CIVCC= 10µF; VIN = 13.5 V; 1) Not subject to production test, specified by design. Data Sheet 18 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description 6 Regulator Description The TLD5190QV includes all of the functions necessary to provide constant current to the output as usually required to drive LEDs. A voltage mode regulation can also be implemented (Refer to Chapter 6.6). It is designed to control 4 gate driver outputs in a H-Bridge topology by using only one inductor and 4 external MOSFETs. This topology is able to operate in high power BOOST, BUCK-BOOST and BUCK mode applications with maximum efficiency. The transition between the different regulation modes is done automatically by the device itself, with respect to the application boundary conditions. The transition phase between modes is seamless. 6.1 Regulator Diagram Description The TLD5190QV includes two analog current control inputs (IIN1, IIN2) to limit the maximum Input current (Block A1 and A7 in Figure 6). A second analog current control loop (A5, A6) connected to the sensing pins FBL, FBH regulates the output current. The regulator function is implemented by a pulse width modulated (PWM) current mode controller. The error in the output current loop is used to determine the appropriate duty cycle to get a constant output current. An external compensation network (RCOMP, CCOMP) is used to adjust the control loop to various application boundary conditions. The inductor current for the current mode loop is sensed by the RSWCS resistor. RSWCS is used also to limit the maximum external switches / inductor current. If the Voltage across RSWCS exceeds its overcurrent threshold (VSWCS_buck or VSWCS_boost for buck or boost operation respectively) the device reduces the duty cycle in order to bring the switches current below the imposed limit. The current mode controller has a built-in slope compensation as well to prevent sub-harmonic oscillations. The control loop logic block (LOGIC) provides a PWM signal to four internal gate drivers. The gate drivers (HSGD1,2 and LSGD1,2) are used to drive external MOSFETs in an H-Bridge setup . The control loop block diagram displayed in Figure 6 shows a typical constant current application. The voltage across RFB sets the output current. RIN is used to fix the maximum input current. Data Sheet 19 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description RIN VIN IIN I OUT RFB R filter FBH SWCS RSWCS FBL + LSGD2 A5 - BOOST A2 VOUT + ISWCSx - M3 - A1 M2 + IIN2 + COUT HSGD2 LOUT LSGD1 IIN1 M4 M1 A8 SLOPE SELECTION & Compensation HSGD1 HSGD2 - HSGD1 C filter LOGIC LSGD1 LSGD2 - A9 A3 BUCK SET - + Vi_REF + - - + + SGND A6 CLK A7 COMP RCOMP VCOMP CCOMP Figure 6 Data Sheet Regulator Block Diagram - TLD5190QV 20 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description 6.2 Adjustable Soft Start Ramp The soft start behavior limits the current through the inductor and the external MOSFET switches during initialization (at first turn on and restarting after output fault condition). The soft start function gradually increases the current of the inductor (LOUT) over tSOFT_START to minimize potential overvoltage at the output. The soft start ramp is defined by a capacitor placed at the SOFT_START pin. Selection of the SOFT_START capacitor (CSOFT_START) can be done according to the approximate formula described in Equation (1): t SOFT _ START = Vss _ th _ eff ⋅ CSOFT _ START I SOFT _ START( PU ) (1) Note: Vss_th_eff is the soft start effectiveness threshold, that depends on load condition. Its value is about 0.7V for the buck mode and 1.4V for the boost mode The SOFT START pin is also used to define a fault filter time. Once an open load or a short on the output is detected, a pull-down current source ISOFT_START_PD (P_6.4.20) is activated. Through a pull-up resistor connected from VREF to the SOFT START pin it is possible to source a current higher than ISOFT_START_PD, the TLD5190QV will latch OFF until the EN/INUVLO pin is toggled. Without any resistor to VREF the pull-down current decreases until VSOFT_START_RESET (P_6.4.22) is reached (the pull-up current source turns on again). If the fault condition hasn’t been removed until VSOFT_START_LOFF (P_6.4.21) is reached, the pull-down current source ISOFT_START_PD turns on again initiating a new cycle. This will continue until the fault is removed. 6.3 Switching Frequency setup The switching frequency can be set from 200 kHz to 700 kHz by an external resistor connected from the FREQ pin to GND or by suppliyng a sync signal as specified in chapter Chapter 11.2. Select the switching frequency with an external resistor according to the graph in Figure 7 or the following approximate formulas. f SW [ kHz ] = 5375 * RFREQ [ kΩ]-0.8 (2) RFREQ[kΩ] = 46023* f SW [kHz]−1.25 (3) Figure 7 Data Sheet Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ 21 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description 6.4 Operation of 4 switches H-Bridge architecture Inductor LOUT connects in an H-Bridge configuration with 4 external N channel MOSFETs (M1, M2, M3 & M4) • Transistor M1 and M3 provides a path between VIN and ground through LOUT in one direction (Driven by top and bottom gate drivers HSGD1 and LSGD2). • Transistor M2 and M4 provides a path between VOUT and ground through LOUT in the other direction (Driven by top and bottom gate drivers HSGD2 and LSGD1). • Nodes SWN1, SWN2, voltage across RSWCS, input and load currents are also monitored by the TLD5190QV. Figure 8 BOOST MODE