Infineon® Power LED Driver TLD5098EL DC/DC Boost, Buck-Boost, SEPIC controller Datasheet Rev. 1.0, 2010-10-13 Automotive Power TLD5098EL Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 6.1 6.2 Oscillator and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7 7.1 7.2 Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 8.1 8.2 Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9 9.1 9.2 Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 10 10.1 10.2 10.3 Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of Analog Dimming: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 12 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Datasheet 2 7 7 8 9 27 27 27 31 Rev. 1.0, 2010-10-13 DC/DC Boost, Buck-Boost, SEPIC controller TLD5098EL TLD5098EL 1 Overview Features • • • • • • • • • • • • • • • • • • • Wide Input Voltage Range from 4.5 V to 45 V Constant Current or Constant Voltage Regulation Drives LEDs in Boost (B2G), Buck-Boost (B2B) and SEPIC Topology Very Low Shutdown Current: Iq_OFF < 10 µA Flexible Switching Frequency Range, 100 kHz to 500 kHz Synchronization with external clock source PWM Dimming Analog Dimming feature to adjust average LED current PG-SSOP-14 Internal 5 V Low Drop Out Voltage Regulator Open Circuit Detection Short to GND Protection Output Overvoltage Protection Internal Soft Start Over Temperature Shutdown Wide LED current range via simple adaptation of external components 300mV High Side Current Sense to ensure highest flexibility and LED current accuracy Available in a small thermally enhanced PG-SSOP-14 package Automotive AEC Qualified Green Product (RoHS) Compliant Description The TLD5098EL is a LED boost controller with built in protection features. The main function of this device is to regulate a constant LED current. The constant current regulation is especially beneficial for LED color accuracy and longer lifetime. The controller concept of the TLD5098EL allows multiple configurations such as Boost, Buck/Boost and SEPIC by simply adjusting the external components. The TLD5098EL offers the most flexible dimming options. Dimming can be achieved with analog or PWM input.The switching frequency is adjustable in the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLD5098EL features an enable function reducing the shut-down current consumption to Iq_OFF < 10 µA. The current mode regulation scheme of this device provides a stable regulation loop maintained by small external compensation components. The integrated soft start feature limits the current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments and provides output overvoltage protection, device overtemperature shutdown and short circuit to GND protection. Applications • Automotive Exterior and Interior Lighting Type Package Marking TLD5098EL PG-SSOP-14 TLD5098 Datasheet 3 Rev. 1.0, 2010-10-13 TLD5098EL Block Diagram 2 Block Diagram IN 14 LDO 13 2 SWO 4 SWCS 3 SGND 9 OVFB 6 FBH 7 FBL 5 PWMO EN_INT/ PWM_INT On/Off Logic Power Switch Gate Driver Soft Start Oscillator FREQ / SYNC IVCC Power On Reset Internal Supply EN / PWMI 1 11 Slope Comp. PWM Generator Switch Current Error Amplifier Thermal Protection Leading Edge Blanking Open Load + Short to GND detection Over Volage Protection SET 10 COMP 8 Reference Current Generation Feedback Voltage Error Amplifier EN_INT/ PWM_INT Dimming Switch Gate Driver 12 GND Figure 1 Datasheet Block Diagram 4 Rev. 1.0, 2010-10-13 TLD5098EL Pin Configuration 3 Pin Configuration 3.1 Pin Assignment IVCC 1 14 IN SWO 2 13 EN/PWMI SGND 3 12 GND SWCS 4 11 FREQ/SYNC PWMO 5 10 SET FBH 6 9 OVFB FBL 7 8 COMP exposed Pad PINCONFIG_SSOP-14_5098.SVG Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Function 1 IVCC Internal LDO Output; Used for internal biasing and gate drive. Bypass with external capacitor close to the pin. Pin must not be left open. 2 SWO Switch Output; Connect to gate of external switching MOSFET 3 SGND Current Sense Ground; Ground return for current sense switch 4 SWCS Current Sense Input; Detects the peak current through switch 5 PWMO PWM Dimming Output; Connect to gate of external MOSFET 6 FBH Voltage Feedback Positive; Non inverting Input (+) 7 FBL Voltage Feedback Negative; Inverting Input (-) 8 COMP Compensation Input; Connect R and C network to pin for stability Datasheet 5 Rev. 1.0, 2010-10-13 TLD5098EL Pin Configuration Pin Symbol Function 9 OVFB Output Overvoltage Protection Feedback; Connect to resistive voltage divider to set overvoltage threshold. 10 SET Analog Dimming Input; Load current adjustment Pin. Pin must not be left open. If analog dimming feature is not used connect to IVCC pin. 11 FREQ / SYNC Frequency Select or Synchronization Input; Connect external resistor to GND to set frequency. Or apply external clock signal for synchronization within frequency capture range. 12 GND Ground; Connect to system ground. 