Infineon® Power LED Driver TLD5095EL DC/DC Boost, Buck-Boost, SEPIC controller Datasheet Rev. 1.1, 2009-12-16 Automotive Power TLD5095EL Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 6.1 6.2 Oscillator and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 7.1 7.2 Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 8 8.1 8.2 Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 9 9.1 9.2 Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 10 10.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 12 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Datasheet 2 7 7 8 8 Rev. 1.1, 2009-12-16 DC/DC Boost, Buck-Boost, SEPIC controller TLD5095EL TLD5095EL 1 Overview Features • • • • • • • • • • • • • • • • • Wide Input Voltage Range from 4.75 V to 45 V Constant Current or Constant Voltage Regulation Drives LEDs in Boost (B2G), Buck-Boost (B2B) and SEPIC Topology Very Low Shutdown Current: IQ< 10 µA Flexible Switching Frequency Range, 100 kHz to 500 kHz Synchronization with external clock source Output Open Circuit Diagnostic Output PWM Dimming PG-SSOP-14 (e-Pad) Internal Soft Start 300mV High Side Current Sense to ensure highest flexibility and LED current accuracy Internal 5 V Low Drop Out Voltage Regulator Wide LED current range via simple adaptation of external components Available in a small thermally enhanced PG-SSOP-14 (e-Pad) package Output Overvoltage Protection Over Temperature Shutdown Automotive AEC Qualified Green Product (RoHS) Compliant Description The TLD5095EL is a smart LED boost controller with built in protection and diagnostic features. The main function of this device is to regulate a constant LED current. The constant current regulation is especially beneficial for LED color accuracy and longer lifetime. The controller concept of the TLD5095EL allows a multi-purpose usage such as Boost, Buck-Boost and SEPIC configuration with various load current levels by simply adjusting the external components. The TLD5095EL has a PWM output for dimming a LED load. The diagnostics are communicated on a status output (pin ST) to indicate a fault condition such as an LED open circuit. The switching frequency is adjustable in the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLD5095EL features an enable function reducing the shut-down current consumption to <10 µA. The current mode regulation scheme of this device provides a stable regulation loop maintained by small external compensation components. The integrated soft-start feature limits the current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments and provides protection functions such as output overvoltage protection and overtemperature shutdown. Applications • • Automotive Exterior Lighting (Brake Light, Tail Light, Fog Light, CHMSL, Daytime Running Light, Position Light, Turn Indicators) Automotive Interior Lighting (Reading Light, Dome Light, Display Backlighting) Type Package Marking TLD5095EL PG-SSOP-14 (e-Pad) TLD5095 Datasheet 3 Rev. 1.1, 2009-12-16 TLD5095EL Block Diagram 2 Block Diagram IN EN / PWMI FREQ/ SYNC 14 LDO EN_INT/ PWM_INT On/Off Logic 13 Oscillator Power Switch Gate Driver Soft Start 2 PWM Generator 11 4 Switch Current Error Amplifier 3 Diagnostics Logic Over Volage Protection 9 Open Load Detection COMP SWO SWCS SGND Leading Edge Blanking Thermal Protection 10 IVCC Power On Reset Internal Supply Slope Comp. ST 1 OVFB FBH Feedback Voltage Error Amplifier 8 EN_INT/ PWM_INT Dimming Switch Gate Driver 6 7 5 FBL PWMO 12 BlockDiagram .vsd GND Figure 1 Datasheet Block Diagram 4 Rev. 1.1, 2009-12-16 TLD5095EL Pin Configuration 3 Pin Configuration 3.1 Pin Assignment ,9&& ,1 6:2 (13:0, 6*1' *1' 6:&6 )5(46<1& 3:02 6(7 )%+ )%/ (3 29)% &203 3,1&21),*B662369* Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Function 1 IVCC Internal LDO Output; Used for internal biasing and gate drive. Bypass with external