TLD5190QV Data Sheet (3 MB, EN)

Infineon® LITIX™ Power
H-Bridge DC/DC Controller
H-Bridge DC/DC Controller for High Power LED Lighting
TLD5190QV
Data Sheet
Rev. 1.0, 2016-05-20
Automotive Power
H-Bridge DC/DC Controller
TLD5190QV
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Different Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6
6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.5
6.6
6.7
Regulator Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Regulator Diagram Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adjustable Soft Start Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Frequency setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation of 4 switches H-Bridge architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Boost mode (VIN < VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Buck mode (VIN > VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Buck-Boost mode (VIN ~ VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flexible current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programming Output Voltage (Constant Voltage Regulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
7.1
7.2
Digital Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8
8.1
8.2
Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9
9.1
9.2
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
IVCC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10
10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.4
10.5
10.6
10.7
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage, Open Load, Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage monitoring, protection and power derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device Temperature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
11.1
Infineon FLAT SPECTRUM Featureset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Data Sheet
2
11
11
13
13
19
19
21
21
22
22
23
24
25
26
27
38
38
39
39
39
40
40
42
42
43
44
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Table of Contents
11.2
11.3
11.4
11.5
11.6
Synchronization Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLKOUT Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EMC optimized schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
12.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
14
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Data Sheet
3
45
45
47
48
49
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller for High Power LED
Lighting
1
TLD5190QV
Overview
Features
•
MOSFET H-Bridge with Single Inductor DC/DC Controller for HIGH
POWER BUCK-BOOST LED control
•
Constant Current and Constant Voltage Regulation
•
Wide VIN Range (Device 4.5V to 40V, Power Stage 4.5V to 55V)
•
Wide LED forward voltage Range (2V up to 55V)
•
Maximum Efficiency in every condition (up to 96%)
•
Flexible current sense (Highside or Lowside)
•
LED current accuracy+/-3% at Tj=25° and 4% over the whole automotive temperature range
•
EMC optimized device: Features an auto Spread Spectrum concept to ensure best in class EMC performance
•
Open Load, Overvoltages, Shorted LED fault and Overtemperature Diagnostic Outputs
•
LED and Input current sense with dedicated monitor Outputs
•
Smart power protection features for device and load (open load, short of Load, Overtemperature)
•
Switching Frequency Range from 200 kHz to 700 kHz
•
Capability to supply Gate Drivers via external Voltage Regulator
•
Adjustable Soft Start
•
Enhanced Dimming features to adjust average LED current and PWM dimming
•
Available in a small thermally enhanced PG-VQFN-48-31 package
•
Automotive AEC Qualified
PG-VQFN-48-31
Description
The TLD5190QV is a synchronous MOSFET H-Bridge DC/DC controller with built in protection features. This
concept is beneficial for driving high power LEDs with maximum system efficiency and minimum number of
external components. The TLD5190QV offers both analog and digital (PWM) dimming.The switching frequency is
adjustable in the range of 200 kHz to 700 kHz. It can be synchronized to an external clock source. A built in Spread
Spectrum switching frequency modulation and the forced continuous current regulation mode improve the overall
EMC behavior. Furthermore the current mode regulation scheme provides a stable regulation loop maintained by
small external compensation components. The adjustable soft start feature limits the current peak as well as
voltage overshoot at start-up. The TLD5190QV is suitable for use in the harsh automotive environment.
Type
Package
Marking
TLD5190QV
PG-VQFN-48-31
TLD5190QV
Data Sheet
4
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Overview
Table 1
Product Summary
Power Stage input voltage range
Device Input supply voltage range
Maximum output voltage (depending by the
application conditions)
Switching Frequency range,
Typical NMOS driver on-state resistance at Tj =
25°C (Gate Pull Up)
Typical NMOS driver on-state resistance at Tj =
25°C (Gate Pull Down)
VPOW
VVIN
VOUT(max)
4.5 V … 55 V
4.5 V … 40 V
55 V as LED Driver Boost Mode
50 V as LED Driver Buck Mode
50 V as Voltage regulator
fSW
RDS(ON_PU)
200 kHz... 700 kHz
RDS(ON_PD)
1.2 Ω
2.3 Ω
Protective Functions
•
Over load protection of external MOSFETs
•
Shorted load, open load, output overvoltage protection
•
Input overvoltage and undervoltage protection
•
Thermal shutdown of device with autorestart behavior
•
Electrostatic discharge protection (ESD)
Diagnostic Functions
•
Diagnostic information via Error Flags
•
Open load detection in ON-state
•
Device Overtemperature shutdown
•
Advanced diagnostic functions provide ILED and IIN information
Applications
•
Especially designed for driving high power LEDs in automotive applications
•
Automotive Exterior Lighting: full LED headlamp assemblies (Low Beam, High Beam, Matrix Beam, Pixel Light)
•
General purpose current/voltage controlled DC/DC LED driver
Data Sheet
5
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Block Diagram
2
Block Diagram
Figure 1
Block Diagram - TLD5190QV
Data Sheet
6
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
Figure 2
Pin Configuration - TLD5190QV
Data Sheet
7
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Pin Configuration
3.2
Pin
Pin Definitions and Functions
Symbol
I/O
1)
Function
Power Supply
1, 12,
n.c.
15, 45,
48
-
Not connected, tie to AGND on the Layout;
44
VIN
-
Power Supply Voltage;
Supply for internal biasing.
47
IVCC_EXT
I
5, 8
PGND1, 2
-
Power Ground;
Ground for power potential. Connect externally close to the chip.
26
VSS
-
Digital GPIO Ground;
Ground for GPIO pins
40
AGND
-
Analog Ground;
Ground Reference
-
EP
-
Exposed Pad;
Connect to external heatspreading Cu area (e.g. inner GND layer of
multilayer PCB with thermal vias).
PD External LDO input;
Input to alternatively supply internal Gate Drivers via an external LDO.
Connect to IVCC pin to use internal LDO to supply gate drivers. Must not
be left open.
Gate Driver Stages
2
HSGD1
O
Highside Gate Driver Output 1;
Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT
superimposed on the switch node voltage SWN1. Connect to gate of
external switching MOSFET.
11
HSGD2
O
Highside Gate Driver Output 2;
Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT
superimposed on the switch node voltage SWN2. Connect to gate of
external switching MOSFET.
6
LSGD1
O
Lowside Gate Driver Output 1;
Drives the lowside n-channel MOSFET between GND and VIVCC_EXT
Connect to gate of external switching MOSFET.
7
LSGD2
O
Lowside Gate Driver Output 2;
Drives the lowside n-channel MOSFET between GND and VIVCC_EXT
Connect to gate of external switching MOSFET.
4
SWN1
IO
Switch Node 1;
SWN1 pin swings from a diode voltage drop below ground up to VIN
9
SWN2
IO
Switch Node 2;
SWN2 pin swings from ground up to a diode voltage drop above VOUT
46
IVCC
O
Internal LDO output;
Used for internal biasing and gate driver supply. Bypass with external
capacitor close to the pin. Pin must not be left open.
Inputs and Outputs
Data Sheet
8
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Pin Configuration
1)
Pin
Symbol
I/O
23
TEST1
-
Test Pin;
Used for Infineon end of line test, connect to GND in application
25
TEST2
-
Test Pin;
Used for Infineon end of line test, connect to GND in application
28
TEST3
-
Test Pin;
Used for Infineon end of line test, connect to GND in application
29
TEST4
-
Test Pin;
Used for Infineon end of line test, connect to GND in application
30
TEST5
-
Test Pin;
Used for Infineon end of line test, connect to GND in application
31
TEST6
-
Test Pin;
Used for Infineon end of line test, connect to GND in application
41
EN/INUVLO
I
35
FREQ
I
34
SYNC
I
PD Synchronization Input;
Apply external clock signal for synchronization
24
PWMI
I
PD Control Input; Digital input 5Vor 3.3V.
13
FBH
I
Output current Feedback Positive;
Non inverting Input (+)
14
FBL
I
Output current Feedback Negative;
Inverting Input (-)
3
BST1
IO
Bootstrap capacitor;
Used for internal biasing and to drive the Highside Switch HSGD1. Bypass
to SWN1 with external capacitor close to the pin. Pin must not be left open.
10
BST2
IO
Bootstrap capacitor;
Used for internal biasing and to drive the Highside Switch HSGD2. Bypass
to SWN2 with external capacitor close to the pin. Pin must not be left open.
17
SWCS
I
Current Sense Input;
Inductor current measurement - Non Inverting Input (+)
18
SGND
I
Current Sense Ground;
Inductor current sense - Inverting Input (-)
Route as Differential net with SWCS on the Layout
42
IIN1
I
Input Current Monitor Positive;
Non Inverting Input (+), connect to VIN if input current monitor is not
needed
43
IIN2
I
Input Current Monitor Negative;
Inverting Input (-), connect to VIN if input current monitor is not needed
19
COMP
O
Compensation Network Pin;
Connect R and C network to pin for stability phase margin adjustment
38
SOFT_START
O
Softstart configuration Pin;
Connect a capacitor CSOFT_START to GND to fix a soft start ramp default
time.
Data Sheet
Function
PD Enable/Input Under Voltage Lock Out;
Used to put the device in a low current consumption mode, with additional
capability to fix an undervoltage threshold via external components. Pin
must not be left open.
Frequency Select Input;
Connect external resistor to GND to set frequency.
9
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Pin Configuration
1)
Pin
Symbol
I/O
Function
36
INOVLO
I
Input Overvoltage Protection Pin;
Define an upper voltage threshold and switches OFF the device in case of
overvoltages on the VIN supply. Must not be left open.
20
VFB
I
Voltage Loop Feedback Pin;
VFB is intended to set output protection functions.
22
SET
I
Analog current sense adjustment Pin;
A voltage VSET between 0.2V and 1.5V will adjust the ILED or VOUT in a
linear relation.
37
SPREAD_SPECT I
RUM
39
IINMON
O
Input current monitor output;
Monitor pin that produces a voltage that is 20 times the voltage VIN1-IN2.