13 EN / PWMI Enable or PWM Input; Apply logic HIGH signal to enable device or PWM signal for dimming LED. 14 IN Supply Input; Supply for internal biasing. EP Datasheet Exposed Pad; Connect to external heatspreading GND Cu area (e.g. inner GND layer of multilayer PCB with thermal vias). 6 Rev. 1.0, 2010-10-13 TLD5098EL General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings1) Tj = -40 ⋅C to +150 ⋅C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Max. Unit Conditions Voltages 4.1.1 IN Supply Input VIN -0.3 45 V – 4.1.2 EN / PWMI Enable or PWM Input VEN -40 45 V – 4.1.3 FBH-FBL Feedback Error Amplifier Differential VFBH-VFBL -40 61 V The maximum delta must not exceed 61V 4.1.4 FBH Feedback Error Amplifier Positive Input VFBH -40 61 V The difference between VFBH and VFBL must not exceed 61V, refer to Parameter 4.1.3 4.1.5 FBL VFBL Feedback Error Amplifier Negative Input -40 61 V The difference between VFBH and VFBL must not exceed 61V, refer to Parameter 4.1.3 4.1.6 FBH and FBL current IFBL,FBH – 1 mA t < 100ms, VFBH - VFBL = 0.3V 4.1.7 OVFB Over Voltage Feedback Input VOVP SWCS Switch Current Sense Input VSWCS SWO Switch Gate Drive Output VSWO 4.1.13 SGND Current Sense Switch GND 4.1.14 -0.3 5.5 V – -0.3 6.2 V t < 10s -0.3 5.5 V – -0.3 6.2 V t < 10s -0.3 5.5 V – -0.3 6.2 V t < 10s VSGND -0.3 0.3 V – COMP Compensation Input VCOMP -0.3 5.5 V – -0.3 6.2 V t < 10s FREQ / SYNC; Frequency and Synchronization Input VFREQ / SYNC -0.3 5.5 V – VPWMO 4.1.19 PWMO PWM Dimming Output 4.1.20 SET 4.1.21 IVCC Internal Linear Voltage Regulator Output VSET VIVCC 4.1.8 4.1.9 4.1.10 4.1.11 4.1.12 4.1.15 4.1.16 4.1.17 4.1.18 4.1.22 -0.3 6.2 V t < 10s -0.3 5.5 V – -0.3 6.2 V t < 10s -0.3 45 V – -0.3 5.5 V – -0.3 6.2 V t < 10s -40 150 °C – Temperatures 4.1.23 Junction Temperature Datasheet Tj 7 Rev. 1.0, 2010-10-13 TLD5098EL General Product Characteristics Absolute Maximum Ratings1) Tj = -40 ⋅C to +150 ⋅C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. 4.1.24 Parameter Symbol Storage Temperature Limit Values Unit Conditions Min. Max. Tstg -55 150 °C – VESD,HBM VESD,HBM -2 2 kV HBM2) -4 4 kV HBM2) ESD Susceptibility 4.1.25 ESD Resistivity of all Pins 4.1.26 ESD Resistivity of IN, EN/PWMI, FBH, FBL and SET pin to GND 1) Not subject to production test, specified by design. 2) ESD susceptibility, Human Body Model “HBM” according to EIA/JESD 22-A114B Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Pos. 4.2.1 Functional Range Parameter Extended Supply Voltage Range Symbol VIN Limit Values Min. Max. 4.5 451) Unit Conditions V VIVCC > VIVCC,RTH,d; Parameter deviations possible 4.2.2 Nominal Supply Voltage Range VIN 8 34 V – 4.2.3 Feedback Voltage Input 3 60 V – 4.2.4 Junction Temperature VFBH; VFBL Tj -40 150 °C – 1) Not subject to production test, specified by design. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Datasheet 8 Rev. 1.0, 2010-10-13 TLD5098EL General Product Characteristics 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Pos. Parameter 4.3.1 Junction to Case Symbol 1) 2) 4.3.2 Junction to Ambient 4.3.3 4.3.4 1) 3) RthJC RthJA RthJA RthJA Limit Values Unit Conditions – Min. Typ. Max. – 10 – K/W – 47 – K/W 2s2p – 54 – K/W 1s0p + 600 mm2 – 64 – K/W 1s0p + 300 mm2 1) Not subject to production test, specified by design. 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to ambient temperature). Ta=25°C; The IC is dissipating 1W. 3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu). A thermal via (diameter = 0.3 mm and 25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second outer layer (bottom) of the JEDEC PCB. Ta=25°C; The IC is dissipating 1W. Datasheet 9 Rev. 1.0, 2010-10-13 TLD5098EL Boost Regulator 5 Boost Regulator 5.1 Description The TLD5098EL regulator is suitable for boost, buck-boost and SEPIC configurations. The constant output current is especially useful for light emitting diode (LED) applications. The regulator function is implemented by a pulse width modulated (PWM) current mode controller. The PWM current mode controller uses the peak current through the external power switch and error in the output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode controller provides a PWM signal to an internal gate driver which then outputs to an external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch. The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a characteristic of current mode controllers operating at high duty cycles (>50% duty). An additional built-in feature is an integrated soft start that limits the current through the inductor and external power switch during initialization. The soft start function gradually increases the inductor and switch current over tSS (Parameter 5.2.9) to minimize potential overvoltage at the output. OV FB H when OVFB >1.25V OVFB 9 VRef = 1.25V High when IVCC < 4.0V COMP 8 FBH 6 x1 EA FBL 7 OFF when H I EA 0 if SET < 1.6V SET 10 0 VRef Low when T j > 175 °C 1 V = VRef Figure 3 Datasheet R & Output Stage OFF