capacitor. Pin must not left open. 2 SWO Switch Output; Connect to gate of external boost converter switching MOSFET 3 SGND Current Sense Ground; Ground return for current sense switch 4 SWCS Current Sense Input; Detects the peak current through switch 5 PWMO PWM Dimming Output; Connect to gate of external MOSFET 6 FBH Voltage Feedback Positive; Non inverting Input (+) 7 FBL Voltage Feedback Negative; Inverting Input (-) 8 COMP Compensation Input; Connect R and C network to pin for stability Datasheet 5 Rev. 1.1, 2009-12-16 TLD5095EL Pin Configuration Pin Symbol Function 9 OVFB Output Overvoltage Protection Feedback; Connect to resistive voltage divider to set overvoltage threshold. 10 ST Status Output; Open drain diagnostic output to indicate fault condition. Connect pull up resistor to pin. 11 FREQ / SYNC Frequency Select or Synchronization Input; Connect external resistor to GND to set frequency. Or apply external clock signal for synchronization within frequency capture range. 12 GND Ground; Connect to system ground. 13 EN / PWMI Enable or PWM Input; Apply logic high signal to enable device or PWM signal for dimming LED. 14 IN Supply Input; Supply for internal biasing. EP Datasheet Exposed Pad; Connect to external heatspreading Cu area with electrically GND (e.g. inner GND layer of multilayer PCB with thermal vias) 6 Rev. 1.1, 2009-12-16 TLD5095EL General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Max. Unit Conditions Voltages 4.1.1 IN Supply Input VIN -0.3 45 V 4.1.2 EN / PWMI Enable or PWM Input VEN -40 45 V 4.1.3 FBH-FBL; Feedback Error Amplifier Differential VFBH-VFBL -5.5 5.5 V 4.1.4 FBH; VFBH Feedback Error Amplifier Positive Input -0.3 45 V 4.1.5 VFBL FBL Feedback Error Amplifier Negative Input -0.3 45 V 4.1.6 OVFB Over Voltage Feedback Input VOVP -0.3 5.5 V -0.3 6.2 V SWCS Switch Current Sense Input VSWCS -0.3 5.5 V -0.3 6.2 V SWO Switch Gate Drive Output VSWO -0.3 5.5 V -0.3 6.2 V 4.1.12 SGND Current Sense Switch GND VSGND -0.3 0.3 V 4.1.13 COMP Compensation Input VCOMP -0.3 5.5 V -0.3 6.2 V FREQ / SYNC; Frequency and Synchronization Input VFREQ / SYNC -0.3 5.5 V -0.3 6.2 V PWMO PWM Dimming Output VPWMO -0.3 5.5 V -0.3 6.2 V 4.1.19 ST 45 V Diagnostic Status Output -5 5 mA 4.1.21 IVCC Internal Linear Voltage Regulator Output VST IST VIVCC -0.3 4.1.20 -0.3 5.5 V -0.3 6.2 V t < 10s Tj Tstg -40 150 °C – -55 150 °C – VESD,HBM -2 2 kV HBM2) 4.1.7 4.1.8 4.1.9 4.1.10 4.1.11 4.1.14 4.1.15 4.1.16 4.1.17 4.1.18 4.1.22 t < 10s t < 10s t < 10s t < 10s t < 10s t < 10s Temperatures 4.1.23 Junction Temperature 4.1.24 Storage Temperature ESD Susceptibility 4.1.25 Datasheet ESD Resistivity to GND 7 Rev. 1.1, 2009-12-16 TLD5095EL General Product Characteristics Absolute Maximum Ratings1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol 4.1.26 ESD Resistivity to GND 4.1.27 ESD Resistivity Pin 1, 7, 8, 14 (corner pins) to GND VESD,CDM VESD,CDM,C Limit Values Unit Conditions Min. Max. -500 500 V CDM3) -750 750 V CDM3) 1) Not subject to production test, specified by design. 2) ESD susceptibility, Human Body Model “HBM” according to EIA/JESD 22-A114B 3) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1 Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Pos. Functional Range Parameter Symbol 4.2.1 Supply Voltage Input 4.2.2 Feedback Voltage Input 4.2.3 Junction Temperature VIN VFBH; VFBL Tj Limit Values Unit Conditions 45 V VIVCC > VIVCC,RTH,d 4.5 45 V – -40 150 °C – Min. Max. 4.75 Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Pos. 4.3.1 4.3.2 Parameter Junction to Case Symbol 1) 2) Junction to Ambient 4.3.3 4.3.4 1) 3) RthJC RthJA RthJA RthJA Limit Values Unit Conditions Min. Typ. Max. – – 10 K/W – 47 – K/W 2s2p – 54 – K/W 1s0p + 600 mm2 – 64 – K/W 1s0p + 300 mm2 1) Not subject to production test, specified by design. 