IINMON will be equal 1V when VIIN1-VIIN2=50mV
16
IOUTMON
O
Output current monitor output;
Monitor pin that produces a voltage that is 200mV + 8 times the voltage
VFBH-FBL. IOUTMON will be equal 1.4V when VFBH-FBL = 150mV.
21
VREF
O
PD Spread Spectrum Pin;
This pin is enabling and disabling the SPREAD SPECTRUM function. This
feature is beneficial to improve the EMC performance.
PD Voltage Reference Output Pin;
Supplies an accurate 2V output voltage for standalone analog dimming
and LED temperature compensation via external resistors. Bypass with an
external 100nF capacitor close to the pin. Pin must not be left open.
Logic Outputs
27
CLKOUT
O
Clock Output Pin;
Switching Oscillator output signal to supply additional SYNC Inputs of
other DCDC devices (beneficial for standalone operations without µC)
33
EF1
O
Error Flag 1;
An open drain output which is pulled to LOW when an output Short to GND
or Overtemperature occurs
32
EF2
O
Error Flag 2;
An open drain output which is pulled to LOW when an OPEN load,
Overvoltages or Overtemperature occurs
1) O: Output, I: Input,
PD: pull-down circuit integrated,
PU: pull-up circuit integrated
Data Sheet
10
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 2
Absolute Maximum Ratings1)
Tj = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ. Max.
Unit Note /
Test Condition
Number
-0.3
–
60
V
–
P_4.1.1
-0.3
–
6
V
–
P_4.1.3
IVCC_EXT
External Linear Voltage Regulator Input
voltage
VIVCC_EXT -0.3
–
6
V
–
P_4.1.4
VREF
Voltage reference output
VREF
-0.3
–
3.6
V
–
P_4.1.5
LSGD1,2 - PGND1,2
Lowside Gatedriver voltage
VLSGD1,2-
-0.3
–
5.5
V
–
P_4.1.54
HSGD1,2 - SWN1,2
Highside Gatedriver voltage
VHSGD1,2-
-0.3
–
5.5
V
–
P_4.1.55
SWN1, SWN2
switching node voltage
VSWN1, 2
-1
–
60
V
–
P_4.1.6
(BST1-SWN1), (BST2-SWN2)
Boostrap voltage
VBSTx-
-0.3
–
6
V
–
P_4.1.7
BST1, BST2
Boostrap voltage related to GND
VBST1, 2
-0.3
–
65
V
–
P_4.1.8
SWCS
Switch Current Sense Input voltage
VSWCS
-0.3
–
0.3
V
–
P_4.1.9
SGND
Switch Current Sense GND voltage
VSGND
-0.3
–
0.3
V
–
P_4.1.10
-0.5
–
0.5
V
–
P_4.1.11
VPGND1,2
-0.3
–
0.3
V
–
P_4.1.28
VIIN1, 2
-0.3
–
60
V
–
P_4.1.12
-0.5
–
0.5
V
–
P_4.1.13
Supply Voltages
VIN
Supply Input
VVIN
IVCC
VIVCC
Internal Linear Voltage Regulator Output
voltage
Gate Driver Stages
PGND
SWN1,2
SWNx
SWCS-SGND
VSWCSSwitch Current Sense differential voltage SGND
PGND1,2
Power GND voltage
High voltage Pins
IIN1, IIN2
Input Current monitor voltage
IIN1-IIN2
VIIN1-IIN2
Input Current monitor differential voltage
Data Sheet
11
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
General Product Characteristics
Table 2
Absolute Maximum Ratings1) (cont’d)
Tj = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ. Max.
Unit Note /
Test Condition
Number
FBH, FBL
Feedback Error Amplifier voltage
VFBH, FBL
-0.3
–
60
V
–
P_4.1.14
FBH-FBL
Feedback Error Amplifier differential
voltage
VFBH-FBL
-0.5
–
0.5
V
–
P_4.1.15
EN/INUVLO
Device enable/input undervoltage
lockout
VEN/INUVLO -0.3
–
60
V
–
P_4.1.16
PWMI
Digital Input voltage
VPWMI
-0.3
–
5.5
V
–
P_4.1.17
SYNC
Synchronization Input voltage
VSYNC
-0.3
–
5.5
V
–
P_4.1.22
CLKOUT
Clock Output voltage
VCLKOUT
-0.3
–
5.5
V
–
P_4.1.23
SPREAD_SPECTRUM
Spread Spectrum Input voltage
VSPREAD_S -0.3
–
5.5
V
–
P_4.1.24
Digital (I/O) Pins
PECTRUM
Analog Pins
VFB
Loop Input voltage
VVFB
-0.3
–
5.5
V
–
P_4.1.25
INOVLO
Input overvoltage lockout
VINOVLO
-0.3
–
5.5
V
–
P_4.1.26
EF1, 2
Error Flags output voltage
VEF1,2
-0.3
–
5.5
V
–
P_4.1.27
SET
Analog dimming Input voltage
VSET
-0.3
–
5.5
V
–
P_4.1.29
COMP
Compensation Input voltage
VCOMP
-0.3
–
3.6
V
–
P_4.1.30
SOFT_START
Softstart Voltage
VSOFT_STA -0.3
–
3.6
V
–
P_4.1.31
FREQ
Voltage at frequency selection pin
VFREQ
-0.3
–
3.6
V
–
P_4.1.32
IINMON
Voltage at input monitor pin
VIINMON
-0.3
–
3.6
V
–
P_4.1.33
IOUTMON
Voltage at output monitor pin
VIOUTMON -0.3
–
5.5
V
–
P_4.1.34
Tj
Tstg
-40
–
150
°C
–
P_4.1.35
-55
–
150
°C
–
P_4.1.36
VESD,HBM
-2
–
2
kV
HBM2)
P_4.1.37
RT
Temperatures
Junction Temperature
Storage Temperature
ESD Susceptibility
ESD Resistivity of all Pins
Data Sheet
12
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
General Product Characteristics
Table 2
Absolute Maximum Ratings1) (cont’d)
Tj = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)
Parameter
Symbol
Values
Min.
ESD Resistivity to GND
ESD Resistivity of corner Pins to GND
VESD,CDM -500
VESD,CDM_ -750
Typ. Max.
Unit Note /
Test Condition
–
V
CDM3)
P_4.1.38
V
3)
P_4.1.39
500
–
750
CDM
Number
corner
1) Not subject to production test, specified by design.
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5k Ω, 100 pF)
3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
1. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
4.2
Functional Range
Table 3
Functional Range
Parameter
Symbol
Values
Min.
Typ. Max.
Unit Note /
Test Condition
Number
Device Extended Supply Voltage
Range
VVIN
4.5
–
40
V
1)
P_4.2.1
Device Nominal Supply Voltage
Range
VVIN
8
–
36
V
–
P_4.2.2
Power Stage Voltage Range
VPOW
Tj
4.5
–
55
V
1)
P_4.2.5
-40
–
150
°C
–
P_4.2.4
Junction Temperature
1) Not subject to production test, specified by design.
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go
to www.jedec.org.
Table 4
Parameter
Junction to Case
Junction to Ambient
Symbol
RthJC
RthJA
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
–
0.9
–
K/W
1) 2)
P_4.3.1
–
25
–
K/W
3)
P_4.3.2
2s2p
1) Not subject to production test, specified by design.
Data Sheet
13
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
General Product Characteristics
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to
ambient temperature). Ta=25°C; The IC is dissipating 1W.
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink
area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board
has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu). A thermal via (diameter = 0.3 mm and
25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and
second outer layer (bottom) of the JEDEC PCB. Ta=25°C; The IC is dissipating 1W.
Data Sheet
14
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Power Supply
5
Power Supply
The TLD5190QV is supplied by the following pins:
•
VIN (main supply voltage)
•
IVCC_EXT (supply for internal gate driver stages)
The VIN supply provides internal supply voltages for the analog and digital blocks.
IVCC_EXT is the supply for the low side driver stages. This supply is used also to charge, through external
schottky diodes, the bootstrap capacitors which provide supply voltages to the high side driver stages. If no
external voltage is available this pin must be shorted to IVCC, which is the output of an internal 5V LDO.
The supply pins VIN and IVCC_EXT have undervoltage detections.
Undervoltage on IVCC_EXT or IVCC voltages forces a deactivation of the driver stages, thus stopping the
switching activity.
Moreover the double function pin EN/INUVLO can be used as an input undervoltage protection by placing a
resistor divider from VIN to GND (refer to Chapter 10.3).
If EN/INUVLO undervoltage is detected, it will turn-off the IVCC voltage regulator,and stop switching.
Figure 3 shows a basic concept drawing of the supply domains and interactions among pins VIN and
IVCC/IVCC_EXT.
VIN
VREG (5V)
R1
EN/INUVLO
IVCC
Internal pre-regulated
voltage Supply
Undervoltage
detection
R2
IVCC_EXT
VREG
digital
VREG
analog
LS - Drivers
PGND
BSTx
Bandgap
Reference
HS - Drivers
LOGIC
SWNx
Figure 3
Data Sheet
Power Supply Concept Drawing
15
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Power Supply
Usage of EN/INUVLO pin in different applications
The pin EN/INUVLO is a double function pin and can be used to put the device into a low current consumption
mode. An undervoltage threshold should be fixed by placing an external resistor divider (A) in order to avoid low
voltage operating conditions. This pin can be driven by a µC-port as shown in (B) .
A
B
Vin
Vin
VIN
VIN
R1
R1
EN/INUVLO
R2
Figure 4
Data Sheet
GND
EN/INUVLO
µC Port
R2
GND
Usage of EN/INUVLO pin in different applications
16
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Power Supply
5.1
Different Power States
TLD5190QV has the following power states:
•
SLEEP state
•
IDLE state
•
ACTIVE state
The transition between the power states is determined according to these variables after a filter time of max. 3
clock cycles:
•
VIN level
•
EN/INUVLO level
•
IVCC level
•
IVCC_EXT level
The state diagram including the possible transitions is shown in Figure 5.