BUCK-BOOST MODE BUCK MODE M1 ON PWM PWM M2 OFF PWM PWM M3 PWM PWM OFF M4 PWM PWM ON 4 switches H-Bridge architecture Transistor Status summary VIN VOUT M1 HSGD1 M4 HSGD2 LOUT SWN1 SWN2 M2 M3 LSGD1 LSGD2 RSWCS Figure 9 4 switches H-Bridge architecture overview 6.4.1 Boost mode (VIN < VOUT) • M1 is always ON, M2 is always OFF • Every cycle M3 turns ON first and inductor current is sensed (peak current control) • M3 stays ON until the upper reference threshold is reached across RSWCS (Energizing) Data Sheet 22 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description • M3 turns OFF, M4 turns ON until the end of the cycle (Recirculation) • Switches M3 and M4 alternate, behaving like a typical synchronous boost Regulator (see Figure 10) VIN ON VOUT M1 M4 HSGD1 LOUT SWN1 ILOUT HSGD2 (2) Recirculation SWN2 (1) Energizing OFF M2 M3 LSGD2 LSGD1 M1+M3 M1 + M4 M1+M3 M1 + M4 M1+M3 M1 + M4 t RSWCS Figure 10 4 switches H-Bridge architecture in BOOST mode Simplified comparison of 4 switches H-Bridge architecture to traditional asynchronous Boost approach. • M2 is always OFF in this mode (open). • M1 is always ON in this mode (closed connection of inductor to VIN). • M4 acts as a synchronous diode, with significantly lower conduction power losses (I2 x RDSON vs. 0.7V x I) Note: Diode is source of losses and lower system efficiency! LOUT M1 (ON) M4 VIN HSGD1 LSGD1 M2 (OFF) LOUT VOUT D1 VOUT VIN HSGD2 M3 M3 LSGD2 RSWCS RSWCS b) standard asynchronous BOOSTER a) 4 switch architecture BOOSTER Figure 11 4 switches H-Bridge architecture in BOOST mode compared to standard async Booster 6.4.2 Buck mode (VIN > VOUT) • M4 is always ON, M3 is always OFF • Every cycle M2 turns ON and inductor current is sensed (valley current control) • M2 stays ON until the lower reference threshold is reached across RSWCS (Recirculation) Data Sheet 23 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description • M2 turns OFF, M1 turns ON until the end of the cycle (Energizing) • Switches M1 and M2 alternate, behaving like a typical synchronous BUCK Regulator (see Figure 12) VIN VOUT M1 HSGD1 (3) Energizing ON M4 LOUT SWN1 ILOUT HSGD2 SWN2 (4) Recirculation M2 M3 OFF M2+M4 LSGD2 LSGD1 M1 + M4 M1 + M4 M2+M4 M1 + M4 M2+M4 t RSWCS Figure 12 4 switches H-Bridge architecture in BUCK mode Simplified comparison of 4 switches architecture to traditional asynchronous Buck approach. • M3 is always OFF in this mode (open). • M4 is always ON in this mode (closed connection inductor to VOUT). • M2 acts as a synchronous diode, with significantly lower conduction losses (I2 x RDSON vs. 0.7V x I) LOUT VIN M4 (ON) M1 HSGD1 M2 M3 (OFF) LSGD1 VOUT VIN HSGD2 LOUT M1 VOUT HSGD1 LSGD2 D1 RSWCS b) standard asynchronous BUCK a) 4 switch architecture BUCK Figure 13 4 switches H-Bridge architecture in BUCK mode compared to standard async BUCK 6.4.3 Buck-Boost mode (VIN ~ VOUT) • When VIN is close to VOUT the controller is in Buck-Boost operation. • All switches are switching in buck-boost operation. The direct energy transfer from the Input to the output (M1+M4 = ON) is beneficial to reduce ripple current and improves the energy efficiency of the Buck-Boost control scheme. • The two buck boost waveforms and switching behaviors are displayed in Figure 14 below. Data Sheet 24 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description VIN ≤ VOUT ILOUT VIN VOUT M1 M4 (2) Direct Transfer HSGD1 HSGD2 M1 + M4 M1 + M4 M1 + M3 M1 + M4 M2+ M4 LSGD1 M1 + M3 M1 + M4 t M1 + M4 t VIN ≥ VOUT ILOUT LSGD2 RSWCS M2 + M4 M1 + M4 Figure 14 4 switches H-Bridge architecture in BUCK-BOOST mode 6.5 Flexible current sense M1 + M4 M2 + M4 M1 + M4 M1+ M3 M3 M1 + M4 M1+ M3 (1) Energizing M2 M1 + M4 M2+ M4 M1 + M3 SWN2 M1+ M3 LOUT (3) Recirculation SWN1 M2+ M4 (4) Direct Transfer M1 + M4 M2 + M4 M1 + M4 The flexible current sense implementation enables highside and lowside current sensing. The Figure 15 displays the application examples for the highside and lowside current sense concept. VIN VIN Highside Sensing Lowside Sensing FBH FBL Figure 15 Data Sheet FBH FBL Highside and lowside current sensing - TLD5190QV 25 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description 6.6 Programming Output Voltage (Constant Voltage Regulation) For a voltage regulator, the output voltage can be set by selecting the values RFB1, RFB2 and RFB3 according to the following Equation (4): ⎛ V VOUT = ⎜⎜ I FBH + FBH − FBL R FB 2 ⎝ ⎞ ⎛V ⎞ ⎟⎟ ⋅ R FB 1 + ⎜⎜ FBH − FBL − I FBL ⎟⎟ ⋅ R FB 3 + V FBH − FBL ⎠ ⎝ R FB 2 ⎠ (4) If Analog dimming is performed, due to the variations on the IFBL (IFBL_HSS (P_6.4.9) and IFBL_LSS (P_6.4.40)) current on the entire voltage spanning, a non linearity on the output voltage may be observed. To minimize this effect RFBx resistors should be properly dimensioned. VOUT I FBH R FB1 FBH FBL I FBL R FB2 R FB3 Figure 16 Data Sheet Programming Output Voltage (Constant Voltage Regulation) 26 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description 6.7 Electrical Characteristics Table 6 EC Regulator VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Tj = 25 °C; VSET = 2 V; VSET = 2 V; VSET = 0.32 V; P_6.4.1 Regulator: V(FBH-FBL) threshold V(FBH-FBL) 145.5 150 154.5 mV V(FBH-FBL) threshold V(FBH-FBL) V(FBH- 144 150 156 mV 10 15 20 mV V(FBH-FBL) threshold @ analog dimming 10% P_6.4.2 P_6.4.6 FBL)_10 1) FBH Bias current @ highside sensing setup IFBH_HSS 65 110 155 µA FBL Bias current @ highside sensing setup IFBL_HSS 17 30 43 µA FBH Bias current @ lowside sensing setup IFBH_LSS -7.5 -4 -2.5 µA FBL Bias current @ lowside sensing setup IFBL_LSS -45 -30 -20 µA FBH-FBL High Side sensing entry threshold VFBH_HSS_i - 2 - V FBH-FBL High Side sensing exit VFBH_HSS_ threshold dec 1.75 - V 1) P_6.9.2 OUT Current sense Amplifier gm IFBxgm 890 – µS 1) P_6.4.10 1.4 1.47 V P_6.4.11 91 93 % VFBH - FBL = 150 mV; fsw=300kHZ; P_6.4.12 46 50 54 mV – P_6.4.13 – 2.12 – mS 1) P_6.4.14 P_6.4.15 Output Monitor Voltage Maximum BOOST Duty Cycle VFBL = 7 V; VFBH - FBL = 150 mV; 1) VFBL = 7 V; VFBH - FBL = 150 mV; 1) VFBL = 0 V; VFBH - FBL = 150 mV; 1) VFBL = 0 V; VFBH - FBL = 150 mV; 1) VFBH1 increasing; P_6.4.8 P_6.4.9 P_6.4.39 P_6.4.40 P_6.9.1 nc – VIOUTMON 1.33 DBOOST_M 89 VFBH decreasing; AX Input Current Sense threshold VIIN1-IIN2 VIIN1-IIN2 Input Current sense Amplifier gm IIN_gm 1 1.05 V 1) 50 60 mV 1) P_10.8.1 5 VSWCS_buck -60 -50 -40 mV 1) P_10.8.1 6 ISoft_Start_P 22 26 32 µA VSoft_Start = 1 V; P_6.4.19 2.6 3.2 µA VSoft_Start = 1 V; P_6.4.20 1.75 1.85 V – P_6.4.21 Input current Monitor Voltage VIINMON Switch Peak Over Current Threshold - BOOST VSWCS_boo 40 Switch Peak Over Current Threshold - BUCK 0.95 VIIN1 - IIN2 = 50 mV; VIIN1 = VVIN(ON) to 55 V; st Soft Start Soft Start pull up current U Soft Start pull down current ISoft_Start_P 2.2 Soft Start Latch-OFF Threshold VSoft_Start_L 1.65 D OFF Data Sheet 27 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description Table 6 EC Regulator (cont’d) VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified) Parameter Symbol Values Min. Soft Start Reset Threshold VSoft_Start_ 0.1 Soft Start Voltage during regulation VSoft_Start_r 1.9 Unit Note / Test Condition Number P_6.4.22 Typ. Max. 0.2 0.3 V – 2 2.1 V 1) P_6.9.3 RESET No Faults eg Oscillator Switching Frequency fSW 285 300 315 kHz Tj = 25 °C; RFREQ= 37.4 kΩ; P_6.4.23 SYNC Frequency fSYNC VSYNC,ON 200 – 700 kHz – P_6.4.24 2 – – V – P_6.4.25 SYNC Turn Off Threshold VSYNC,OFF – – 0.8 V – P_6.4.26 SYNC High Input Current ISYNC,H 15 30 45 µA VSYNC = 2.0 V; P_6.4.62 SYNC Low Input Current ISYNC,L 6 12 18 µA VSYNC = 0.8 V; P_6.4.63 – 4 V VBSTx - VSWNx P_6.4.64 SYNC Turn On Threshold Gate Driver for external Switch Gate Driver undervoltage VBSTx3.4 threshold VBSTx-VSWNx_UVth VSWNx_UVth HSGDx NMOS driver on-state resistance (Gate Pull Up) RDS(ON_PU) 1.4 HSGDx NMOS driver on-state resistance (Gate Pull Down) RDS(ON_PD) 0.6 LSGDx NMOS driver on-state resistance (Gate Pull Up) RDS(ON_PU) 1.4 LSGDx NMOS driver on-state resistance (Gate Pull Down) RDS(ON_PD) 0.4 HSGDx Gate Driver peak sourcing current decreasing; 2.3 3.7 Ω 1.2 2.2 Ω 2.3 3.7 Ω 1.2 1.8 Ω IHSGDx_SRC 380 – – mA HSGDx Gate Driver peak sinking IHSGDx_SNK 410 current – LSGDx Gate Driver peak sourcing current – HS HS LS LS ILSGDx_SRC 370 VBSTx - VSWNx = 5 V; Isource = 100 mA; VBSTx - VSWNx = 5 V; Isink = 100 mA; VIVCC_EXT = 5 V; Isource = 100 mA; VIVCC_EXT = 5 V; Isink = 100 mA; P_6.4.28 1) P_6.4.32 P_6.4.29 P_6.4.30 P_6.4.31 VHSGDx - VSWNx = 1 V to 4 V; VBSTx - VSWNx= 5 V – mA 1) P_6.4.33 VHSGDx - VSWNx = 4 V to 1 V; VBSTx - VSWNx= 5 V – mA 1) P_6.4.34 VLSGDx = 1 V to 4 V; VIVCC_EXT = 5 V; LSGDx Gate Driver peak sinking ILSGDx_SNK 550 current – Data Sheet 28 – mA 1) P_6.4.35 VLSGDx = 4 V to 1 V; VIVCC_EXT = 5 V; Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Regulator Description Table 6 EC Regulator (cont’d) VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified) Parameter Symbol LSGDx OFF to HSGD ON delay tLSOFF- Values Unit Note / Test Condition Number Min. Typ. Max. 15 30 40 ns 1) P_6.4.36 35 60 75 ns 1) P_6.4.37 HSON_delay HSGDx OFF to LSGD ON delay tHSOFFLSON_delay 1) Not subject to production test, specified by design Data Sheet 29 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Digital Dimming Function 7 Digital Dimming Function To change brightness of LED loads without affecting the lighting-color of the LED a digital Dimming function via PWM (Pulse Width Modulation) is often required. 7.1 Description PWM dimming is commonly practiced to prevent color shift in the LED light source. Via Parallel Interface The PWMI pin detects a pulse width modulated (PWM) signal that disable the gate drivers from delivering output current. µC PWM Digital dimming PWMI VSS Figure 17 Data Sheet AGND Digital Dimming Overview 30 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Digital Dimming Function VEN/INUVLO tACTIVE VEN/INUVLOth t VIVCC_EXT_RTH,d +VIVCCX_HYST t tPWMI,H TPWMI VPWMI VPWMI,ON VPWMI,OFF t Switching activity t ILED t VIOUTMON 200mV t Softstart Power ON Figure 18 Data Sheet Normal Dim Normal Dim Normal Dim Gate ON Gate OFF Gate ON Gate OFF Gate ON Gate OFF Diagnosis ON Diag OFF Diag ON Diag OFF Diag ON Diag OFF Timing Diagram LED Dimming and Start up behavior example ( VVIN stable in the functional range and not during startup) 31 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Digital Dimming Function 7.2 Electrical Characteristics Table 7 EC Digital Dimming VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number PWMI Input: PWMI Turn On Threshold VPWMI,ON 2 – – V – P_7.2.1 PWMI Turn Off Threshold VPWMI,OFF – – 0.8 V – P_7.2.2 PWMI High Input Current IPWMI,H 15 30 45 µA VPWMI = 2.0 V; P_7.2.4 PWMI Low Input Current IPWMI,L 6 12 18 µA VPWMI = 0.8 V; P_7.2.5 Data Sheet 32 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Analog Dimming 8 Analog Dimming The analog dimming feature allows further control of the output current. This approach is used to: • Reduce the default current in a narrow range to adjust to different binning classes of the used LEDs. • Adjust the load current to enable the usage of one hardware for several LED types where different current levels are required. • Reduce the current at high temperatures (protect LEDs from overtemperature). • Reduce the current at low input voltages (for example, cranking-pulse breakdown of the supply or power derating). 