when Low R Slope Comp S t Clock & Q INV 1 Q S I & Gate Driver Supply & Q Q 2 SWO Current Sense PWM-FF Error-FF 1 IVCC Gate Driver 0.3V Oscillator FREQ/ 11 SYNC Soft start > 1 I SL O PE (SET − 0.1V ) 5 = VRef 4.0V NOR Current Comp High when l EA - I SLOPE - I CS > 0 gmEA UV IVCC NAND 2 & I CS 4 SWCS 3 SGND Boost Regulator Block Diagram 10 Rev. 1.0, 2010-10-13 TLD5098EL Boost Regulator 5.2 Electrical Characteristics 1) Table 1 EC Boost Regulator VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions Regulator: 5.2.1 Feedback Reference Voltage VREF 0.29 0.30 0.31 V refer to Figure 25 VREF= VFBH -VFBL VSET= 5V ILED= 350 mA 5.2.2 Feedback Reference Voltage VREF 0.057 0.06 0.063 V refer to Figure 25 VREF= VFBH -VFBL VSET= 0.4V ILED= 70mA 5.2.3 Feedback Reference Voltage Offset VREF_offset – – 5 mV 5.2.4 Voltage Line Regulation (ΔVREF / VREF) / ΔVIN – – 0.15 %/V 5.2.5 Voltage Load Regulation (ΔVREF / VREF) / ΔIBO – – 5 %/V 5.2.6 Switch Peak Over Current Threshold VSWCS 130 150 170 mV refer to Figure 17 and Figure 25 VREF= VFBH -VFBL VSET= 0.1V VOUT>VIN refer to Figure 25 VIN = 8V to 19V; VSET = 5V; ILED = 350mA refer to Figure 25 VSET = 5V; ILED = 100 to 500mA VFBH = VFBL = 5V VCOMP = 3.5V 5.2.7 Maximum Duty Cycle 93 95 % Fixed frequency mode 5.2.8 Maximum Duty Cycle – – % Synchronization mode 5.2.9 Soft Start Ramp DMAX,fixed 91 DMAX,sync 88 tSS 350 1000 1500 µs VFB rising from 5% to 95% of VFB, typ. 5.2.10 IFBH Feedback High Input Current IFBH 38 46 54 µA VFBH - VFBL = 0.3V 5.2.11 IFBL Feedback Low Input Current IFBL 15 21 27 µA VFBH - VFBL = 0.3V 5.2.12 Switch Current Sense Input Current ISWCS 10 50 100 µA VSWCS = 150mV 5.2.13 Input Undervoltage Shutdown 3.5 – 4.5 V 5.2.14 Input Voltage Startup VIN,off VIN,on – – 4.85 V VIN decreasing VIN increasing 1) Not subject to production test, specified by design Datasheet 11 Rev. 1.0, 2010-10-13 TLD5098EL Boost Regulator Table 1 EC Boost Regulator VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions Gate Driver for external Switch 5.2.15 Gate Driver Peak Sourcing Current ISWO,SRC – 380 – mA 1) VSWO = 1V to 4V 5.2.16 Gate Driver Peak Sinking Current ISWO,SNK – 550 – mA 1) VSWO = 4V to 1V 5.2.17 Gate Driver Output Rise Time tR,SWO – 30 60 ns 1) 5.2.18 Gate Driver Output Fall Time tF,SWO – 20 40 ns 5.2.19 Gate Driver Output Voltage VSWO 4.5 – 5.5 V CL,SWO = 3.3nF; VSWO = 1V to 4V 1) CL,SWO = 3.3nF; VSWO = 4V to 1V 1) CL,SWO = 3.3nF; 1) Not subject to production test, specified by design Datasheet 12 Rev. 1.0, 2010-10-13 TLD5098EL Oscillator and Synchronization 6 Oscillator and Synchronization 6.1 Description The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an external resistor the following formula can be applied. R FREQ = 1 (141 × 10 [ ])× ( f − 12 s Ω FREQ [1s ]) ( ) [Ω ] − 3 . 5 × 10 3 [Ω ] In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz. Oscillator FREQ / SYNC 11 VCLK Figure 4 Clock Frequency Detector RFREQ PWM Logic Multiplexer Gate Driver 2 SWO Oscillator and Synchronization Block Diagram and Simplified Application Circuit TSYNC = 1 / fSYNC VSYNC tSYNC,TR tSYNC,TR tSYNC,PWH 4.5 V VSYNC,H VSYNC,L 0.5 V t Figure 5 Datasheet Synchronization Timing Diagram 13 Rev. 1.0, 2010-10-13 TLD5098EL Oscillator and Synchronization 6.2 Electrical Characteristics Table 2 EC Oscillator and Synchronization VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions RFREQ = 20kΩ Min. Typ. Max. fFREQ fFREQ 250 300 350 kHz 100 – 500 kHz Oscillator: 6.2.1 Oscillator Frequency 6.2.2 Oscillator Frequency Adjustment Range 6.2.3 FREQ / SYNC Supply Current IFREQ – – -700 µA VFREQ = 0V 6.2.4 Frequency Voltage VFREQ 1.16 1.24 1.32 V fFREQ = 100kHz Synchronization 6.2.5 Synchronization Frequency Capture Range fSYNC 250 – 500 kHz – 6.2.6 Synchronization Signal High Logic Level Valid VSYNC,H 3.0 – – V 1) 2) 6.2.7 Synchronization Signal Low Logic Level Valid VSYNC,L – – 0.8 V 1) 2) 6.2.8 Synchronization Signal Logic High Pulse Width tSYNC,PWH 200 – – ns 1) 2) 1) Synchronization of external PWM ON signal to falling edge 2) Not subject to production test, specified by design Datasheet 14 Rev. 1.0, 2010-10-13 TLD5098EL Oscillator and Synchronization Typical Performance Characteristics of Oscillator Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC 600 500 fFREQ [kHz] 400 T j = 25 °C 300 200 100 0 0 10 20 30 40 50 60 70 80 RFREQ/SYNC [kohm] Datasheet 15 Rev. 1.0, 2010-10-13 TLD5098EL Enable and Dimming Function 7 Enable and Dimming Function 7.1 Description The enable function powers ON or OFF the device. A valid logic LOW signal on enable pin EN/PWMI powers OFF the device and current consumption is less than Iq_OFF (Parameter 7.2.14). A valid logic HIGH enable signal on enable pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which ensures that the IC is shut down and the power switch is OFF in case the enable pin EN is left open. In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM) input