The Power-up condition is entered when the supply voltage VVIN exceeds its minimum supply voltage threshold
VVIN(ON).
SLEEP
When the TLD5190QV is in the SLEEP state, all outputs are OFF, independently from the supply voltages VIN,
IVCC and IVCC_EXT. The current consumption is low. Refer to parameter: IVIN(SLEEP).
The transition from SLEEP to ACTIVE state requires a specified time: tACTIVE.
IDLE
In IDLE state the internal voltage regulator is working. Diagnosis functions are not available. The output drivers
are switched OFF, independently from the supply voltages VIN, IVCC and IVCC_EXT.
ACTIVE
In active state the device will start switching activity to provide power at the output only when PWMI = HIGH. To
start the Highside gate drivers HSGDx the voltage level VBSTx - VSWNx needs to be above the threshold VBSTxVSWNx_UVth. In ACTIVE state the device current consumption via VIN is dependent on the external MOSFET
used and the switching frequency fSW.
Power-up
EN/INUVLO = HIGH
EN/INUVLO = LOW
SLEEP
EN/INUVLO = LOW
IDLE
EN/INUVLO = LOW
VIN = LOW
or IVCC = LOW
or IVCC_EXT = LOW
VIN = HIGH
& IVCC = HIGH
& IVCC_EXT = HIGH
Figure 5
Data Sheet
ACTIVE
Simplified State Diagram
17
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Power Supply
5.2
Electrical Characteristics
Table 5
EC Power Supply
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
–
–
4.7
Unit
Note /
Test Condition
Number
V
VIN increasing;
VEN/INUVLO = HIGH;
P_5.3.1
Power Supply VIN
Input Voltage Startup
VVIN(ON)
IVCC = IVCC_EXT =
10 mA;
Input Undervoltage switch OFF
VVIN(OFF)
–
–
4.5
V
VIN decreasing;
VEN/INUVLO = HIGH;
P_5.3.14
IVCC = IVCC_EXT =
10 mA;
Device operating current
IVIN(ACTIVE)
–
4.4
6
mA
1)
VIN Sleep mode supply current
IVIN(SLEEP)
–
–
1.5
µA
VEN/INUVLO= 0 V;
P_5.3.3
VIN = 13.5 V;
VIVCC = VIVCC_EXT= 0 V;
ACTIVE mode;
CLKOUT freq.
300KHz;
VPWMI = 0 V;
P_5.3.2
EN/INUVLO Pin characteristics
Input Undervoltage falling
Threshold
VEN/INUVLOth 1.6
1.75
1.9
V
–
P_5.3.7
EN/INUVLO Rising Hysteresis
VEN/INUVLO(h –
90
–
mV
1)
P_5.3.8
0.89
1.34
µA
VEN/INUVLO = 0.8 V;
P_5.3.9
2.2
3.3
µA
VEN/INUVLO = 2 V;
P_5.3.10
–
0.7
ms
1)
P_5.3.11
yst)
EN/INUVLO input Current LOW
IEN/INUVLO(LO 0.45
W)
EN/INUVLO input Current HIGH IEN/INUVLO(HI 1.1
GH)
Timings
SLEEP mode to ACTIVE time
tACTIVE
–
VIVCC = VIVCC_EXT;
CIVCC= 10µF;
VIN = 13.5 V;
1) Not subject to production test, specified by design.
Data Sheet
18
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
6
Regulator Description
The TLD5190QV includes all of the functions necessary to provide constant current to the output as usually
required to drive LEDs. A voltage mode regulation can also be implemented (Refer to Chapter 6.6).
It is designed to control 4 gate driver outputs in a H-Bridge topology by using only one inductor and 4 external
MOSFETs. This topology is able to operate in high power BOOST, BUCK-BOOST and BUCK mode applications
with maximum efficiency.
The transition between the different regulation modes is done automatically by the device itself, with respect to the
application boundary conditions.
The transition phase between modes is seamless.
6.1
Regulator Diagram Description
The TLD5190QV includes two analog current control inputs (IIN1, IIN2) to limit the maximum Input current (Block
A1 and A7 in Figure 6).
A second analog current control loop (A5, A6) connected to the sensing pins FBL, FBH regulates the output
current.
The regulator function is implemented by a pulse width modulated (PWM) current mode controller. The error in the
output current loop is used to determine the appropriate duty cycle to get a constant output current.
An external compensation network (RCOMP, CCOMP) is used to adjust the control loop to various application
boundary conditions.
The inductor current for the current mode loop is sensed by the RSWCS resistor.
RSWCS is used also to limit the maximum external switches / inductor current.
If the Voltage across RSWCS exceeds its overcurrent threshold (VSWCS_buck or VSWCS_boost for buck or boost operation
respectively) the device reduces the duty cycle in order to bring the switches current below the imposed limit.
The current mode controller has a built-in slope compensation as well to prevent sub-harmonic oscillations.
The control loop logic block (LOGIC) provides a PWM signal to four internal gate drivers. The gate drivers
(HSGD1,2 and LSGD1,2) are used to drive external MOSFETs in an H-Bridge setup .
The control loop block diagram displayed in Figure 6 shows a typical constant current application. The voltage
across RFB sets the output current. RIN is used to fix the maximum input current.
Data Sheet
19
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
RIN
VIN
IIN
I OUT
RFB
R filter
FBH
SWCS
RSWCS
FBL
+
LSGD2
A5
-
BOOST
A2
VOUT
+
ISWCSx
-
M3
-
A1
M2
+
IIN2
+
COUT
HSGD2
LOUT
LSGD1
IIN1
M4
M1
A8
SLOPE SELECTION
& Compensation
HSGD1
HSGD2
-
HSGD1
C filter
LOGIC
LSGD1
LSGD2
-
A9
A3
BUCK
SET
-
+
Vi_REF
+
-
-
+
+
SGND
A6
CLK
A7
COMP
RCOMP
VCOMP
CCOMP
Figure 6
Data Sheet
Regulator Block Diagram - TLD5190QV
20
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
6.2
Adjustable Soft Start Ramp
The soft start behavior limits the current through the inductor and the external MOSFET switches during
initialization (at first turn on and restarting after output fault condition).
The soft start function gradually increases the current of the inductor (LOUT) over tSOFT_START to minimize potential
overvoltage at the output. The soft start ramp is defined by a capacitor placed at the SOFT_START pin.
Selection of the SOFT_START capacitor (CSOFT_START) can be done according to the approximate formula
described in Equation (1):
t SOFT _ START =
Vss _ th _ eff
⋅ CSOFT _ START
I SOFT _ START( PU )
(1)
Note: Vss_th_eff is the soft start effectiveness threshold, that depends on load condition. Its value is about 0.7V for
the buck mode and 1.4V for the boost mode
The SOFT START pin is also used to define a fault filter time. Once an open load or a short on the output is
detected, a pull-down current source ISOFT_START_PD (P_6.4.20) is activated. Through a pull-up resistor connected
from VREF to the SOFT START pin it is possible to source a current higher than ISOFT_START_PD, the TLD5190QV
will latch OFF until the EN/INUVLO pin is toggled. Without any resistor to VREF the pull-down current decreases
until VSOFT_START_RESET (P_6.4.22) is reached (the pull-up current source turns on again). If the fault condition
hasn’t been removed until VSOFT_START_LOFF (P_6.4.21) is reached, the pull-down current source ISOFT_START_PD
turns on again initiating a new cycle. This will continue until the fault is removed.
6.3
Switching Frequency setup
The switching frequency can be set from 200 kHz to 700 kHz by an external resistor connected from the FREQ
pin to GND or by suppliyng a sync signal as specified in chapter Chapter 11.2. Select the switching frequency with
an external resistor according to the graph in Figure 7 or the following approximate formulas.
f SW [ kHz ] = 5375 * RFREQ [ kΩ]-0.8
(2)
RFREQ[kΩ] = 46023* f SW [kHz]−1.25
(3)
Figure 7
Data Sheet
Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ
21
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
6.4
Operation of 4 switches H-Bridge architecture
Inductor LOUT connects in an H-Bridge configuration with 4 external N channel MOSFETs (M1, M2, M3 & M4)
•
Transistor M1 and M3 provides a path between VIN and ground through LOUT in one direction (Driven by top
and bottom gate drivers HSGD1 and LSGD2).
•
Transistor M2 and M4 provides a path between VOUT and ground through LOUT in the other direction (Driven
by top and bottom gate drivers HSGD2 and LSGD1).
•
Nodes SWN1, SWN2, voltage across RSWCS, input and load currents are also monitored by the TLD5190QV.
Figure 8
BOOST
MODE
BUCK-BOOST
MODE
BUCK
MODE
M1
ON
PWM
PWM
M2
OFF
PWM
PWM
M3
PWM
PWM
OFF
M4
PWM
PWM
ON
4 switches H-Bridge architecture Transistor Status summary
VIN
VOUT
M1
HSGD1
M4
HSGD2
LOUT
SWN1
SWN2
M2
M3
LSGD1
LSGD2
RSWCS
Figure 9
4 switches H-Bridge architecture overview
6.4.1
Boost mode (VIN < VOUT)
•
M1 is always ON, M2 is always OFF
•
Every cycle M3 turns ON first and inductor current is sensed (peak current control)
•
M3 stays ON until the upper reference threshold is reached across RSWCS (Energizing)
Data Sheet
22
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
•
M3 turns OFF, M4 turns ON until the end of the cycle (Recirculation)
•
Switches M3 and M4 alternate, behaving like a typical synchronous boost Regulator (see Figure 10)
VIN
ON
VOUT
M1
M4
HSGD1
LOUT
SWN1
ILOUT
HSGD2
(2) Recirculation
SWN2
(1) Energizing
OFF
M2
M3
LSGD2
LSGD1
M1+M3
M1
+
M4
M1+M3
M1
+
M4
M1+M3
M1
+
M4
t
RSWCS
Figure 10
4 switches H-Bridge architecture in BOOST mode
Simplified comparison of 4 switches H-Bridge architecture to traditional asynchronous Boost approach.