8.1 Description The analog dimming feature is adjusting the average load current level via the control of the feedback error Amplifier voltage (VFBH-FBL). The SET pin is used to adjust the mean output current/voltage. The VSET range where analog dimming is enabled is from 200mV to 1.5V. Different application scenarios are described in Figure 20. Using the SET pin to adjust the output current: For the calculation of the output current IOUT the following Equation (5) is used: I OUT = V FBH − V FBL R FB (5) A decrease of the average output current can be achieved by controlling the voltage at the SET pin (VSET) between 0.2V and 1.4V. The mathematical relation is given in the Equation (6) below: I OUT = V SET − 200 mV R FB ⋅ 8 (6) If VSET is 200mV (typ.) the LED current is only determined by the internal offset voltages of the comparators. To assure the switching activity is stopped and IOUT=0, VSET has to be <100mV, see Figure 19 VFBH-FBL 150mV 100mV 0mV 200mV 1.4V Analog Dimming Enabled Figure 19 Data Sheet 1.5V VSET Analog Dimming Disabled Analog Dimming Overview 33 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Analog Dimming Multi-purpose usage of the Analog dimming feature 1) A μC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET pin of the TLD5190QV. 2) The usage of an external resistor divider connected between VREF (accurate regulated supply output) SET and GND can be chosen for systems without μC on board. The concept allows control of the LED current by placing low power resistors. 3) Furthermore a temperature sensitive resistor (Thermistor) to protect the LED loads from thermal destruction can be connected. 4) If the analog dimming feature is not needed, the SET pin should be connected to the VREF pin. 5) Instead of a DAC, the μC can provide a PWM signal and an external R-C filter to produce a constant voltage for the analog dimming. The voltage level depends on the PWM frequency (fPWM) and duty cycle which can be controlled by the μc software after reading the coding resistor placed on the LED module. 1 2 µC_supply D/A-Output µC SET VREF RSET2 CREF VSET SET GND VSET RSET1 3 4 VREF Rthermistor VREF CREF Rfilter CREF SET VSET RSET1 5 GND Cfilter Cfilter SET GND VSET ~ VREF Cfilter GND µC_supply PWM PWM output SET Rfilter µC (e.g. XC2000) Cfilter VSET GND Figure 20 Different use cases for analog dimming pin SET 8.2 Electrical Characteristics Data Sheet 34 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Analog Dimming Table 8 EC Analog Dimming VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified) Parameter Source current on SET Pin Symbol ISET_source Values Min. Typ. Max. – – 1 Unit Note / Test Condition Number µA 1) P_8.3.4 VSET = 0.2 V to 1.4V; 1) Specified by design: not subject to production test. Data Sheet 35 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Linear Regulator 9 Linear Regulator The TLD5190QV features an integrated voltage regulator for the supply of the internal gate driver stages. Furthermore an external voltage regulator can be connected to the IVCC_EXT pin to achieve an alternative gate driver supply if required. 9.1 IVCC Description When the IVCC pin is connected to the IVCC_EXT pin, the internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5V and current up to ILIM (P_9.2.2). An external output capacitor with low ESR is required on pin IVCC for stability and buffering transient load currents. During normal operation the external MOSFET switches will draw transient currents from the linear regulator and its output capacitor (Figure 21, drawing A). Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET switches. A minimum capacitance value is given in parameter CIVCC (P_9.2.4). Alternative IVCC_EXT Supply Concept: The IVCC_EXT pin can be used for an external voltage supply to alternatively supply the MOSFET Gate drivers. This concept is beneficial in the high input voltage range to avoid power losses in the IC (Figure 21, drawing B). Integrated undervoltage protection for the external switching MOSFET: An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage. This undervoltage reset threshold circuit will turn OFF the gate drivers in case the IVCC or IVCC_EXT voltage falls below their undervoltage Reset switch OFF Thresholds VIVCC_RTH,d (P_9.2.9) and VIVCC_EXT_RTH,d (P_9.2.5). The Undervoltage Reset threshold for the IVCC and the IVCC_EXT pins help to protect the external switches from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of the external logic level N-channel MOSFETs. A VIN Internal VREG B IVCC Internal VREG VIN Power On Reset IVCC_EXT Data Sheet Power On Reset IVCC_EXT Gate Drivers Figure 21 IVCC External VREG Gate Drivers Voltage Regulator Configurations 36 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Linear Regulator 9.2 Electrical Characteristics Table 9 EC Line Regulator VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. 