signal that is fed through to an internal gate driver. The internal gate driver outputs the same PWM signal on the PWMO pin to an external N-channel enhancement mode MOSFET for PWM dimming an LED load. PWM dimming an LED is a commonly practiced dimming method and can prevent color shift in an LED light source. Moreover the PWM output function may also be used to drive other types of loads besides LED. The enable and PWM input function share the same pin. Therefore a valid logic LOW signal at the EN/PWMI pin needs to differentiate between an enable power OFF or an PWM dimming LOW signal. The device differentiates between enable OFF and PWM dimming signal by requiring the enable OFF at the EN/PWMI pin to stay LOW for the Enable Turn OFF Delay Time (tEN,OFF,DEL Parameter 7.2.6). IN 14 Enable Microcontroller EN / PWMI 13 Enable / PWMI Logic LDO Enable Gate Driver PWMI Figure 6 Datasheet 1 2 Gate Driver 5 IVCC SWO PWMO Block Diagram and Simplified Application Circuit Enable and LED Dimming 16 Rev. 1.0, 2010-10-13 TLD5098EL Enable and Dimming Function tEN,START TPWMI tPWMI,H tEN,OFF,DEL VEN/PWMI VEN/PWMI,ON VEN/PWMI,OFF t VIVCC VIVCC,ON VIVCC,RTH t VPWMO TFREQ = VSWO t 1 fFREQ t Power ON Normal Dim Normal Dim Normal SWO ON PWMO OFF SWO ON PWMO OFF SWO ON PWMO ON SWO OFF PWMO ON SWO OFF PWMO ON Figure 7 Timing Diagram Enable and LED Dimming 7.2 Electrical Characteristics Table 3 EC Enable and Dimming Power OFF Delay Time Power OFF Iq_OFF VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. 3.0 – Unit Conditions V – Max. Enable/PWM Input: 7.2.1 Enable/PWMI Turn On Threshold VEN/PWMI,ON 7.2.2 Enable/PWMI Turn Off Threshold VEN/PWMI,OFF – – 0.8 V – 7.2.3 Enable/PWMI Hysteresis VEN/PWMI,HYS 50 200 400 mV 1) Datasheet 17 Rev. 1.0, 2010-10-13 TLD5098EL Enable and Dimming Function Table 3 EC Enable and Dimming VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 7.2.4 Enable/PWMI High Input Current IEN/PWMI,H – – 30 µA VEN/PWMI = 16.0V 7.2.5 Enable/PWMI Low Input Current IEN/PWMI,L – 0.1 1 µA VEN/PWMI = 0.5V 7.2.6 Enable Turn Off Delay Time tEN,OFF,DEL 8 10 12 ms – 7.2.7 PWMI Min Duty Time – – µs – Enable Startup Time tPWMI,H tEN,START 4 7.2.8 100 – – µs 1) Gate Driver for Dimming Switch: 7.2.9 PWMO Gate Driver Peak Sourcing Current IPWMO,SRC – 230 – mA 1) VPWMO = 1V to 4V 7.2.10 PWMO Gate Driver Peak Sinking Current IPWMO,SNK – 370 – mA 1) VPWMO = 4V to 1V 7.2.11 PWMO Gate Driver Output Rise Time tR,PWMO – 50 100 ns 1) CL,PWMO = 3.3nF; 7.2.12 PWMO Gate Driver Output Fall Time tF,PWMO – 30 60 ns 7.2.13 PWMO Gate Driver Output Voltage VPWMO 4.5 – 5.5 V VPWMO = 1V to 4V 1) CL,PWMO = 3.3nF; VPWMO = 4V to 1V 1) CL,PWMO = 3.3nF; Current Consumption 7.2.14 Current Consumption, Shutdown Mode Iq_OFF – – 10 µA 7.2.15 Current Consumption, Active Mode2) Iq_ON – – 7 mA VEN/PWMI = 0.8 V; Tj ≤ 105C; VIN = 16V VEN/PWMI ≥ 4.75V; IBO = 0mA; VSWO = 0% Duty Cycle 1) Not subject to production test, specified by design 2) Dependency on switching frequency and gate charge of boost and dimming switch. Datasheet 18 Rev. 1.0, 2010-10-13 TLD5098EL Linear Regulator 8 Linear Regulator 8.1 Description The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5V and current up to ILIM,min (Parameter 8.2.2). An external output capacitor with ESR lower than RIVCC,ESR (Parameter 8.2.5) is required on pin IVCC for stability and buffering transient load currents. During normal operation the external boost and dimming MOSFET switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET switches. Integrated undervoltage protection for the external switching MOSFET: An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets the device in case the output voltage falls below the IVCC Undervoltage Reset switch OFF Threshold (VIVCC,RTH,d Parameter 8.2.7). The Undervoltage Reset threshold for the IVCC pin helps to protect the external switches from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level N-channel MOSFET. IN 14 1 IVCC Linear Regulator EN / PWMI Figure 8 Datasheet 13 Gate Drivers Voltage Regulator Block Diagram and Simplified Application Circuit 19 Rev. 1.0, 2010-10-13 TLD5098EL Linear Regulator 8.2 Electrical Characteristics Table 4 EC Line Regulator VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Typ. Max. 8.2.1 Output Voltage VIVCC 4.85 5 8.2.2 Output Current Limitation ILIM 51 8.2.3 Drop out Voltage VDR – 8.2.4 CIVCC 0.47 IVCC Buffer Capacitor ESR RIVCC,ESR – Undervoltage Reset Headroom VIVCC,HDRM 100 8.2.5 Limit Values IVCC Buffer Capacitor Unit Conditions 5.15 V 6V ≤ VIN ≤ 45V 0.1mA ≤ IIVCC ≤ 50mA – 90 mA – 0.5 V VIN = 13.5V VIVCC = 4.5V VIN = 4.5V IIVCC = 25mA 1 100 µF 1) 2) – 0.5 Ω 1) – – mV 8.2.7 IVCC Undervoltage Reset switch OFF Threshold VIVCC,RTH,d 3.6 – 4.0 V VIVCC decreasing VIVCC - VIVCC,RTH,d 3) VIVCC decreasing. 8.2.8 IVCC Undervoltage Reset switch ON Threshold VIVCC,RTH,i – 4.5 V VIVCC increasing 8.2.6 – 1) Not subject to production test, specified by design 2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. 