•
M2 is always OFF in this mode (open).
•
M1 is always ON in this mode (closed connection of inductor to VIN).
•
M4 acts as a synchronous diode, with significantly lower conduction power losses (I2 x RDSON vs. 0.7V x I)
Note: Diode is source of losses and lower system efficiency!
LOUT
M1 (ON)
M4
VIN
HSGD1
LSGD1
M2
(OFF)
LOUT
VOUT
D1
VOUT
VIN
HSGD2
M3
M3
LSGD2
RSWCS
RSWCS
b) standard asynchronous BOOSTER
a) 4 switch architecture BOOSTER
Figure 11
4 switches H-Bridge architecture in BOOST mode compared to standard async Booster
6.4.2
Buck mode (VIN > VOUT)
•
M4 is always ON, M3 is always OFF
•
Every cycle M2 turns ON and inductor current is sensed (valley current control)
•
M2 stays ON until the lower reference threshold is reached across RSWCS (Recirculation)
Data Sheet
23
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
•
M2 turns OFF, M1 turns ON until the end of the cycle (Energizing)
•
Switches M1 and M2 alternate, behaving like a typical synchronous BUCK Regulator (see Figure 12)
VIN
VOUT
M1
HSGD1
(3) Energizing
ON
M4
LOUT
SWN1
ILOUT
HSGD2
SWN2
(4) Recirculation
M2
M3
OFF
M2+M4
LSGD2
LSGD1
M1
+
M4
M1
+
M4
M2+M4
M1
+
M4
M2+M4
t
RSWCS
Figure 12
4 switches H-Bridge architecture in BUCK mode
Simplified comparison of 4 switches architecture to traditional asynchronous Buck approach.
•
M3 is always OFF in this mode (open).
•
M4 is always ON in this mode (closed connection inductor to VOUT).
•
M2 acts as a synchronous diode, with significantly lower conduction losses (I2 x RDSON vs. 0.7V x I)
LOUT
VIN
M4
(ON)
M1
HSGD1
M2
M3
(OFF)
LSGD1
VOUT
VIN
HSGD2
LOUT
M1
VOUT
HSGD1
LSGD2
D1
RSWCS
b) standard asynchronous BUCK
a) 4 switch architecture BUCK
Figure 13
4 switches H-Bridge architecture in BUCK mode compared to standard async BUCK
6.4.3
Buck-Boost mode (VIN ~ VOUT)
•
When VIN is close to VOUT the controller is in Buck-Boost operation.
•
All switches are switching in buck-boost operation. The direct energy transfer from the Input to the output
(M1+M4 = ON) is beneficial to reduce ripple current and improves the energy efficiency of the Buck-Boost
control scheme.
•
The two buck boost waveforms and switching behaviors are displayed in Figure 14 below.
Data Sheet
24
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
VIN ≤ VOUT
ILOUT
VIN
VOUT
M1
M4
(2) Direct Transfer
HSGD1
HSGD2
M1
+
M4
M1
+
M4
M1
+
M3
M1
+
M4
M2+ M4
LSGD1
M1
+
M3
M1
+
M4
t
M1
+
M4
t
VIN ≥ VOUT
ILOUT
LSGD2
RSWCS
M2
+
M4
M1
+
M4
Figure 14
4 switches H-Bridge architecture in BUCK-BOOST mode
6.5
Flexible current sense
M1
+
M4
M2
+
M4
M1
+
M4
M1+ M3
M3
M1
+
M4
M1+ M3
(1) Energizing
M2
M1
+
M4
M2+ M4
M1
+
M3
SWN2
M1+ M3
LOUT (3) Recirculation
SWN1
M2+ M4
(4) Direct Transfer
M1
+
M4
M2
+
M4
M1
+
M4
The flexible current sense implementation enables highside and lowside current sensing.
The Figure 15 displays the application examples for the highside and lowside current sense concept.
VIN
VIN
Highside
Sensing
Lowside
Sensing
FBH
FBL
Figure 15
Data Sheet
FBH
FBL
Highside and lowside current sensing - TLD5190QV
25
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
6.6
Programming Output Voltage (Constant Voltage Regulation)
For a voltage regulator, the output voltage can be set by selecting the values RFB1, RFB2 and RFB3 according to the
following Equation (4):
⎛
V
VOUT = ⎜⎜ I FBH + FBH − FBL
R FB 2
⎝
⎞
⎛V
⎞
⎟⎟ ⋅ R FB 1 + ⎜⎜ FBH − FBL − I FBL ⎟⎟ ⋅ R FB 3 + V FBH − FBL
⎠
⎝ R FB 2
⎠
(4)
If Analog dimming is performed, due to the variations on the IFBL (IFBL_HSS (P_6.4.9) and IFBL_LSS (P_6.4.40))
current on the entire voltage spanning, a non linearity on the output voltage may be observed. To minimize this
effect RFBx resistors should be properly dimensioned.
VOUT
I FBH
R FB1
FBH
FBL
I FBL
R FB2
R FB3
Figure 16
Data Sheet
Programming Output Voltage (Constant Voltage Regulation)
26
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
6.7
Electrical Characteristics
Table 6
EC Regulator
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Tj = 25 °C;
VSET = 2 V;
VSET = 2 V;
VSET = 0.32 V;
P_6.4.1
Regulator:
V(FBH-FBL) threshold
V(FBH-FBL)
145.5
150
154.5
mV
V(FBH-FBL) threshold
V(FBH-FBL)
V(FBH-
144
150
156
mV
10
15
20
mV
V(FBH-FBL) threshold @ analog
dimming 10%
P_6.4.2
P_6.4.6
FBL)_10
1)
FBH Bias current @ highside
sensing setup
IFBH_HSS
65
110
155
µA
FBL Bias current @ highside
sensing setup
IFBL_HSS
17
30
43
µA
FBH Bias current @ lowside
sensing setup
IFBH_LSS
-7.5
-4
-2.5
µA
FBL Bias current @ lowside
sensing setup
IFBL_LSS
-45
-30
-20
µA
FBH-FBL High Side sensing
entry threshold
VFBH_HSS_i -
2
-
V
FBH-FBL High Side sensing exit VFBH_HSS_ threshold
dec
1.75
-
V
1)
P_6.9.2
OUT Current sense Amplifier gm IFBxgm
890
–
µS
1)
P_6.4.10
1.4
1.47
V
P_6.4.11
91
93
%
VFBH - FBL = 150 mV;
fsw=300kHZ;
P_6.4.12
46
50
54
mV
–
P_6.4.13
–
2.12
–
mS
1)
P_6.4.14
P_6.4.15
Output Monitor Voltage
Maximum BOOST Duty Cycle
VFBL = 7 V;
VFBH - FBL = 150 mV;
1)
VFBL = 7 V;
VFBH - FBL = 150 mV;
1)
VFBL = 0 V;
VFBH - FBL = 150 mV;
1)
VFBL = 0 V;
VFBH - FBL = 150 mV;
1)
VFBH1 increasing;
P_6.4.8
P_6.4.9
P_6.4.39
P_6.4.40
P_6.9.1
nc
–
VIOUTMON 1.33
DBOOST_M 89
VFBH decreasing;
AX
Input Current Sense threshold
VIIN1-IIN2
VIIN1-IIN2
Input Current sense Amplifier gm IIN_gm
1
1.05
V
1)
50
60
mV
1)
P_10.8.1
5
VSWCS_buck -60
-50
-40
mV
1)
P_10.8.1
6
ISoft_Start_P 22
26
32
µA
VSoft_Start = 1 V;
P_6.4.19
2.6
3.2
µA
VSoft_Start = 1 V;
P_6.4.20
1.75
1.85
V
–
P_6.4.21
Input current Monitor Voltage
VIINMON
Switch Peak Over Current
Threshold - BOOST
VSWCS_boo 40
Switch Peak Over Current
Threshold - BUCK
0.95
VIIN1 - IIN2 = 50 mV;
VIIN1 = VVIN(ON) to
55 V;
st
Soft Start
Soft Start pull up current
U
Soft Start pull down current
ISoft_Start_P 2.2
Soft Start Latch-OFF Threshold
VSoft_Start_L 1.65
D
OFF
Data Sheet
27
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
Table 6
EC Regulator (cont’d)
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Soft Start Reset Threshold
VSoft_Start_ 0.1
Soft Start Voltage during
regulation
VSoft_Start_r 1.9
Unit
Note /
Test Condition
Number
P_6.4.22
Typ.
Max.