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and exposed pad are fixed to ambient temperature). Ta=25°C, IC is dissipating 1W. 3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5mm board. The 2s2p board has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu), A thermal via (diameter = 0.3mm and 25µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second outer layer (bottom) of the JEDEC PCB. Ta=25°C, IC is dissipating 1W. Datasheet 8 Rev. 1.1, 2009-12-16 TLD5095EL Boost Regulator 5 Boost Regulator 5.1 Description The TLD5095 regulator is suitable for boost, buck-boost and SEPIC configurations. The constant output current is especially useful for light emitting diode (LED) applications. The boost regulator function is implemented by a pulse width modulated (PWM) current mode controller. The PWM current mode controller uses the peak current through the external power switch and error in the output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode controller it provides a PWM signal to an internal gate driver which then outputs the same PWM signal to external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch. The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a characteristic of current mode controllers operating at high duty cycles (>50% duty). An additional built-in feature is an integrated soft start that limits the current through the inductor and external power switch during initialization. The soft start function gradually increases the inductor and switch current over 1 ms (typical) to minimize potential overvoltage at the output. OV FB TLD5095 H when OVFB >1.25V OVFB VRef = 1.25V High when IVCC < 4.0V UV IVCC COMP FBH x1 EA gmEA High when lEA - ISLOPE - I CS > 0 OFF when H 0.3V = Oscillator Low when Tj > 175 °C Soft start I R & > 1 Output Stage OFF when Low Slope Comp R t Clock & Q INV 1 Q S S & Gate Driver Supply & Q Error -FF SWO Current Sense PWM-FF Q IVCC Gate Driver I SLOPE VRef = VRef 4.0V NOR IEA FBL FREQ/ SYNC Current Comp NAND 2 & SWCS ICS SGND Figure 3 Datasheet Boost Regulator Block Diagram 9 Rev. 1.1, 2009-12-16 TLD5095EL Boost Regulator 5.2 Electrical Characteristics 1) VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions VIN = 19 V; VREF= VFBH -VFBL VIN = 6 to 19 V; VBO= 30 V; IBO = 500 mA Boost Regulator: 5.2.1 Feedback Reference Voltage VREF 0.28 0.30 0.32 V 5.2.2 Voltage Line Regulation ∆VREF /∆VIN – – 0.15 %/V Figure 21 5.2.3 Voltage Load Regulation ∆VREF /∆IBO – – 5 %/A VIN = 6 V; VBO = 30V; IBO = 100 to 500 mA Figure 21 5.2.4 Switch Peak Over Current Threshold VSWCS 5.2.5 Maximum Duty Cycle 5.2.6 Maximum Duty Cycle 5.2.7 Soft Start Ramp DMAX,fixed 90 DMAX,sync 88 tSS 350 5.2.8 Feedback Input Current 5.2.9 Switch Current Sense Input Current 5.2.10 Input Undervoltage Shutdown 5.2.11 Input Voltage Startup 130 150 170 mV VIN = 6 V VFBH = VFBL = 5 V VCOMP = 3.5V 93 95 % Fixed frequency mode – – % Synchronization mode 1000 1500 µs VFB rising from 5% to 95% of VFB, typ. VFBH - VFBL = 0.3 V VSWCS = 150 mV IFBx ISWCS -10 -50 -100 µA 10 50 100 µA VIN,off VIN,on 3.75 – – V – – 4.75 V VIN decreasing VIN increasing Gate Driver for Boost Switch 5.2.12 Gate Driver Peak Sourcing Current1) ISWO,SRC – 380 – mA VSWO = 3.5V 5.2.13 Gate Driver Peak Sinking Current1) ISWO,SNK – 550 – mA VSWO = 1.5V 5.2.14 Gate Driver Output Rise Time tR,SWO – 30 60 ns 5.2.15 Gate Driver Output Fall Time tF,SWO – 20 40 ns 5.2.16 Gate Driver Output Voltage1) VSWO 4.5 – 5.5 V CL,SWO = 3.3nF; VSWO = 1V to 4V CL,SWO = 3.3nF; VSWO = 1V to 4V CL,SWO = 3.3nF; 1) Not subject to production test, specified by design Datasheet 10 Rev. 1.1, 2009-12-16 TLD5095EL Oscillator and Synchronization 6 Oscillator and Synchronization 6.1 Description R_OSC vs. switching frequency The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an external resistor the following formula can be applied. R FREQ = 1 (141 × 10 [ ])× ( f − 12 s Ω FREQ [1s ]) ( ) [Ω ] − 3 . 