3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case VGS must be considered. Datasheet 20 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions 9 Protection and Diagnostic Functions 9.1 Description The TLD5098EL has integrated circuits to diagnose and protect against output overvoltage, open load, open feedback and overtemperature faults. Additionally the FBH and FBL potential is monitored and in case the LED load short circuits to GND (see description Figure 15) the regulator stops the operation and protects the system. In case any of the six fault conditions occur the PWMO and IVCC signal will change to an active logic LOW signal to communicate that a fault has occurred (detailed overview in Figure 9 and Figure 10 below). Figure 11 illustrates the various open load and open feedback conditions. In case of an overtemperature condition the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature is 175°C (Tj,SD Parameter 9.2.2). After cooling down the IC will automatically restart. Thermal shutdown is an integrated protection function designed to prevent IC destruction and is not intended for continuous use in normal operation (Figure 13). To calculate the proper overvoltage protection resistor values an example is given in Figure 14. Input Protection and Diagnostic Circuit Output Output Overvoltage Open Load OR SWO and PWMO Gate Driver Off Short to GND Open Feedback Overtemperature Linear Regualtor Off OR Input Undervoltage Figure 9 Datasheet Protection and Diagnostic Function Block Diagram 21 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions Input Condition Overvoltage @ Output Level* False True False True False True False True False True False True Open Load Short to GND @ LED chain Open Feedback Overtemperature Undervoltage @ Input SWO Sw* L Sw* L Sw* L Sw* L Sw* L Sw* L Output PWMO IVCC H or Sw * Active L Active H or Sw * Active L Active H or Sw * Active L Active H or Sw * Active L Active H or Sw * Active L Shutdown H or Sw * Active L Shutdown *Note: Sw = Switching False = Condition does not exist True = Condition does exist Diagnosis Truth Table VBO Open Circuit 3 Open Circuit 1 ROVH OVFB Open Circuit 2 9 VOVFB,TH D1 ROVL D2 Open Circuit Condition Fault Condition Fault Threshold Voltage VREF 1 Open FBH -20 to -100 mV 2 Open FBL 0.5 to 1.0 V 3 Open VBO -20 to -100 mV 4 Open PWMO Detected by overvoltage D3 Feedback Voltage Error Amplifier FBH FBL VREF D4 6 7 D5 + VREF - D6 Max Threshold = 1.0 V D7 D8 Min Threshold = 0.5 V D9 D10 Typical V REF = 0.3 V Open Circuit 4 TDIM PWMO Figure 11 Datasheet Open FBL Overvoltage Compartor RFB Output Open Circuit Conditions Max Threshold = -20 mV Min Threshold = -100 mV 5 Open FBH Open VBO Figure 10 Open Load and Open Feedback Conditions 22 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions Startup Normal VIVCC Thermal Shutdown Overvoltage Open Load / Feedback 1 2 3 Shutdown VIVCC,RTH,i VIVCC,RTH,d Tj t Tj,SD,HYST 1 Tj,SD VBO VOVFB,HYS t 2 VOVFB ≥ VOVFB,TH VIN 3 VFBH-VFBL t VREF,2 tSS tSS 0.3 V Typ t VREF,1 VPWMO t Figure 12 Datasheet Open load, Overvoltage and Overtemperature Timing Diagram 23 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions VEN/PWMI H L t Tj TjSD ΔΤ TjSO t Ta VSWO t ILED Ipeak t VPWMO t VIVCC 5V t Device OFF Figure 13 Datasheet Normal Operation Overtemp Fault ON Overtemp ON Fault Overtemp ON Fault Overtemp Fault Device overtemperature protection behavior 24 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions VOVFB example: VOUT,max=40V VOVP,max 1.25mA TLD5098 OVFB Overvoltage Protection ACTIVE 40V ≅ 33.2kΩ 1.25mA ROVH VOVFB,TH 9 ROVL GND 1kΩ 1.25V 1.25V Overvoltage Protection is disabled 12 t Figure 14 Overvoltage Protection description Short to GND protection for Highside Return Applications (B2B) from Figure 23 The FBH and FBL pins features a Short to GND detection threshold (VFBL,FBH_S2G). If the potential on those pins is below this threshold the Device stops his operation. This means that the PWMO signal changes to inactive state (LOW potential) and the corresponding p-channel (TDIM2) is switched OFF accordingly and protects the LED chain. For the B2B application some external components are needed to ensure a LOW potential during a short circuit event. D1 and D2 are low power diodes (BAS16-03W) and the resistor Rlim (10kOhm) is needed to limit the current through this path. The diode D3 should be a high power diode and is needed to protect the RFB and the FBH and FBL pins in case of an short circuit to GND event. This short circuit detection and protection concept considers potential faults for LED chains (LED Modules) which are separated from the ECU via two wires (at the beginning and at the end of the LED chain). If the short circuit condition disappears, the device will re-start with an soft start. CBO Vbb wire harness RFB CIN VFBL,FBH D2 