0.2
0.3
V
–
2
2.1
V
1)
P_6.9.3
RESET
No Faults
eg
Oscillator
Switching Frequency
fSW
285
300
315
kHz
Tj = 25 °C;
RFREQ= 37.4 kΩ;
P_6.4.23
SYNC Frequency
fSYNC
VSYNC,ON
200
–
700
kHz
–
P_6.4.24
2
–
–
V
–
P_6.4.25
SYNC
Turn Off Threshold
VSYNC,OFF –
–
0.8
V
–
P_6.4.26
SYNC
High Input Current
ISYNC,H
15
30
45
µA
VSYNC = 2.0 V;
P_6.4.62
SYNC
Low Input Current
ISYNC,L
6
12
18
µA
VSYNC = 0.8 V;
P_6.4.63
–
4
V
VBSTx - VSWNx
P_6.4.64
SYNC
Turn On Threshold
Gate Driver for external Switch
Gate Driver undervoltage
VBSTx3.4
threshold VBSTx-VSWNx_UVth VSWNx_UVth
HSGDx NMOS driver on-state
resistance (Gate Pull Up)
RDS(ON_PU) 1.4
HSGDx NMOS driver on-state
resistance (Gate Pull Down)
RDS(ON_PD) 0.6
LSGDx NMOS driver on-state
resistance (Gate Pull Up)
RDS(ON_PU) 1.4
LSGDx NMOS driver on-state
resistance (Gate Pull Down)
RDS(ON_PD) 0.4
HSGDx Gate Driver peak
sourcing current
decreasing;
2.3
3.7
Ω
1.2
2.2
Ω
2.3
3.7
Ω
1.2
1.8
Ω
IHSGDx_SRC 380
–
–
mA
HSGDx Gate Driver peak sinking IHSGDx_SNK 410
current
–
LSGDx Gate Driver peak
sourcing current
–
HS
HS
LS
LS
ILSGDx_SRC 370
VBSTx - VSWNx = 5 V;
Isource = 100 mA;
VBSTx - VSWNx = 5 V;
Isink = 100 mA;
VIVCC_EXT = 5 V;
Isource = 100 mA;
VIVCC_EXT = 5 V;
Isink = 100 mA;
P_6.4.28
1)
P_6.4.32
P_6.4.29
P_6.4.30
P_6.4.31
VHSGDx - VSWNx = 1 V
to 4 V;
VBSTx - VSWNx= 5 V
–
mA
1)
P_6.4.33
VHSGDx - VSWNx = 4 V
to 1 V;
VBSTx - VSWNx= 5 V
–
mA
1)
P_6.4.34
VLSGDx = 1 V to 4 V;
VIVCC_EXT = 5 V;
LSGDx Gate Driver peak sinking ILSGDx_SNK 550
current
–
Data Sheet
28
–
mA
1)
P_6.4.35
VLSGDx = 4 V to 1 V;
VIVCC_EXT = 5 V;
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Regulator Description
Table 6
EC Regulator (cont’d)
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)
Parameter
Symbol
LSGDx OFF to HSGD ON delay tLSOFF-
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
15
30
40
ns
1)
P_6.4.36
35
60
75
ns
1)
P_6.4.37
HSON_delay
HSGDx OFF to LSGD ON delay tHSOFFLSON_delay
1) Not subject to production test, specified by design
Data Sheet
29
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Digital Dimming Function
7
Digital Dimming Function
To change brightness of LED loads without affecting the lighting-color of the LED a digital Dimming function via
PWM (Pulse Width Modulation) is often required.
7.1
Description
PWM dimming is commonly practiced to prevent color shift in the LED light source.
Via Parallel Interface
The PWMI pin detects a pulse width modulated (PWM) signal that disable the gate drivers from delivering output
current.
µC
PWM
Digital dimming
PWMI
VSS
Figure 17
Data Sheet
AGND
Digital Dimming Overview
30
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Digital Dimming Function
VEN/INUVLO
tACTIVE
VEN/INUVLOth
t
VIVCC_EXT_RTH,d
+VIVCCX_HYST
t
tPWMI,H
TPWMI
VPWMI
VPWMI,ON
VPWMI,OFF
t
Switching
activity
t
ILED
t
VIOUTMON
200mV
t
Softstart
Power ON
Figure 18
Data Sheet
Normal
Dim
Normal
Dim
Normal
Dim
Gate ON
Gate OFF
Gate ON
Gate OFF
Gate ON
Gate OFF
Diagnosis ON
Diag OFF
Diag ON
Diag OFF
Diag ON
Diag OFF
Timing Diagram LED Dimming and Start up behavior example ( VVIN stable in the functional
range and not during startup)
31
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Digital Dimming Function
7.2
Electrical Characteristics
Table 7
EC Digital Dimming
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Number
PWMI Input:
PWMI
Turn On Threshold
VPWMI,ON
2
–
–
V
–
P_7.2.1
PWMI
Turn Off Threshold
VPWMI,OFF
–
–
0.8
V
–
P_7.2.2
PWMI
High Input Current
IPWMI,H
15
30
45
µA
VPWMI = 2.0 V;
P_7.2.4
PWMI
Low Input Current
IPWMI,L
6
12
18
µA
VPWMI = 0.8 V;
P_7.2.5
Data Sheet
32
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Analog Dimming
8
Analog Dimming
The analog dimming feature allows further control of the output current. This approach is used to:
•
Reduce the default current in a narrow range to adjust to different binning classes of the used LEDs.
•
Adjust the load current to enable the usage of one hardware for several LED types where different current
levels are required.
•
Reduce the current at high temperatures (protect LEDs from overtemperature).
•
Reduce the current at low input voltages (for example, cranking-pulse breakdown of the supply or power
derating).
8.1
Description
The analog dimming feature is adjusting the average load current level via the control of the feedback error
Amplifier voltage (VFBH-FBL).
The SET pin is used to adjust the mean output current/voltage. The VSET range where analog dimming is enabled
is from 200mV to 1.5V. Different application scenarios are described in Figure 20.
Using the SET pin to adjust the output current:
For the calculation of the output current IOUT the following Equation (5) is used:
I OUT =
V FBH − V FBL
R FB
(5)
A decrease of the average output current can be achieved by controlling the voltage at the SET pin (VSET) between
0.2V and 1.4V. The mathematical relation is given in the Equation (6) below:
I OUT =
V SET − 200 mV
R FB ⋅ 8
(6)
If VSET is 200mV (typ.) the LED current is only determined by the internal offset voltages of the comparators.
To assure the switching activity is stopped and IOUT=0, VSET has to be <100mV, see Figure 19
VFBH-FBL
150mV
100mV
0mV
200mV
1.4V
Analog Dimming Enabled
Figure 19
Data Sheet
1.5V
VSET
Analog Dimming
Disabled
Analog Dimming Overview
33
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Analog Dimming
Multi-purpose usage of the Analog dimming feature
1) A μC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET pin
of the TLD5190QV.
2) The usage of an external resistor divider connected between VREF (accurate regulated supply output) SET and
GND can be chosen for systems without μC on board. The concept allows control of the LED current by placing
low power resistors.
3) Furthermore a temperature sensitive resistor (Thermistor) to protect the LED loads from thermal destruction can
be connected.
4) If the analog dimming feature is not needed, the SET pin should be connected to the VREF pin.
5) Instead of a DAC, the μC can provide a PWM signal and an external R-C filter to produce a constant voltage
for the analog dimming. The voltage level depends on the PWM frequency (fPWM) and duty cycle which can be
controlled by the μc software after reading the coding resistor placed on the LED module.
1
2
µC_supply
D/A-Output
µC
SET
VREF
RSET2
CREF
VSET
SET
GND
VSET RSET1
3
4
VREF
Rthermistor
VREF
CREF
Rfilter
CREF
SET
VSET RSET1
5
GND
Cfilter
Cfilter
SET
GND
VSET ~ VREF
Cfilter
GND
µC_supply
PWM
PWM output
SET
Rfilter
µC
(e.g. XC2000)
Cfilter
VSET
GND
Figure 20
Different use cases for analog dimming pin SET
8.2
Electrical Characteristics
Data Sheet
34
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Analog Dimming
Table 8
EC Analog Dimming
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)
Parameter
Source current on SET Pin
Symbol
ISET_source
Values
Min.
Typ.
Max.
–
–
1
Unit
Note /
Test Condition
Number
µA
1)
P_8.3.4
VSET = 0.2 V to
1.4V;
1) Specified by design: not subject to production test.
Data Sheet
35
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Linear Regulator
9
Linear Regulator
The TLD5190QV features an integrated voltage regulator for the supply of the internal gate driver stages.
Furthermore an external voltage regulator can be connected to the IVCC_EXT pin to achieve an alternative gate
driver supply if required.
9.1
IVCC Description
When the IVCC pin is connected to the IVCC_EXT pin, the internal linear voltage regulator supplies the internal
gate drivers with a typical voltage of 5V and current up to ILIM (P_9.2.2). An external output capacitor with low ESR
is required on pin IVCC for stability and buffering transient load currents. During normal operation the external
MOSFET switches will draw transient currents from the linear regulator and its output capacitor (Figure 21,
drawing A). Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate
of the external MOSFET switches. A minimum capacitance value is given in parameter CIVCC (P_9.2.4).
Alternative IVCC_EXT Supply Concept:
The IVCC_EXT pin can be used for an external voltage supply to alternatively supply the MOSFET Gate drivers.
This concept is beneficial in the high input voltage range to avoid power losses in the IC (Figure 21, drawing B).
Integrated undervoltage protection for the external switching MOSFET:
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage. This undervoltage
reset threshold circuit will turn OFF the gate drivers in case the IVCC or IVCC_EXT voltage falls below their
undervoltage Reset switch OFF Thresholds VIVCC_RTH,d (P_9.2.9) and VIVCC_EXT_RTH,d (P_9.2.5).
The Undervoltage Reset threshold for the IVCC and the IVCC_EXT pins help to protect the external switches from
excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of the external
logic level N-channel MOSFETs.
A
VIN
Internal
VREG
B
IVCC
Internal
VREG
VIN
Power
On Reset
IVCC_EXT
Data Sheet
Power
On Reset
IVCC_EXT
Gate Drivers
Figure 21
IVCC
External
VREG
Gate Drivers
Voltage Regulator Configurations
36
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Linear Regulator
9.2
Electrical Characteristics
Table 9
EC Line Regulator
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)
Parameter
Symbol
Values
Unit
Note / Test Condition
Number
Min.
Typ.
Max.
4.8
5
5.2
V
VIN= 13.5 V;
0.1mA ≤ IIVCC ≤ 50mA;
P_9.2.1
Output Current Limitation ILIM
70
90
110
mA
1)
P_9.2.2
Drop out Voltage (VIN VIVCC)
VDR
–
IVCC Buffer Capacitor
CIVCC
IVCC
Output Voltage
VIVCC
200
mV
P_9.2.3
IIVCC = 10 mA;
10
–
IVCC_EXT Undervoltage VIVCC_EXT_ 3.7
Reset switch OFF
RTH,d
Threshold
3.9
VIVCC_RTH, 3.7
3.9
IVCC Undervoltage
Reset switch OFF
Threshold
350
VIVCC = 4 V;
VIN = 5 V;
–
4.1
µF
1) 2)
P_9.2.4
V
3)
P_9.2.5
VIVCC_EXT decreasing;
4.1
V
VIVCCX_HY 0.3
ST
VREF voltage
VREF
1.94
P_9.2.9
VIVCC decreasing;
d
IVCC and IVCC_EXT
Undervoltage Hysterisis
3)
0.33
0.36
V
VIVCC increasing;
VIVCC_EXT increasing
P_9.2.6
2
2.06
V
0 ≤ IVREF ≤ 200µA;
P_9.2.8
1) Not subject to production test, specified by design
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. Use
capacitors with LOW ESR.