5 × 10 3 [Ω ] In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz. TLD5095 FREQ / SYNC Oscillator Multiplexer Clock Frequency Detector VCLK PWM Logic Gate Driver SW O R FREQ Oscillator_BlkDiag_SyncFixedMode .vsd Figure 4 Oscillator and Synchronization Block Diagram and Simplified Application Circuit 76<1& I6<1& 96<1& W6<1&75 W6<1&75 W6<1&3:+ 9 96<1&+ 9 96<1&/ W 2VFLOODWRUB7LPLQJVYJ Figure 5 Datasheet Synchronization Timing Diagram 11 Rev. 1.1, 2009-12-16 TLD5095EL Oscillator and Synchronization 6.2 Electrical Characteristics VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. fFREQ fFREQ 250 300 350 kHz RFREQ = 20kΩ 100 – 500 kHz 17% internal tolerance + external resistor tolerance Oscillator: 6.2.1 Oscillator Frequency 6.2.2 Oscillator Frequency Adjustment Range 6.2.3 FREQ / SYNC Supply Current IFREQ – – -700 µA VFREQ = 0 V 6.2.4 Frequency Voltage VFREQ 1.16 1.24 1.32 V fFREQ = 100 kHz Synchronization 6.2.5 Synchronization Frequency Capture Range fSYNC 250 – 500 kHz – 6.2.6 Synchronization Signal High Logic Level Valid VSYNC,H 3.0 – – V 1) 6.2.7 Synchronization Signal Low Logic Level Valid VSYNC,L – – 0.8 V 1) 6.2.8 Synchronization Signal Logic High Pulse Width tSYNC,PWH 200 – – ns 1) 1) Synchronization of external PWM ON signal to falling edge Datasheet 12 Rev. 1.1, 2009-12-16 TLD5095EL Oscillator and Synchronization Typical Performance Characteristics of Oscillator Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC 600 500 fFREQ [kHz] 400 T j = 25 °C 300 200 100 0 0 10 20 30 40 50 60 70 80 RFREQ/SYNC [kohm] Datasheet 13 Rev. 1.1, 2009-12-16 TLD5095EL Enable and Dimming Function 7 Enable and Dimming Function 7.1 Description The enable function powers on or off the device. A valid logic low signal on enable pin EN/PWMI powers off the device and current consumption is less than 10 µA. A valid logic high enable signal on enable pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which ensures that the IC is shut down and the power switch is off in case the enable pin EN is left open. In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM) input signal that is fed through to an internal gate driver. The internal gate driver outputs the same PWM signal on the PWMO pin to an external n-channel enhancement mode MOSFET for PWM dimming an LED load. PWM dimming an LED is a commonly practiced dimming method to prevent color shift in an LED light source. Moreover the PWM output function may also be used for to drive other types of loads besides LED. The enable and PWM input function share the same pin. Therefore a valid logic low signal at the EN/PWMI pin needs to differentiate between an enable power off signal or an PWM low signal. The device differentiates between an enable off command and PWM dimming signal by requiring the signal at the EN/PWMI pin to stay low for a minimum of 8 ms. ,1 (QDEOH 0LFURFRQWUROOHU (13:0, (QDEOH3:0, /RJLF /'2 (QDEOH *DWH 'ULYHU 3:0, *DWH 'ULYHU ,9&& 6:2 3:02 (1B3:0,B%ORFN'LDJUDPVYJ Figure 6 Datasheet Block Diagram and Simplified Application Circuit Enable and LED Dimming 14 Rev. 1.1, 2009-12-16 TLD5095EL Enable and Dimming Function W(167$57 73:0, W3:0,+ W(12))'(/ 9(13:0, 9(13:0,21 9(13:0,2)) W 9,9&& 9,9&&21 9,9&&57+ W 93:02 W 7)5(4 I)5(4 96:2 W 3RZHU2Q 1RUPDO 'LP 1RUPDO 'LP 1RUPDO 6:22Q 3:022II 6:22Q 3:022II 6:22Q 3:022Q 6:22II 3:022Q 6:22II 3:022Q 3RZHU2II'HOD\7LPH 3RZHU2II ,T$ (1B3:0,B7LPLQJVYJ Figure 7 Timing Diagram Enable and LED Dimming 7.2 Electrical Characteristics VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. 