4.8 5 5.2 V VIN= 13.5 V; 0.1mA ≤ IIVCC ≤ 50mA; P_9.2.1 Output Current Limitation ILIM 70 90 110 mA 1) P_9.2.2 Drop out Voltage (VIN VIVCC) VDR – IVCC Buffer Capacitor CIVCC IVCC Output Voltage VIVCC 200 mV P_9.2.3 IIVCC = 10 mA; 10 – IVCC_EXT Undervoltage VIVCC_EXT_ 3.7 Reset switch OFF RTH,d Threshold 3.9 VIVCC_RTH, 3.7 3.9 IVCC Undervoltage Reset switch OFF Threshold 350 VIVCC = 4 V; VIN = 5 V; – 4.1 µF 1) 2) P_9.2.4 V 3) P_9.2.5 VIVCC_EXT decreasing; 4.1 V VIVCCX_HY 0.3 ST VREF voltage VREF 1.94 P_9.2.9 VIVCC decreasing; d IVCC and IVCC_EXT Undervoltage Hysterisis 3) 0.33 0.36 V VIVCC increasing; VIVCC_EXT increasing P_9.2.6 2 2.06 V 0 ≤ IVREF ≤ 200µA; P_9.2.8 1) Not subject to production test, specified by design 2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. Use capacitors with LOW ESR. 3) Selection of external switching MOSFET is crucial. VIVCC_EXT_RTH,d and VIVCC_RTH,d min. as worst case VGS must be considered. Data Sheet 37 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Protection and Diagnostic Functions 10 Protection and Diagnostic Functions 10.1 Description The TLD5190QV has integrated circuits to diagnose and protect against overvoltage, open load, short circuits of the load and overtemperature faults. In IDLE state, only the Over temperature Shut Down, Over Temperature Warning, IVCC or IVCC_EXT Undervoltage Monitor or VEN/INUVLO Undervoltage Monitor are reported according to specifications. In Figure 22 a summary of the protection, diagnostic and monitor functions is displayed. Protection and Diagnostic Overvoltages EF1, EF2 Open Load OR No output current Short at the Load Device Overtemperature Linear Regulators OFF OR (only IVCC disabled in case of overtemperature) Input Undervoltage Monitoring Figure 22 IOUTMON KILIS Factor 8 IOUT IINMON KILIS Factor 20 IIN Protection, Diagnostic and Monitoring Overview - TLD5190QV Input Condition Open Load / Overvoltages Shorted LED fault Overtemperature Level* False True False True False True EF1 H H H L H L EF2 H L H H H L Output Gate Drivers Sw* L Sw* L Sw* L IVCC Active Active Active Active Active Shutdown *Note: Sw = Switching False = Condition does not exist True = Condition does exist Figure 23 Diagnostic Truth Table - TLD5190QV Note: A device Overtemperature event overrules all other fault events! Data Sheet 38 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Protection and Diagnostic Functions 10.2 Overvoltage, Open Load, Short circuit protection The VFB pin measures the voltage on the application output and in accordance with the populated resistor divider, short to ground, open load and overvoltage thresholds are set. Refer to Figure 24 for more details. VIN CIVCC IVCC BST1 BST2 M1 HSGD1 SWN1 VOUT D2 D1 CBST1 CBST2 M4 COUT RVFBH LOUT M2 RFB VVFB_OVTH VVFB_OL,rise M3 LSGD1 RVFBL SWCS VVFB_S2G RSWCS SGND PGND LSGD2 SWN2 HSGD2 VFB FBH FBL Figure 24 VFB Protection Pin - Overview 10.2.1 Short Circuit protection The device detects a short circuit if this condition is verified: • The pin VFB falls below the threshold voltage VVFB_S2G for at least 8 clock cycles A voltage divider between VOUT, VFB pin and AGND is used to adjust the application short circuit thresholds following Equation (8). V short _ led = V VFB _ S 2G ⋅ R VFBH + R VFBL R VFBL (7) The TLD5190QV provides an open-drain status pin, EF1, which pulls low when the short circuit is detected. The only time the FB pin will be below VVFB_S2G is during start-up or if the LEDs are shorted. During start-up the TLD5190QV ignores the detection of a short circuit or an open load until the soft-start capacitor reaches 1.75V. To prevent false tripping after startup, a large enough soft-start capacitor must be used to allow the output to get up to approximately 50% of the final value. Note: If the short circuit condition disappears, the device will re-start with the soft start routine as described in Chapter 6.2. 10.2.2 Overvoltage Protection A voltage divider between VOUT, VFB pin and AGND is used to adjust the Overvoltage protection threshold (refer to Figure 24). Data Sheet 39 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Protection and Diagnostic Functions To fix the overvoltage protection threshold the following Equation (8) is used: VOUT _ OV _ protected = VVFB _ OVTH ⋅ RVFBH + RVFBL RVFBL (8) In case of overvoltage events at the input and output, the open-drain status pin EF2 will toggle to LOW, while EF1 will stay at HIGH. After the overvoltage event disappeared the device will auto restart and the status pin EF2 will toggle to HIGH. 10.2.3 Open Load Protection To reliably detect an open load event, two conditions will be observed: 1) Voltage threshold: VVFB>VVFB_OL,rise 2) output information: V(FBH-FBL)<VFBH_FBL_OL The TLD5190QV provides an open-drain status pin, EF2, which pulls low when the VFB pin is above VVFB_OL,rise threshold and the voltage across V(FBH-FBL) is less than VFBH_FBL_OL. If the open LED clamp voltage is programmed correctly using the VFB pin, then the VFB pin should never exceed 1.28V (VVFBOL,fall when the LEDs are connected. After an Open Load error the TLD5190QV is autorestarting the output control accordingly to the implemented Softstart routine. An Open Load error causes an increase of the output voltage as well. An Overvoltage condition could be reported in combination with an Open Load error (in general, multiple error detection may happen if more error detection thresholds are reached during the autorestart funcion, as possible consequence of reactive behavior at the output node during open load). The COMP capacitor is discharged during an Open Load condition to prevent spikes if load reconnects. This measure could artificially generate Short Circuit detections after open loads events. 