3) Selection of external switching MOSFET is crucial. VIVCC_EXT_RTH,d and VIVCC_RTH,d min. as worst case VGS must be
considered.
Data Sheet
37
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Protection and Diagnostic Functions
10
Protection and Diagnostic Functions
10.1
Description
The TLD5190QV has integrated circuits to diagnose and protect against overvoltage, open load, short circuits of
the load and overtemperature faults.
In IDLE state, only the Over temperature Shut Down, Over Temperature Warning, IVCC or IVCC_EXT
Undervoltage Monitor or VEN/INUVLO Undervoltage Monitor are reported according to specifications.
In Figure 22 a summary of the protection, diagnostic and monitor functions is displayed.
Protection and Diagnostic
Overvoltages
EF1, EF2
Open Load
OR
No output current
Short at the Load
Device
Overtemperature
Linear Regulators
OFF
OR
(only IVCC disabled
in case of
overtemperature)
Input
Undervoltage
Monitoring
Figure 22
IOUTMON
KILIS Factor 8
IOUT
IINMON
KILIS Factor 20
IIN
Protection, Diagnostic and Monitoring Overview - TLD5190QV
Input
Condition
Open Load /
Overvoltages
Shorted LED fault
Overtemperature
Level*
False
True
False
True
False
True
EF1
H
H
H
L
H
L
EF2
H
L
H
H
H
L
Output
Gate Drivers
Sw*
L
Sw*
L
Sw*
L
IVCC
Active
Active
Active
Active
Active
Shutdown
*Note:
Sw = Switching
False = Condition does not exist
True = Condition does exist
Figure 23
Diagnostic Truth Table - TLD5190QV
Note: A device Overtemperature event overrules all other fault events!
Data Sheet
38
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Protection and Diagnostic Functions
10.2
Overvoltage, Open Load, Short circuit protection
The VFB pin measures the voltage on the application output and in accordance with the populated resistor divider,
short to ground, open load and overvoltage thresholds are set. Refer to Figure 24 for more details.
VIN
CIVCC
IVCC
BST1
BST2
M1
HSGD1
SWN1
VOUT
D2
D1
CBST1 CBST2
M4
COUT
RVFBH
LOUT
M2
RFB
VVFB_OVTH
VVFB_OL,rise
M3
LSGD1
RVFBL
SWCS
VVFB_S2G
RSWCS
SGND
PGND
LSGD2
SWN2
HSGD2
VFB
FBH
FBL
Figure 24
VFB Protection Pin - Overview
10.2.1
Short Circuit protection
The device detects a short circuit if this condition is verified:
•
The pin VFB falls below the threshold voltage VVFB_S2G for at least 8 clock cycles
A voltage divider between VOUT, VFB pin and AGND is used to adjust the application short circuit thresholds
following Equation (8).
V short
_ led
= V VFB
_ S 2G
⋅
R VFBH + R VFBL
R VFBL
(7)
The TLD5190QV provides an open-drain status pin, EF1, which pulls low when the short circuit is detected. The
only time the FB pin will be below VVFB_S2G is during start-up or if the LEDs are shorted. During start-up the
TLD5190QV ignores the detection of a short circuit or an open load until the soft-start capacitor reaches 1.75V.
To prevent false tripping after startup, a large enough soft-start capacitor must be used to allow the output to get
up to approximately 50% of the final value.
Note: If the short circuit condition disappears, the device will re-start with the soft start routine as described in
Chapter 6.2.
10.2.2
Overvoltage Protection
A voltage divider between VOUT, VFB pin and AGND is used to adjust the Overvoltage protection threshold (refer
to Figure 24).
Data Sheet
39
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Protection and Diagnostic Functions
To fix the overvoltage protection threshold the following Equation (8) is used:
VOUT _ OV _ protected = VVFB _ OVTH ⋅
RVFBH + RVFBL
RVFBL
(8)
In case of overvoltage events at the input and output, the open-drain status pin EF2 will toggle to LOW, while EF1
will stay at HIGH. After the overvoltage event disappeared the device will auto restart and the status pin EF2 will
toggle to HIGH.
10.2.3
Open Load Protection
To reliably detect an open load event, two conditions will be observed:
1) Voltage threshold: VVFB>VVFB_OL,rise
2) output information: V(FBH-FBL)<VFBH_FBL_OL
The TLD5190QV provides an open-drain status pin, EF2, which pulls low when the VFB pin is above VVFB_OL,rise
threshold and the voltage across V(FBH-FBL) is less than VFBH_FBL_OL. If the open LED clamp voltage is programmed
correctly using the VFB pin, then the VFB pin should never exceed 1.28V (VVFBOL,fall when the LEDs are connected.
After an Open Load error the TLD5190QV is autorestarting the output control accordingly to the implemented
Softstart routine. An Open Load error causes an increase of the output voltage as well. An Overvoltage condition
could be reported in combination with an Open Load error (in general, multiple error detection may happen if more
error detection thresholds are reached during the autorestart funcion, as possible consequence of reactive
behavior at the output node during open load).
The COMP capacitor is discharged during an Open Load condition to prevent spikes if load reconnects. This
measure could artificially generate Short Circuit detections after open loads events.
10.3
Input voltage monitoring, protection and power derating
Input overvoltage and undervoltage shutdown levels can both be defined through an external resistor divider, as
shown in Figure 25.
Both INOVLO and EN/INUVLO pin voltages are internally compared to their respective thresholds by means of
hysteretic comparators.
Data Sheet
40
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Protection and Diagnostic Functions
Neglecting the hysteresis, the following equations hold:
⎛
R1
UV th = ⎜⎜ 1 +
R
2 + R3
⎝
OV
th
PIN =
⎞
⎟⎟ ⋅ EN / INUVLO
⎠
⎛
R1 + R 2
= ⎜⎜ 1 +
R3
⎝
⎞
⎟⎟ ⋅ INOVLO
⎠
th
(9)
th
(10)
V OUT ⋅ I OUT
(11)
η
V IN _ boundary
⎛ V OUT ⋅ I OUT
⎜⎜
I IN
= ⎝
η
⎞
⎟⎟
⎠
(12)
I IN =
V IN 1− IN 2
R IN
(13)
I OUT =
V FBH − FBL
R FB
(14)
Figure 25
Data Sheet
Input Voltage Protection
41
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Protection and Diagnostic Functions
10.4
Input current Monitoring
The IINMON pin provides a linear indication of the current flowing through the input. The following Equation (15)
is applicable:
V IINMON = I IN ⋅ R IN ⋅ 20
(15)
Note: If the RIN value is choosen in a way that the current limitiation is much bigger than the nominal input current
during the application the current measurement becomes inaccurate. Best results for an accurate current
measurement via the VIINMON pin is to set the current limit only slightly above the specific application related
nominal input current.
10.5
Output current Monitoring
The IOUTMON pin provides a linear indication of the current flowing through the LEDs. The following
Equation (16) is applicable:
V IOUTMON
Data Sheet
= 200 mV + I OUT ⋅ R FB ⋅ 8
(16)
42
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Protection and Diagnostic Functions
10.6
Device Temperature Monitoring
A temperature sensor is integrated on the chip. The temperature monitoring circuit compares the measured
temperature to the shutdown threshold.
If the internal temperature sensor reaches the shut-down temperature, the Gate Drivers plus the IVCC regulator
are shut down as described in Figure 26.
The CLKOUT function is disabled during an overtemperature event and will autorestart when the device cooled
down and IVCC is present again.
Note: The Device will start up with a soft start routine after a overtemperature condition disappear.
Tj
TjSD
ΔΤ
TjSO
t
Ta
xSGDx
t
LED
current
t
EF1, EF2
and IVCC
5V
t
Device
OFF
Figure 26
Data Sheet
Normal Operation
Overtemp
Fault
ON
Overtemp
ON
Fault
Overtemp
ON
Fault
Overtemp
Fault
Device Overtemperature Protection Behavior
43
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Protection and Diagnostic Functions
10.7
Electrical Characteristics
Table 10
EC Protection and Diagnosis
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)
Parameter
Symbol
Values
Unit
Note / Test Condition
Number
Min.
Typ.
Max.
0.53
0.563
0.59
V
VVFB decreasing;
P_10.8.1
Short Circuit Protection
Short to GND
threshold
VVFB_S2G
Temperature Protection:
Over Temperature
Shutdown
Tj,SD
160
175
190
°C
1)
P_10.8.4
Over Temperature
Shutdown
Hysteresis
Tj,SD,hyst
–
10
–
°C
1)
P_10.8.5
1.42
1.46
1.50
V
40
58
mV
Output Voltage
decreasing;
P_10.8.7
Overvoltage Protection:
VFB Over Voltage
Feedback
Threshold
VVFB_OVTH
Output Over
Voltage Feedback
Hysteresis
VVFB_OVTH,HY 25
S
P_10.8.6
Open Load and Open Feedback Diagnostics
Open Load rising
Threshold
VVFB_OL,rise
1.29
1.34
1.39
V
VFBH-FBL = 0 V;
P_10.8.9
Open Load
reference Voltage
VFBH-FBL
VFBH_FBL_OL
–
15
22.5
mV
VFB = 1.4 V;
P_10.8.10
Open Load falling
Threshold
VVFB_OL,fall
1.23
1.28
1.33
V
VFBH-FBL = 0 V;
P_10.8.11
Input Overvoltage protection
Input Overvoltage
rising Threshold
VINOVLOth
1.9
2
2.1
V
–
P_10.8.12
Input Overvoltage
Threshold
Hysteresis
VINOVLO(hyst)
18
40
62
mV
–
P_10.8.13
REF12
–
2.1
–
kΩ
1)
P_10.8.14
Error Flags
EF1,2 Pin Output
Impedance
Fault Condition
I=100uA
1) Specified by design; not subject to production test.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
44
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Infineon FLAT SPECTRUM Featureset
11
Infineon FLAT SPECTRUM Featureset
11.1
Description
The Infineon FLAT SPECTRUM feature set has the target to minimize external additional filter circuits. The goal
is to provide several beneficial concepts to provide easy adjustments for EMC improvements after the layout is
already done and the HW designed.