D1 Rlim LED Module Dn D3 60V Short to GND wire harness TDIM2 D1 Normal Operation Short to GND LBO TDIM1 DBO ILED ISW PWMO TSW SWO SWCS FBH FBL IN Figure 15 Datasheet VOUT 4.5V VFBL,FBH_S2G SGND Device working with parameter deviations Short Circuit detected on FBH/FBL t Short Circuit to GND Protection 25 Rev. 1.0, 2010-10-13 TLD5098EL Protection and Diagnostic Functions 9.2 Electrical Characteristics Table 5 EC Protection and Diagnosis VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Unit Conditions Typ. Max. – 2 V refer to Figure 15 VFBH=VFBL decreasing 175 190 °C 1) Short Circuit Protection 9.2.1 FBH and FBL Short-Circuit fault VFBL,FBH_S2G 1.5 sensing common mode range Temperature Protection: 9.2.2 9.2.3 Over Temperature Shutdown Over Temperature Shutdown Hystereses Tj,SD Tj,SD,HYST 160 – 15 – °C 1) refer to Figure 13 Overvoltage Protection: 9.2.4 Output Over Voltage Feedback Threshold Increasing VOVFB,TH 1.21 1.25 1.29 V refer to Figure 14 9.2.5 Output Over Voltage Feedback Hysteresis VOVFB,HYS 50 – 150 mV 1) 9.2.6 Over Voltage Reaction Time tOVPRR 2 – 10 µs Output Voltage decreasing 9.2.7 Over Voltage Feedback Input Current IOVFB -1 0.1 1 µA VOVFB = 1.25V Output Voltage decreasing Open Load and Open Feedback Diagnostics 9.2.8 Open Load/Feedback Threshold VREF,1,3 -100 – -20 mV refer to Figure 11 VREF = VFBH - VFBL Open Circuit 1 or 3 9.2.9 Open Feedback Threshold VREF,2 0.5 – 1 V VREF = VFBH - VFBL Open Circuit 2 1) Specified by design; not subject to production test. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Datasheet 26 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming 10 Analog Dimming This pin is influencing the Feedback Voltage Error Amplifier by generating an internal current accordingly to an external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected to IVCC or external > 1.6V supply. Different application scenarios are described in Figure 18. This pin can also go outside of the ECU for instance if a thermistor is connected on a separated LED Module and the Analog Dimming Input is used to thermally protect the LEDs. For reverse battery protection of this pin an external series resistor should be placed to limit the current. 10.1 Purpose of Analog Dimming: 1) It is difficult for LED manufacturers to deliver LEDs which have the same Brightness, Colorpoint and Forward Voltage Class. Due to this relatively wide spread of the crucial LED parameters automotive customers order LEDs from one or maximum two different colorpoint classes. The LED manufacturer must preselect the LEDs to deliver the requested colorpoint class. Those preselected LEDs are matched in terms of the colorpoint but a variation of the brightness remains. To correct the brightness deviation an analog dimming feature is needed. The mean LED current can be adjusted by applying an external voltage VSET at the SET pin. 2) If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one hardware which should be able to handle different load current conditions (e.g. 80mA to 400mA) to cover different applications. To achieve this average LED current adjustment the analog dimming is a crucial feature. 10.2 Description Application Example: Desired LED current = 400mA. For the calculation of the correct Feedback Resistor RFB the following equation can be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6V. I LED = V VREF 0.3V --> RFB = REF --> R = 750mΩ FB = I LED RFB 400mA A decrease of the average LED current can be achieved by controlling the voltage at the SET pin (VSET) between 0V and 1.6V. The mathematical relation is given in the formula below: I LED = V − 0 ,1 V 5 * R FB SET If VSET is 100mV the LED current is only determined by the internal offset voltages of the comparators. For this example ILED = 0A if VSET < 100mV. Refer to the concept drawing in Figure 17. Datasheet 27 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming VREF [V] typ. 300mV [V] Analog Dimming Disabled Analog Dimming Feature Enabled V − 0.1V I LED = SET 5 * RFB Figure 16 VSET 1.6V 100 mV I LED = VREF RFB Voltage VSET versus LED current VREF VOUT RFB ILED FBL FBH 7 6 IFBL IFBH R2 R1 Vint VBandgap = 1.6V VREF_offset + + + - - Feedback Voltage Error Amplifier ISET SET 10 VSET ISET n*ISET R3 100mV COMP GND 8 12 CCOMP RCOMP Figure 17 Datasheet Concept Drawing Analog Dimming 28 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming Multi-purpose usage of the Analog dimming feature 1) A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET pin of the TLD5098EL. The integrated voltage Regulator (VIVCC) can be used to supply the µC or external components if the current consumption does not exceed 25mA. 2) The analog dimming feature is directly connected to the input voltage of the system. In this configuration the LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing (increasing) the switching duty cycle if VIN drops to a lower potential. This is causing an increase of the input current consumption. If applications require a decrease of the LED current in respect to VIN variations this setup can be choosen. 