10.3 Input voltage monitoring, protection and power derating Input overvoltage and undervoltage shutdown levels can both be defined through an external resistor divider, as shown in Figure 25. Both INOVLO and EN/INUVLO pin voltages are internally compared to their respective thresholds by means of hysteretic comparators. Data Sheet 40 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Protection and Diagnostic Functions Neglecting the hysteresis, the following equations hold: ⎛ R1 UV th = ⎜⎜ 1 + R 2 + R3 ⎝ OV th PIN = ⎞ ⎟⎟ ⋅ EN / INUVLO ⎠ ⎛ R1 + R 2 = ⎜⎜ 1 + R3 ⎝ ⎞ ⎟⎟ ⋅ INOVLO ⎠ th (9) th (10) V OUT ⋅ I OUT (11) η V IN _ boundary ⎛ V OUT ⋅ I OUT ⎜⎜ I IN = ⎝ η ⎞ ⎟⎟ ⎠ (12) I IN = V IN 1− IN 2 R IN (13) I OUT = V FBH − FBL R FB (14) Figure 25 Data Sheet Input Voltage Protection 41 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Protection and Diagnostic Functions 10.4 Input current Monitoring The IINMON pin provides a linear indication of the current flowing through the input. The following Equation (15) is applicable: V IINMON = I IN ⋅ R IN ⋅ 20 (15) Note: If the RIN value is choosen in a way that the current limitiation is much bigger than the nominal input current during the application the current measurement becomes inaccurate. Best results for an accurate current measurement via the VIINMON pin is to set the current limit only slightly above the specific application related nominal input current. 10.5 Output current Monitoring The IOUTMON pin provides a linear indication of the current flowing through the LEDs. The following Equation (16) is applicable: V IOUTMON Data Sheet = 200 mV + I OUT ⋅ R FB ⋅ 8 (16) 42 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Protection and Diagnostic Functions 10.6 Device Temperature Monitoring A temperature sensor is integrated on the chip. The temperature monitoring circuit compares the measured temperature to the shutdown threshold. If the internal temperature sensor reaches the shut-down temperature, the Gate Drivers plus the IVCC regulator are shut down as described in Figure 26. The CLKOUT function is disabled during an overtemperature event and will autorestart when the device cooled down and IVCC is present again. Note: The Device will start up with a soft start routine after a overtemperature condition disappear. Tj TjSD ΔΤ TjSO t Ta xSGDx t LED current t EF1, EF2 and IVCC 5V t Device OFF Figure 26 Data Sheet Normal Operation Overtemp Fault ON Overtemp ON Fault Overtemp ON Fault Overtemp Fault Device Overtemperature Protection Behavior 43 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Protection and Diagnostic Functions 10.7 Electrical Characteristics Table 10 EC Protection and Diagnosis VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. 0.53 0.563 0.59 V VVFB decreasing; P_10.8.1 Short Circuit Protection Short to GND threshold VVFB_S2G Temperature Protection: Over Temperature Shutdown Tj,SD 160 175 190 °C 1) P_10.8.4 Over Temperature Shutdown Hysteresis Tj,SD,hyst – 10 – °C 1) P_10.8.5 1.42 1.46 1.50 V 40 58 mV Output Voltage decreasing; P_10.8.7 Overvoltage Protection: VFB Over Voltage Feedback Threshold VVFB_OVTH Output Over Voltage Feedback Hysteresis VVFB_OVTH,HY 25 S P_10.8.6 Open Load and Open Feedback Diagnostics Open Load rising Threshold VVFB_OL,rise 1.29 1.34 1.39 V VFBH-FBL = 0 V; P_10.8.9 Open Load reference Voltage VFBH-FBL VFBH_FBL_OL – 15 22.5 mV VFB = 1.4 V; P_10.8.10 Open Load falling Threshold VVFB_OL,fall 1.23 1.28 1.33 V VFBH-FBL = 0 V; P_10.8.11 Input Overvoltage protection Input Overvoltage rising Threshold VINOVLOth 1.9 2 2.1 V – P_10.8.12 Input Overvoltage Threshold Hysteresis VINOVLO(hyst) 18 40 62 mV – P_10.8.13 REF12 – 2.1 – kΩ 1) P_10.8.14 Error Flags EF1,2 Pin Output Impedance Fault Condition I=100uA 1) Specified by design; not subject to production test. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 44 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Infineon FLAT SPECTRUM Featureset 11 Infineon FLAT SPECTRUM Featureset 11.1 Description The Infineon FLAT SPECTRUM feature set has the target to minimize external additional filter circuits. The goal is to provide several beneficial concepts to provide easy adjustments for EMC improvements after the layout is already done and the HW designed. 11.2 Synchronization Function The TLD5190QV features a SYNC input pin which can be used by a µC pin to define an oscillator switching frequency. The µC is responsible to synchronize with various devices by applying appropriate SYNC signals to the dedicated DC/DC devices in the system. Refer to Figure 27 Note: The Synchronization function can not be used when the Spread Spectrum is active. H-Bridge DCDC MASTER BUCKBOOST GATE CONTROL SYNC LOGIC e.g. 400kHz Phaseshift A H-Bridge DCDC Slave SYNC1 µC SYNC SYNC2 e.g. 400kHz Phaseshift B INPUT Figure 27 Synchronization Overview 11.3 CLKOUT Function BUCKBOOST GATE CONTROL LOGIC defined phase shift between Outputs of different devices The CLKOUT pin provides an in-phase clock signal provided by the internal oscillator. This signal can be used to synchronize two devices for extending output power capability. Data Sheet 45 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Infineon FLAT SPECTRUM Featureset DCDC MASTER OUTPUT LOGIC CLKOUT DCDC Slave SYNC INPUT Figure 28 Data Sheet LOGIC BUCKBOOST GATE CONTROL BUCKBOOST GATE CONTROL CLKOUT Overview 46 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Infineon FLAT SPECTRUM Featureset 11.4 Spread Spectrum The Spread Spectrum modulation technique significantly improves the lower frequency range of the spectrum (f<30MHz). By using the spread spectrum