11.2
Synchronization Function
The TLD5190QV features a SYNC input pin which can be used by a µC pin to define an oscillator switching
frequency. The µC is responsible to synchronize with various devices by applying appropriate SYNC signals to
the dedicated DC/DC devices in the system. Refer to Figure 27
Note: The Synchronization function can not be used when the Spread Spectrum is active.
H-Bridge DCDC
MASTER
BUCKBOOST
GATE
CONTROL
SYNC
LOGIC
e.g. 400kHz
Phaseshift A
H-Bridge DCDC
Slave
SYNC1
µC
SYNC
SYNC2
e.g. 400kHz
Phaseshift B
INPUT
Figure 27
Synchronization Overview
11.3
CLKOUT Function
BUCKBOOST
GATE
CONTROL
LOGIC
defined phase shift between
Outputs of different devices
The CLKOUT pin provides an in-phase clock signal provided by the internal oscillator. This signal can be used to
synchronize two devices for extending output power capability.
Data Sheet
45
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Infineon FLAT SPECTRUM Featureset
DCDC
MASTER
OUTPUT
LOGIC
CLKOUT
DCDC
Slave
SYNC
INPUT
Figure 28
Data Sheet
LOGIC
BUCKBOOST
GATE
CONTROL
BUCKBOOST
GATE
CONTROL
CLKOUT Overview
46
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Infineon FLAT SPECTRUM Featureset
11.4
Spread Spectrum
The Spread Spectrum modulation technique significantly improves the lower frequency range of the spectrum
(f<30MHz).
By using the spread spectrum technique, it is possible to optimize the input filter only for the peak limits, and also
pass the average limits (average emission limits are -20dB lower than the peak emission limits). By using spread
spectrum, the need for low ESR input capacitors is relaxed because the input capacitor series resistor is important
for the low frequency filter characteristic. This can be an economic benefit if there is a strong requirement for
average limits.
The TLD5190QV features a built in Spread Spectrum function which can be enabled via an external Pin
(SPREAD_SPECTRUM = HIGH). The modulation frequency fFM, P_11.6.3 and the deviation frequency fdev, P_11.6.2
are internally fixed. Refer to Figure 29 for more details.
Note: The Spread Spectrum function can not be used when the synchronization pin is used.
fSW
fdev
t
1
f
Figure 29
Data Sheet
FM
Spread Spectrum Overview
47
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Infineon FLAT SPECTRUM Featureset
11.5
EMC optimized schematic
Figure 30 below displays the Application circuit with additional external components for improved EMC behavior.
VIN
LPI
C IN2
RIIN
D VS
Alternative
external
VREG supply
CPI1 CPI2
C PI3 C PI4
C IN1
VIN
IVCC_EXT
C IVCC
IVCC
R filter
IIN2
C filter
R1
IIN1
EN/INUVLO
BST1
BST2
DHSG1
HSGD1
C COMP R COMP
R3
COMP
C SOFT_START
R FREQ
µC SYNC signal
Digital dimminig
Advanced monitoring via µC
SYNC of other DCDC
Spread Spectrum ON /OFF
Analog dimminig
Errorflag monitoring
C REF
SOFT_START
LSGD1
SWCS
RM1
M1
R HSG1
DLSG1
INOVLO
D2
CM1
CBST2
C BST1
R M2
M2
M4
R VFBH
C PO1 C PO2
R HSG2
CPO3 CPO4
RVFBL
M3
C M3
D LSG2
R SWCS
C FBH-FBL
C OUT
C M4
R M3
C M2
R LSG1
FREQ
SGND
PGND1
SYNC
PGND2
PWMI
LSGD2
IINMON
SWN2
IOUTMON
HSGD2
CLKOUT
VFB
Spread Spectrum
VREF
FBH
SET
FBL
EF1
VSS AGND
EF2
L OUT
LPO
RFB
R M4
SWN1
R2
Figure 30
D1
R LSG2
DHSG2
4LED in
series /
1A
C FBH
C FBL
Application Drawing Including Additional Components for an Improved EMC Behavior
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
Data Sheet
48
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Infineon FLAT SPECTRUM Featureset
11.6
Electrical Characteristics
Table 11
EC Spread Spectrum
VIN = 8V to 36V, Tj = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
–
±16
–
Unit
Note /
Test Condition
Number
%
1)
P_11.6.2
Spread Spectrum Parameters
Frequency Deviation
fdev
SPREAD_SPEC
TRUM = HIGH;;
Frequency Modulation
fFM
–
12
–
kHz
1)
P_11.6.3
SPREAD_SPEC
TRUM = HIGH;
Input Characteristics (SPREAD_SPECTRUM)
SPREAD_SPECTRUM
Turn On Threshold
VSPREAD_SPE 2
SPREAD_SPECTRUM
Turn Off Threshold
VSPREAD_SPE –
SPREAD_SPECTRUM
High Input Current
ISPREAD_SPEC 15
SPREAD_SPECTRUM
Low Input Current
ISPREAD_SPEC 6
–
–
V
–
P_11.6.5
–
0.8
V
–
P_11.6.6
30
45
µA
VSPREAD_SPECTRUM P_11.6.8
CTRUM,ON
CTRUM,OFF
= 2.0 V;
TRUM,H
12
18
µA
VSPREAD_SPECTRUM P_11.6.9
= 0.8 V;
TRUM,L
Output Characteristics (CLKOUT)
L level output voltage
H level output voltage
VCLKOUT(L)
VCLKOUT(H)
0
–
VIVCC - –
0.4
V
VIVCC
V
ICLKOUT = -2 mA;
ICLKOUT = 2 mA;
P_11.6.10
P_11.6.11
0.4 V
1) Specified by design; not subject to production test.
Data Sheet
49
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Application Information
12
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
CIN2
VIN
RIIN
Alternative
external
VREG supply
CIVCC
IVCC_ext
IVCC
IIN2
Cfilter
IIN1
EN/INUVLO
HSGD1
R2
µC SYNC signal
RSYNC
SYNC
Digital dimminig
CREF
REF1
Analog dimminig
Spread_spectrum
RSET
RSENSE
RSENSE
Advanced monitoring
PWMI
RPWMI
Errorflag monitoring
VREF
SET
IINMON
IOUTMON
EF1
EF2
VSS
COUT1
M3
COUT3
SWCS
SOFT_START
FREQ
CLKOUT
M4
LOUT
LSGD1
COMP
RFREQ
Spread Spectrum ON/OFF
CBST1 CBST2
RFB
RSWCS
R3
RCOMP
SYNC of other DCDC
REF2
M1
M2
CCOMP
CSOFT_START
IVCC_ext
COUT2
SWN1
INOVLO
D2
D1
BST1
BST2
RVFBH
R1
Rfilter
RVFBL
VIN
CIN1
High
Power
LED Load
SGND
PGND1
PGND2
LSGD2
SWN2
HSGD2
VFB
FBH
FBL
AGND
Figure 31
Application Drawing - TLD5190QV as current regulator
Table 12
BOM - TLD5190QV as current regulator (IOUT = 1A, fSW = 300kHz)
Reference Designator Value
Manufacturer
Part Number
Type
Quantity
D1, D2
CIN1
CIN2
Cfilter
CCOMP
CSOFT_START
COUT1
COUT2; COUT3;CREF
CIV
CBST1, CBST2
IC 1
LOUT
Schottky Diode
TBD
TBD
Diode
2
1 µF, 100V
EPCOS
X7R
Capacitor
1
4.7 µF, 100V
EPCOS
X7R
Capacitor
5
470 nF, 6.3V
EPCOS
X7R
Capacitor
1
22 nF, 16V
EPCOS
X7R
Capacitor
1
22 nF, 16V
EPCOS
X7R
Capacitor
1
4.7 µF, 100V
EPCOS
X7R
Capacitor
3
100 nF, 100V
EPCOS
X7R
Capacitor
3
10 µF , 10V
EPCOS
X7R
Capacitor
1
100 nF, 16V
EPCOS
X7R
Capacitor
2
—
Infineon
TLD5190QV
IC
1
10 µH
Coilcraft
XAL1010103MEC
Inductor
1
Rfilter
RFB
RIN
50 Ω, 1%
Panasonic
TBD
Resistor
1
0.150 Ω, 1%
Panasonic
TBD
Resistor
1
0.003 Ω, 1%
Panasonic
TBD
Resistor
1
Data Sheet
50
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Application Information
BOM - TLD5190QV as current regulator (IOUT = 1A, fSW = 300kHz)
Table 12
Reference Designator Value
Manufacturer
Part Number
Type
Quantity
R1, R2, R3, REN, RPWMI,
RSense1, RSense2; RSYNC,