3) The usage of an external resistor divider connected between IVCC (integrated 5V regulator output and gate buffer pin) SET and GND can be choosen for systems without µC on board. The concept allows to control the LED current via placing cheap low power resistors. Furthermore a temperature sensitive resistor (Thermistor) to protect the LED loads from thermal destruction can be connected additionally. 4) If the analog dimming feature is not needed the SET pin must be connected directly to >1.6V potential (e.g. IVCC potential) 5) Instead of an DAC the µC can provide a PWM signal and an external R-C filter is producing a constant voltage for the analog dimming. The voltage level is depending on the PWM frequency (fPWM) and duty cycle (DC) which can be controlled by the µc software after reading the coding resistor placed at the LED module. Datasheet 29 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming . +5V 1 2 CIVCC D/A-Output µC 10 Vbb 1 14 IVCC IN RSET2 SET 10 SET VSET VSET RSET1 GND Cfilter GND 12 12 3 4 VIVCC = +5V 1 RSET2 Rfilter CIVCC 10 VSET RSET1 VIVCC = +5V IVCC GND VSET ~ VIVCC 12 IVCC 10 SET CIVCC SET Cfilter 1 Cfilter GND 12 5 +5V 1 IVCC 10 SET CIVCC PWM PWM output Rfilter µC (e.g. XC866) Cfilter VSET GND 12 Figure 18 Datasheet Analog Dimming in various applications 30 Rev. 1.0, 2010-10-13 TLD5098EL Analog Dimming 10.3 Electrical Characteristics Table 6 EC Analog Dimming VIN = 8V to 34V; Tj = -40 ⋅C to +150 ⋅C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. 0 – 1.6 Unit Conditions V 1) Analog Dimming Range 10.3.1 SET programming range VSET refer to Figure 16 1) Specified by design; not subject to production test. Datasheet 31 Rev. 1.0, 2010-10-13 TLD5098EL Application Information 11 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. IBO L1 VIN VBATT LBO DBO CIN C1 ISW VBO CBO C2 RFB Provisional Parts 14 IN 1 IVCC VREF TSW SWO 2 SWCS 4 D1 CIVCC RCS VCC or V IVCC SGND 3 OVFB 9 D2 ROVH D3 PWM PWM - Output 10 Rfilter IC2 Microcontroller (e.g. XC866) 13 Output D4 IC1 TLD5098 Cfilter Output Input SET D5 ROVL D6 D7 D8 EN / PWMI 11 FREQ / SYNC 8 COMP Classic Boost Setup: VOUT > VIN DRV FBH 6 FBL 7 PWMO 5 D9 ILED D10 CCOMP TDIM RFREQ RCOMP GND 12 Figure 19 LED Low Side Return Application Circuit (Boost to GND, B2G) Reference Designator Value Manufacturer Part Number Type Quantity D1 - 10 White Osram LW W5SM LED 10 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CIN , CBO 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 2 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1uF , 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML Inductor 1 RCOMP 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 1 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM,TSW Dual N-ch enh. (60V, 20A) Infineon IPG20N06S4L-26 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPD35N10S3L-26 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Figure 20 Datasheet Bill of Materials for LED Low Side Return Application Circuit 32 Rev. 1.0, 2010-10-13 TLD5098EL Application Information Lfilter L1 DRV DBO CSEPIC VIN VBATT CIN C1 ISW C2 RFB L2 14 IN Provisional Parts TSW SWO 2 SWCS 4 ILED RCS D1 VCC or V IVCC SGND 3 OVFB 9 VREF CBO ROVH PWM PWM - Output 10 Rfilter IC2 Microcontroller (e.g. XC866) Input SET IC1 TLD5098 Cfilter Output 13 EN / PWMI Output 11 FREQ / SYNC 8 COMP FBH 6 FBL 7 IVCC 1 BAS1603W DPOL CCOMP Startup Circuit RCOMP PWMO Dn RPOL 10kΩ CIVCC RFREQ Number of LEDs could be variable! This means the following configurations are possible: 1) VOUT < VIN (Buck) 2) VOUT > VIN (Boost) ROVL TDIM 5 GND 12 Figure 21 SEPIC Application Circuit Reference Designator Value Manufacturer Part Number D1 - n White Osram DBO Schottky, 3 A, 100 VR Vishay CSEPIC 3.3 uF, 20V CIN , CBO CCOMP CIVCC IC1 IC2 L1 , L2 Type Quantity LW W5SM LED variable SS3H10 Diode 1 EPCOS X7R, Low ESR Capacitor 1 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 2 10 nF EPCOS X7R Capacitor 1 1uF , 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 -- Infineon TLD5098 IC 1 -- Infineon XC866 IC 1 47 uH Coilcraft MSS1278T-473ML Inductor 2 alternativ: 22uH coupled inductor Coilcraft MSD1278-223MLD Inductor 1 RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 2 DPOL 80V Diode Infineon BAS1603W Diode 1 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM,TSW Dual N-ch enh. (60V, 20A) Infineon IPG20N06S4L-26 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPD35N10S3L-26 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Figure 22 Datasheet Bill of Materials for SEPIC Application Circuit 33 Rev. 1.0, 2010-10-13 TLD5098EL Application Information CBO DSC1: Low Power Diode Rlim:10kΩ range VIN DRV DSC2: Low Power Diode RFB TDIM2 L1 VBATT CIN C1 D3 Power Schottky Diode C2 Dn DZ D1 VOUT