technique, it is possible to optimize the input filter only for the peak limits, and also pass the average limits (average emission limits are -20dB lower than the peak emission limits). By using spread spectrum, the need for low ESR input capacitors is relaxed because the input capacitor series resistor is important for the low frequency filter characteristic. This can be an economic benefit if there is a strong requirement for average limits. The TLD5190QV features a built in Spread Spectrum function which can be enabled via an external Pin (SPREAD_SPECTRUM = HIGH). The modulation frequency fFM, P_11.6.3 and the deviation frequency fdev, P_11.6.2 are internally fixed. Refer to Figure 29 for more details. Note: The Spread Spectrum function can not be used when the synchronization pin is used. fSW fdev t 1 f Figure 29 Data Sheet FM Spread Spectrum Overview 47 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Infineon FLAT SPECTRUM Featureset 11.5 EMC optimized schematic Figure 30 below displays the Application circuit with additional external components for improved EMC behavior. VIN LPI C IN2 RIIN D VS Alternative external VREG supply CPI1 CPI2 C PI3 C PI4 C IN1 VIN IVCC_EXT C IVCC IVCC R filter IIN2 C filter R1 IIN1 EN/INUVLO BST1 BST2 DHSG1 HSGD1 C COMP R COMP R3 COMP C SOFT_START R FREQ µC SYNC signal Digital dimminig Advanced monitoring via µC SYNC of other DCDC Spread Spectrum ON /OFF Analog dimminig Errorflag monitoring C REF SOFT_START LSGD1 SWCS RM1 M1 R HSG1 DLSG1 INOVLO D2 CM1 CBST2 C BST1 R M2 M2 M4 R VFBH C PO1 C PO2 R HSG2 CPO3 CPO4 RVFBL M3 C M3 D LSG2 R SWCS C FBH-FBL C OUT C M4 R M3 C M2 R LSG1 FREQ SGND PGND1 SYNC PGND2 PWMI LSGD2 IINMON SWN2 IOUTMON HSGD2 CLKOUT VFB Spread Spectrum VREF FBH SET FBL EF1 VSS AGND EF2 L OUT LPO RFB R M4 SWN1 R2 Figure 30 D1 R LSG2 DHSG2 4LED in series / 1A C FBH C FBL Application Drawing Including Additional Components for an Improved EMC Behavior Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. Data Sheet 48 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Infineon FLAT SPECTRUM Featureset 11.6 Electrical Characteristics Table 11 EC Spread Spectrum VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. – ±16 – Unit Note / Test Condition Number % 1) P_11.6.2 Spread Spectrum Parameters Frequency Deviation fdev SPREAD_SPEC TRUM = HIGH;; Frequency Modulation fFM – 12 – kHz 1) P_11.6.3 SPREAD_SPEC TRUM = HIGH; Input Characteristics (SPREAD_SPECTRUM) SPREAD_SPECTRUM Turn On Threshold VSPREAD_SPE 2 SPREAD_SPECTRUM Turn Off Threshold VSPREAD_SPE – SPREAD_SPECTRUM High Input Current ISPREAD_SPEC 15 SPREAD_SPECTRUM Low Input Current ISPREAD_SPEC 6 – – V – P_11.6.5 – 0.8 V – P_11.6.6 30 45 µA VSPREAD_SPECTRUM P_11.6.8 CTRUM,ON CTRUM,OFF = 2.0 V; TRUM,H 12 18 µA VSPREAD_SPECTRUM P_11.6.9 = 0.8 V; TRUM,L Output Characteristics (CLKOUT) L level output voltage H level output voltage VCLKOUT(L) VCLKOUT(H) 0 – VIVCC - – 0.4 V VIVCC V ICLKOUT = -2 mA; ICLKOUT = 2 mA; P_11.6.10 P_11.6.11 0.4 V 1) Specified by design; not subject to production test. Data Sheet 49 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Application Information 12 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. CIN2 VIN RIIN Alternative external VREG supply CIVCC IVCC_ext IVCC IIN2 Cfilter IIN1 EN/INUVLO HSGD1 R2 µC SYNC signal RSYNC SYNC Digital dimminig CREF REF1 Analog dimminig Spread_spectrum RSET RSENSE RSENSE Advanced monitoring PWMI RPWMI Errorflag monitoring VREF SET IINMON IOUTMON EF1 EF2 VSS COUT1 M3 COUT3 SWCS SOFT_START FREQ CLKOUT M4 LOUT LSGD1 COMP RFREQ Spread Spectrum ON/OFF CBST1 CBST2 RFB RSWCS R3 RCOMP SYNC of other DCDC REF2 M1 M2 CCOMP CSOFT_START IVCC_ext COUT2 SWN1 INOVLO D2 D1 BST1 BST2 RVFBH R1 Rfilter RVFBL VIN CIN1 High Power LED Load SGND PGND1 PGND2 LSGD2 SWN2 HSGD2 VFB FBH FBL AGND Figure 31 Application Drawing - TLD5190QV as current regulator Table 12 BOM - TLD5190QV as current regulator (IOUT = 1A, fSW = 300kHz) Reference Designator Value Manufacturer Part Number Type Quantity D1, D2 CIN1 CIN2 Cfilter CCOMP CSOFT_START COUT1 COUT2; COUT3;CREF CIV CBST1, CBST2 IC 1 LOUT Schottky Diode TBD TBD Diode 2 1 µF, 100V EPCOS X7R Capacitor 1 4.7 µF, 100V EPCOS X7R Capacitor 5 470 nF, 6.3V EPCOS X7R Capacitor 1 22 nF, 16V EPCOS X7R Capacitor 1 22 nF, 16V EPCOS X7R Capacitor 1 4.7 µF, 100V EPCOS X7R Capacitor 3 100 nF, 100V EPCOS X7R Capacitor 3 10 µF , 10V EPCOS X7R Capacitor 1 100 nF, 16V EPCOS X7R Capacitor 2 — Infineon TLD5190QV IC 1 10 µH Coilcraft XAL1010103MEC Inductor 1 Rfilter RFB RIN 50 Ω, 1% Panasonic TBD Resistor 1 0.150 Ω, 1% Panasonic TBD Resistor 1 0.003 Ω, 1% Panasonic TBD Resistor 1 Data Sheet 50 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Application Information BOM - TLD5190QV as current regulator (IOUT = 1A, fSW = 300kHz) Table 12 Reference Designator Value Manufacturer Part Number Type Quantity R1, R2, R3, REN, RPWMI, RSense1, RSense2; RSYNC, REF1; REF2, RSET RVFBL; RVFBH RCOMP RFREQ Rswcs XX kΩ, 1% Panasonic TBD Resistor 10 1.5 kΩ, 56 kΩ, 1% Panasonic TBD Resistor 2 0Ω Panasonic TBD Resistor 1 37.4 kΩ, 1% Panasonic TBD Resistor 1 0.005 Ω, 1% Panasonic ERJB1CFRO5U Resistor 1 M1, M2, M3, M4 Dual MOSFET: 100V/35mΩ, N-ch Infineon IPG20N10S4L-35 Transistor 2 CIN2 VIN RIIN Alternative external VREG supply CIVCC IVCC_ext IVCC IIN1 EN/INUVLO M1 HSGD1 R2 SWN1 FREQ CLKOUT RSYNC SYNC Spread Spectrum ON/OFF Digital dimminig REF1 REF2 Analog dimminig CREF Spread_spectrum RPWMI RSET RSENSE Advanced monitoring RSENSE Errorflag monitoring PWMI VREF SET IINMON IOUTMON EF1 EF2 