REF1; REF2, RSET
RVFBL; RVFBH
RCOMP
RFREQ
Rswcs
XX kΩ, 1%
Panasonic
TBD
Resistor
10
1.5 kΩ, 56 kΩ, 1%
Panasonic
TBD
Resistor
2
0Ω
Panasonic
TBD
Resistor
1
37.4 kΩ, 1%
Panasonic
TBD
Resistor
1
0.005 Ω, 1%
Panasonic
ERJB1CFRO5U
Resistor
1
M1, M2, M3, M4
Dual MOSFET:
100V/35mΩ, N-ch
Infineon
IPG20N10S4L-35 Transistor
2
CIN2
VIN
RIIN
Alternative
external
VREG supply
CIVCC
IVCC_ext
IVCC
IIN1
EN/INUVLO
M1
HSGD1
R2
SWN1
FREQ
CLKOUT
RSYNC
SYNC
Spread Spectrum ON/OFF
Digital dimminig
REF1
REF2
Analog dimminig
CREF
Spread_spectrum
RPWMI
RSET
RSENSE
Advanced monitoring
RSENSE
Errorflag monitoring
PWMI
VREF
SET
IINMON
IOUTMON
EF1
EF2
VSS
SGND
PGND1
PGND2
LSGD2
SWN2
HSGD2
VFB
FBH
RFB3
µC SYNC signal
VOUT
SWCS
SS
RFREQ
SYNC of other DCDC
M3
LSGD1
COMP
COUT1
RSWCS
R3
CSS
IVCC_ext
M2
CCOMP
M4
LOUT
INOVLO
RCOMP
CBST1 CBST2
RFB1
Cfilter
COUT3
COUT2
BST1
BST2
IIN2
RFB2
R1
Rfilter
D2
D1
RVFBH
VIN
RVFBL
CIN1
FBL
AGND
Figure 32
Application Drawing - TLD5190QV as voltage regulator
Table 13
BOM - TLD5190QV as voltage regulator (IOUT = 1A, fSW = 300kHz)
Reference
Designator
Value
Manufacturer
Part Number
Type
Quantity
D1, D2
CIN1
CIN2
Cfilter
CCOMP
CSOFT_START
COUT1
Schottky Diode
TBD
TBD
Diode
2
1 µF, 100V
EPCOS
X7R
Capacitor
1
4.7 µF, 100V
EPCOS
X7R
Capacitor
5
470 nF, 6.3V
EPCOS
X7R
Capacitor
1
22 nF, 16V
EPCOS
X7R
Capacitor
1
22 nF, 16V
EPCOS
X7R
Capacitor
1
4.7 µF, 100V
EPCOS
X7R
Capacitor
3
Data Sheet
51
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Application Information
Table 13
BOM - TLD5190QV as voltage regulator (IOUT = 1A, fSW = 300kHz)
Reference
Designator
Value
Manufacturer
Part Number
Type
Quantity
COUT2; COUT3;CREF
CIVCC
CBST1, CBST2
IC1
LOUT
Rfilter
RFB1, RFB2, RFB3
RIN
R1, R2, R3, REN, RPWMI,
RSense1, RSense2; RSYNC,
REF1; REF2; RSET
RVFBL, RVFBH
RCOMP
RFREQ
Rswcs
100 nF, 100V
EPCOS
X7R
Capacitor
3
10 µF , 10V
EPCOS
X7R
Capacitor
1
100 nF, 16V
EPCOS
X7R
Capacitor
2
—
Infineon
TLD5190QV
IC
1
10 µH
Coilcraft
XAL1010-103MEC Inductor
1
50 Ω, 1%
Panasonic
TBD
1
XX kΩ, 1%
Panasonic
TBD
Resistor
3
0.003 Ω, 1%
Panasonic
TBD
Resistor
1
XX kΩ, 1%
Panasonic
TBD
Resistor
10
1.5 kΩ, 56 kΩ, 1%
Panasonic
TBD
Resistor
2
0Ω
Panasonic
TBD
Resistor
1
37.4 kΩ, 1%
Panasonic
TBD
Resistor
1
0.005 Ω, 1%
Panasonic
ERJB1CFRO5U
Resistor
1
M1, M2, M3, M4
Dual MOSFET:
100V/35mΩ, N-ch
Infineon
IPG20N10S4L-35
Transistor
2
Data Sheet
52
Resistor
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Application Information
12.1
Further Application Information
Typical Performance Characteristics of Device
TJ=25°C,VIN=12Vunlessotherwisespecified
IVCCVoltagevsTemperature
IVCCDropoutvsCurrent
5,20
2,5
5,15
2
IIVCC=10mA
5,10
1,5
5,05
Tj=150°C
VIVCC [V]
VINVIVCC [V]
Tj=40°C
Tj=25°C
1
5,00
4,95
4,90
0,5
4,85
0
4,80
0
10
20
30
40
50
40
10
60
LDOcurrent[mA]
110
Temperature[°C]
IVCCLoadregulation
V(FBHFBL)ThresholdvsVFBH
5,2
154
5,15
153
5,1
152
AnalogDim.=100%
V(FBHFBL)[mV]
VIVCC [V]
5,05
5
4,95
151
150
149
4,9
148
4,85
147
4,8
146
0
10
20
30
40
50
0
10
20
IIVCC[mA]
30
40
50
60
VFBH[V]
V(FBHFBL)ThresholdvsTemp
IOUTMONVoltagevsTemp
1,44
154
AnalogDim.=100%,FBH=0,15V
153
1,43
AnalogDim.=100%,FBH=12V
1,42
152
150
1,4
149
1,39
148
1,38
147
1,37
1,36
146
40
10
60
40
110
Temperature[°C]
Figure 33
Data Sheet
V(FBHFBL) =150mV
1,41
151
VIOUTMON [V]
V(FBHFBL)[mV]
AnalogDim.=100%,FBH=60V
10
60
Temperature[°C]
110
Characterization Diagrams 2
53
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Application Information
TJ=25°C,VIN=12Vunlessotherwisespecified
IOUTMONVoltagevsV(FBHFBL)
V(IIN1IIN2)ThresholdvsTemp
53
1,4
VIIN1=8V
1,2
VIIN1=13.5V
52
VIIN1=55V
VIN =12V
IVCC=10mA
1
V(IIN1IIN12 [mV]
VIOUTMON [V]
51
0,8
0,6
50
49
0,4
48
0,2
0
47
0
20
40
60
80
100
120
40
140
10
V(FBHFBL) [mV]
60
110
Temperature[°C]
IINMONVoltagevsTemp
IFBH ,IFBL vsVFBH
120
1,04
100
1,03
I_FBL[uA]
V(IIN1IIN2) =50mV
I_FBH[uA]
1,02
V(FBHFBL) =150mV
60
1,01
VIINMON [V]
IFBH [uA],IFBL [uA]
80
40
1
20
0,99
0
0,98
20
0,97
40
0,96
0
5
10
15
20
25
30
35
40
45
50
55
60
40
10
VFBH[V]
OscillatorFrequencyvsTemp
110
V(BSTxSWNx)vsTemp
800
4
3,9
700
3,8
R_FREQ=61.9kOhm
600
VIN =12V
V(FBHFBL) =150mV
3,7
V(SBTxSWNx) [V]
R_FREQ=37.4kOhm
fSW [kHz]
60
Temperature[°C]
500
R_FREQ=12.7kOhm
400
3,6
VBSTxVSWNx_dec[V]
3,5
VBSTxVSWNx_inc[V]
3,4
300
3,3
200
3,2
100
3,1
40
10
60
110
40
Temperature[°C]
Figure 34
Data Sheet
10
60
110
Temperature[°C]
Characterization Diagrams 3
54
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Application Information
TJ=25°C,VIN=12Vunlessotherwisespecified
VREFVoltagevsTemperature
VREF LoadRegulation
2,06
2,04
2,03
VIN=8V
VIN=13.5V
VIN=40V
2,04
2,02
2,02
VREF [V]
VREF [V]
2,01
2
2
Iref=100uA
1,99
1,98
1,98
1,96
1,97
1,96
1,94
0
50
100
150
40
200
10
LSGDxonstateresistancevsTemp
110
HSGDxonresistancevsTemp
4,5
4,5
4
4
3,5
3,5
3
3
LSGDx_PullUp
HSGDx[Ohm]
LSGDx[Ohm]
60
Temperature[°C]
IREF [uA]
2,5
LSGDx_Pulldown
2
HSGDx_Pulldown
2,5
2
1,5
1,5
1
1
0,5
0,5
0
HSGDx_Pullup
0
40
10
60
110
40
10
Temperature[°C]
60
110
Temperature[°C]
VCOMP VoltagevsDutyCycle
V(SWCSSGND) TresholdvsTemp
120
60
100
40
Boost
DC_Buck[%]
Buck
DC_Boost[%]
20
V(SWCSSGND) =0
V(SWCSSGND) [mV]
DutyCycle[%]
80
60
0
40
20
20
40
0
60
0,6
0,8
1
1,2
1,4
1,6
40
VCOMP[V]
Figure 35
•
10
60
110
Temperature[°C]
Characterization Diagrams 4
For further information you may contact http://www.infineon.com/
Data Sheet
55
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Package Outlines
Package Outlines
6.8
11 x 0.5 = 5.5
0.1±0.03
B
+0.03
1)
3
1
0.
0.4 x 45°
Index Marking
C
±
26
36
25
48
13
1
12
(0
(0.2)
2)
37
.35
)
0.05 MAX.
1) Vertical burr 0.03 max., all sides
2) These four metal areas have exposed diepad potential
Figure 36
0.5
0.
24
0.15 ±0.05
0.1 ±0.05
SEATING PLANE
7 ±0.1
48x
0.08
6.8
5
0
0.
0.5 ±0.07
A
(6)
7 ±0.1
0.9 MAX.
(0.65)
(5.2)
13
0.23 ±0.05
(5.2)
Index Marking
48x
0.1 M A B C
(6)
PG-VQFN-48-29, -31-PO V05
PG-VQFN-48-31 (with LTI)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb
free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on alternative packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
56
Dimensions in mm
Rev. 1.0, 2016-05-20
H-Bridge DC/DC Controller
TLD5190QV
Revision History
14
Revision History
Revision
Date
Changes
Rev. 1.0
2016-05-20
Released Datasheet
Data Sheet
57
Rev. 1.0, 2016-05-20
Edition 2016-05-20
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.