is always higher than VIN Therefore: Number of LEDs could be variable! Short to GND RDIM2 RDIM1 Short to GND Provisional Parts LBO I LED DBO TDIM1 I SW VOUT PWMO 5 VCC or V IVCC PWM PWM-Output IC2 Microcontroller (e.g. XC866) Rfilter 6 FBH 7 FBL 14 IN 10 SET SWO 2 SWCS 4 SGND 3 OVFB 9 TSW R CS ROVH IC1 TLD5098 Cfilter Input Output 13 EN / PWMI Output 11 FREQ / SYNC ROVL COMP 8 IVCC 1 C COMP CIVC C GND RFREQ Figure 23 R COMP 12 LED High Side Return Application Circuit (Boost to Vbb, B2B) Reference Designator Value Manufacturer Part Number Type Quantity D1 - n White Osram LW W5AP Diode variable DBO , D3 Schottky, 3 A, 100 VR Vishay SS3H10 Diode 2 DSC1 , DSC2 Low Power Diode Infineon BAS16-03W Diode 2 DZ Zener Diode -- -- Diode 1 CBO 100 uF, 80V Panasonic EEVFK1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1 uF, 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP, RDIM1, RDIM2, Rlim 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 4 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 ROVH 33.2 kΩ, 1% Panasonic ERJP06F5102V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM1,TDIM2 60V Dual N-ch (3.1A) and P-ch. enh. (2A) Infineon BSO615CG Transistor 1 alternativ: 100V N-ch (0.37A), Infineon BSP123 Transistor 1 alternativ: 60V P-ch (1.9A) Infineon BSP171P Transistor 1 N-ch, OptiMOS-T2 100V, 35A Infineon IPD35N10S3L-26 Transistor alternativ: 60V N-ch, 30A Infineon IPD30N06S4L-23 Transistor 1 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 1 TSW Figure 24 Datasheet 1 AppDiagLED _HSR_HSSBOM .vsd Bill of Materials for LED High Side Return Application Circuit 34 Rev. 1.0, 2010-10-13 TLD5098EL Application Information IBO DRV L1 VIN VBATT LBO DBO CIN C1 VBO CBO ISW C2 Provisional Parts CIVCC 1 SWO 2 SWCS 4 TSW IN IVCC RCS VCC or V IVCC PWM 10 Rfilter SGND 3 OVFB 9 SET Cfilter ROVH IC1 TLD5098 Input 5 PWMO Output 13 EN / PWMI Output 11 FREQ / SYNC 8 COMP ROVL RFB1 FBH 6 RFB2 CCOMP RFREQ constant VOUT RL 14 IC2 Microcontroller (e.g. XC866) ILoad FBL RCOMP VREF 7 RFB3 GND 12 Figure 25 Boost Voltage Application Circuit Reference Designator Value Manufacturer Part Number Type Quantity DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CBO 100 uF, 80V Panasonic EEVFK1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF TBD TBD Capacitor 1 CIVCC 100 uF, 6.3V Panasonic EEFHD0J101R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC886 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP 10 kΩ TBD TBD Resistor 1 RFB1,RFB3 51 kΩ, 1% Panasonic ERJ3EKF5102V Resistor 1 RFB2 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 51 kΩ, 1% Panasonic ERJP06F5102V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TSW N-ch, 75 V, 65 mΩ Infineon IPD22N08S2L-50 Transistor 1 Figure 26 Bill of Materials for Boost Voltage Application Circuit Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Datasheet 35 Rev. 1.0, 2010-10-13 TLD5098EL Application Information 11.1 Further Application Information In fixed frequency mode where an external resistor configures the switching frequency the minimum boost inductor is given by the formula in Figure 27. • • • • LMIN = Minimum Inductance Required During Fixed Frequency Operation VBO = Boost Output Voltage RCS = Current Sense Resistor fFREQ = Switching Frequency V BO [ V ] × R CS [ Ω ] L MIN ≥ -------------------------------------------------------------------–3 106 ×10 [ V ] × f FREQ [ Hz ] Figure 27 Minimum Inductance Required During Fixed Frequency Operation (B2G configuration) In synchronization mode where an external clock source configures the switching frequency the minimum boost inductor is given by the formula in Figure 28. • • • LSYNC = Minimum Inductance Required During Synchronization Operation VBO = Boost Output Voltage RCS = Current Sense Resistor V BO [ V ] × R CS [ Ω ] ----------------------------------------------------------L SYNC ≥ –3 106 ×10 [ V ] × 250kHz Figure 28 • • • Minimum Inductance Required During Synchronization Operation (B2G configuration) Please contact us for information regarding the FMEA pin. Existing App. Note (Title) For further information you may contact http://www.infineon.com/ Datasheet 36 Rev. 1.0, 2010-10-13 TLD5098EL Package Outlines 12 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.2 A 14 6 ±0.2 D Exposed Diepad B 0.1 C A-B 2x 14 7 8 2.65 ±0.2 0.25 ±0.05 2) 0.1 C D 8˚ MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45˚ 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion PG-SSOP-14-1,-2,-3-PO V02 PG-SSOP-14 Figure 29 PG-SSOP-14 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further package information, please visit our website: http://www.infineon.com/packages. Datasheet 37 Dimensions in mm Rev. 1.0, 2010-10-13 TLD5098EL Revision History 13 Revision History Revision Date Changes 1.0 2010-10-13 Initial Datasheet Datasheet 38 Rev. 1.0, 2010-10-13 Edition 2010-10-13 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.