VSS SGND PGND1 PGND2 LSGD2 SWN2 HSGD2 VFB FBH RFB3 µC SYNC signal VOUT SWCS SS RFREQ SYNC of other DCDC M3 LSGD1 COMP COUT1 RSWCS R3 CSS IVCC_ext M2 CCOMP M4 LOUT INOVLO RCOMP CBST1 CBST2 RFB1 Cfilter COUT3 COUT2 BST1 BST2 IIN2 RFB2 R1 Rfilter D2 D1 RVFBH VIN RVFBL CIN1 FBL AGND Figure 32 Application Drawing - TLD5190QV as voltage regulator Table 13 BOM - TLD5190QV as voltage regulator (IOUT = 1A, fSW = 300kHz) Reference Designator Value Manufacturer Part Number Type Quantity D1, D2 CIN1 CIN2 Cfilter CCOMP CSOFT_START COUT1 Schottky Diode TBD TBD Diode 2 1 µF, 100V EPCOS X7R Capacitor 1 4.7 µF, 100V EPCOS X7R Capacitor 5 470 nF, 6.3V EPCOS X7R Capacitor 1 22 nF, 16V EPCOS X7R Capacitor 1 22 nF, 16V EPCOS X7R Capacitor 1 4.7 µF, 100V EPCOS X7R Capacitor 3 Data Sheet 51 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Application Information Table 13 BOM - TLD5190QV as voltage regulator (IOUT = 1A, fSW = 300kHz) Reference Designator Value Manufacturer Part Number Type Quantity COUT2; COUT3;CREF CIVCC CBST1, CBST2 IC1 LOUT Rfilter RFB1, RFB2, RFB3 RIN R1, R2, R3, REN, RPWMI, RSense1, RSense2; RSYNC, REF1; REF2; RSET RVFBL, RVFBH RCOMP RFREQ Rswcs 100 nF, 100V EPCOS X7R Capacitor 3 10 µF , 10V EPCOS X7R Capacitor 1 100 nF, 16V EPCOS X7R Capacitor 2 — Infineon TLD5190QV IC 1 10 µH Coilcraft XAL1010-103MEC Inductor 1 50 Ω, 1% Panasonic TBD 1 XX kΩ, 1% Panasonic TBD Resistor 3 0.003 Ω, 1% Panasonic TBD Resistor 1 XX kΩ, 1% Panasonic TBD Resistor 10 1.5 kΩ, 56 kΩ, 1% Panasonic TBD Resistor 2 0Ω Panasonic TBD Resistor 1 37.4 kΩ, 1% Panasonic TBD Resistor 1 0.005 Ω, 1% Panasonic ERJB1CFRO5U Resistor 1 M1, M2, M3, M4 Dual MOSFET: 100V/35mΩ, N-ch Infineon IPG20N10S4L-35 Transistor 2 Data Sheet 52 Resistor Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Application Information 12.1 Further Application Information Typical Performance Characteristics of Device TJ=25°C,VIN=12Vunlessotherwisespecified IVCCVoltagevsTemperature IVCCDropoutvsCurrent 5,20 2,5 5,15 2 IIVCC=10mA 5,10 1,5 5,05 Tj=150°C VIVCC [V] VINVIVCC [V] Tj=40°C Tj=25°C 1 5,00 4,95 4,90 0,5 4,85 0 4,80 0 10 20 30 40 50 40 10 60 LDOcurrent[mA] 110 Temperature[°C] IVCCLoadregulation V(FBHFBL)ThresholdvsVFBH 5,2 154 5,15 153 5,1 152 AnalogDim.=100% V(FBHFBL)[mV] VIVCC [V] 5,05 5 4,95 151 150 149 4,9 148 4,85 147 4,8 146 0 10 20 30 40 50 0 10 20 IIVCC[mA] 30 40 50 60 VFBH[V] V(FBHFBL)ThresholdvsTemp IOUTMONVoltagevsTemp 1,44 154 AnalogDim.=100%,FBH=0,15V 153 1,43 AnalogDim.=100%,FBH=12V 1,42 152 150 1,4 149 1,39 148 1,38 147 1,37 1,36 146 40 10 60 40 110 Temperature[°C] Figure 33 Data Sheet V(FBHFBL) =150mV 1,41 151 VIOUTMON [V] V(FBHFBL)[mV] AnalogDim.=100%,FBH=60V 10 60 Temperature[°C] 110 Characterization Diagrams 2 53 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Application Information TJ=25°C,VIN=12Vunlessotherwisespecified IOUTMONVoltagevsV(FBHFBL) V(IIN1IIN2)ThresholdvsTemp 53 1,4 VIIN1=8V 1,2 VIIN1=13.5V 52 VIIN1=55V VIN =12V IVCC=10mA 1 V(IIN1IIN12 [mV] VIOUTMON [V] 51 0,8 0,6 50 49 0,4 48 0,2 0 47 0 20 40 60 80 100 120 40 140 10 V(FBHFBL) [mV] 60 110 Temperature[°C] IINMONVoltagevsTemp IFBH ,IFBL vsVFBH 120 1,04 100 1,03 I_FBL[uA] V(IIN1IIN2) =50mV I_FBH[uA] 1,02 V(FBHFBL) =150mV 60 1,01 VIINMON [V] IFBH [uA],IFBL [uA] 80 40 1 20 0,99 0 0,98 20 0,97 40 0,96 0 5 10 15 20 25 30 35 40 45 50 55 60 40 10 VFBH[V] OscillatorFrequencyvsTemp 110 V(BSTxSWNx)vsTemp 800 4 3,9 700 3,8 R_FREQ=61.9kOhm 600 VIN =12V V(FBHFBL) =150mV 3,7 V(SBTxSWNx) [V] R_FREQ=37.4kOhm fSW [kHz] 60 Temperature[°C] 500 R_FREQ=12.7kOhm 400 3,6 VBSTxVSWNx_dec[V] 3,5 VBSTxVSWNx_inc[V] 3,4 300 3,3 200 3,2 100 3,1 40 10 60 110 40 Temperature[°C] Figure 34 Data Sheet 10 60 110 Temperature[°C] Characterization Diagrams 3 54 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Application Information TJ=25°C,VIN=12Vunlessotherwisespecified VREFVoltagevsTemperature VREF LoadRegulation 2,06 2,04 2,03 VIN=8V VIN=13.5V VIN=40V 2,04 2,02 2,02 VREF [V] VREF [V] 2,01 2 2 Iref=100uA 1,99 1,98 1,98 1,96 1,97 1,96 1,94 0 50 100 150 40 200 10 LSGDxonstateresistancevsTemp 110 HSGDxonresistancevsTemp 4,5 4,5 4 4 3,5 3,5 3 3 LSGDx_PullUp HSGDx[Ohm] LSGDx[Ohm] 60 Temperature[°C] IREF [uA] 2,5 LSGDx_Pulldown 2 HSGDx_Pulldown 2,5 2 1,5 1,5 1 1 0,5 0,5 0 HSGDx_Pullup 0 40 10 60 110 40 10 Temperature[°C] 60 110 Temperature[°C] VCOMP VoltagevsDutyCycle V(SWCSSGND) TresholdvsTemp 120 60 100 40 Boost DC_Buck[%] Buck DC_Boost[%] 20 V(SWCSSGND) =0 V(SWCSSGND) [mV] DutyCycle[%] 80 60 0 40 20 20 40 0 60 0,6 0,8 1 1,2 1,4 1,6 40 VCOMP[V] Figure 35 • 10 60 110 Temperature[°C] Characterization Diagrams 4 For further information you may contact http://www.infineon.com/ Data Sheet 55 Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Package Outlines Package Outlines 6.8 11 x 0.5 = 5.5 0.1±0.03 B +0.03 1) 3 1 0. 0.4 x 45° Index Marking C ± 26 36 25 48 13 1 12 (0 (0.2) 2) 37 .35 ) 0.05 MAX. 1) Vertical burr 0.03 max., all sides 2) These four metal areas have exposed diepad potential Figure 36 0.5 0. 24 0.15 ±0.05 0.1 ±0.05 SEATING PLANE 7 ±0.1 48x 0.08 6.8 5 0 0. 0.5 ±0.07 A (6) 7 ±0.1 0.9 MAX. (0.65) (5.2) 13 0.23 ±0.05 (5.2) Index Marking 48x 0.1 M A B C (6) PG-VQFN-48-29, -31-PO V05 PG-VQFN-48-31 (with LTI) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 56 Dimensions in mm Rev. 1.0, 2016-05-20 H-Bridge DC/DC Controller TLD5190QV Revision History 14 Revision History Revision Date Changes Rev. 1.0 2016-05-20 Released Datasheet Data Sheet 57 Rev. 1.0, 2016-05-20 Edition 2016-05-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.