3.0 – Unit Conditions V – Max. Enable/PWM Input: 7.2.1 Enable/PWMI Turn On Threshold VEN/PWMI,ON 7.2.2 Enable/PWMI Turn Off Threshold VEN/PWMI,OFF – – 0.8 V – 7.2.3 Enable/PWMI Hysteresis VEN/PWMI,HYS 50 200 400 mV – Datasheet 15 Rev. 1.1, 2009-12-16 TLD5095EL Enable and Dimming Function VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 7.2.4 Enable/PWMI High Input Current IEN/PWMI,H – – 30 µA VEN/PWMI = 16.0 V 7.2.5 Enable/PWMI Low Input Current IEN/PWMI,L – 0.1 1 µA VEN/PWMI = 0.5 V 7.2.6 Enable Turn Off Delay Time tEN,OFF,DEL 8 10 12 ms – 7.2.7 PWMI Min Duty Time – – µs Enable Startup Time tPWMI,H tEN,START 4 7.2.8 100 – – µs Gate Driver for Dimming Switch: 7.2.9 PWMO Gate Driver Peak Sourcing Current1) IPWMO,SRC – 230 – mA VPWMO = 3.5V 7.2.10 PWMO Gate Driver Peak Sinking Current1) IPWMO,SNK – 370 – mA VPWMO = 1.5V 7.2.11 PWMO Gate Driver Output Rise Time tR,PWMO – 50 100 ns 7.2.12 PWMO Gate Driver Output Fall Time tF,PWMO – 30 60 ns 7.2.13 PWMO Gate Driver Output Voltage VPWMO 4.5 – 5.5 V CL,PWMO = 3.3nF; VPWMO = 1V to 4V CL,PWMO = 3.3nF; VPWMO = 1V to 4V CL,PWMO = 3.3nF; Current Consumption 7.2.14 Current Consumption, Shutdown Mode Iq_off – – 10 µA 7.2.15 Current Consumption, Active Mode2) Iq_on – – 7 mA VEN/PWMI = 0.8 V; Tj ≤ 105C; VIN = 16V VEN/PWMI ≥ 4.75 V; IBO = 0 mA; VIN = 16V VSWO = 0% Duty 1) Not subject to production test, specified by design 2) Dependency on switching frequency and gate charge of boost and dimming switch. Datasheet 16 Rev. 1.1, 2009-12-16 TLD5095EL Linear Regulator 8 Linear Regulator 8.1 Description The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up to 50 mA. An external output capacitor with low ESR is required on pin IVCC for stability and buffering transient load currents. During normal operation the external boost and dimming MOSFET switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET switches. Integrated undervoltage protection for the external switching MOSFET: An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold (VIVCC,RTH,d). The undervoltage reset threshold for the IVCC pin helps to protect the external switches from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel MOSFET. IN 14 1 IVCC Linear Regulator EN / PWMI 13 Gate Drivers LinReg_BlckDiag.vsd Figure 8 Datasheet Voltage Regulator Block Diagram and Simplified Application Circuit 17 Rev. 1.1, 2009-12-16 TLD5095EL Linear Regulator 8.2 Electrical Characteristics VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Typ. Max. 8.2.1 Output Voltage VIVCC 4.6 5 8.2.2 Output Current Limitation ILIM 51 8.2.3 8.2.6 VDR Output Capacitor CIVCC 0.47 Output Capacitor ESR RIVCC,ESR Undervoltage Reset Headroom VIVCC,HDRM 100 8.2.7 Undervoltage Reset Threshold VIVCC,RTH,d 8.2.8 Undervoltage Reset Threshold VIVCC,RTH,i 8.2.4 8.2.5 Limit Values Unit Conditions 5.4 V 6 V ≤ VIN ≤ 45 V 0.1 mA ≤ IIVCC ≤ 50 mA 90 mA 1.4 V VIN = 13.5 V VIVCC = 4.5V IIVCC = 50mA 1) – µF 2) 0.5 Ω – – mV 4.0 – – V – – 4.5 V f = 10kHz VIVCC decreasing VIVCC - VIVCC,RTH,d VIVCC decreasing VIVCC increasing Drop out Voltage 1) Measured when the output voltage VCC has dropped 100 mV from its nominal value. 2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. Datasheet 18 Rev. 1.1, 2009-12-16 TLD5095EL Protection and Diagnostic Functions 9 Protection and Diagnostic Functions 9.1 Description The TLD5095EL has integrated circuits to diagnose and protect against output overvoltage, open load, open feedback and overtemperature faults. In case any of the four fault conditions occur the Status output ST will output an active logic low signal to communicate that a fault has occurred. During an overvoltage or open load condition the gate driver outputs SWO and PWMO will turn off. Figure 11 illustrates the various open load and open feedback conditions. In the event of an overtemperature condition (Figure 14) the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature is 175°C. After cooling down the IC will automatically restart operation. Thermal shutdown is an integrated protection function designed to prevent immediate IC destruction and is not intended for continuous use in normal operation. Input Output Protection and Diagnostic Circuit Output Overvoltage Open Load SWO and PWMO Gate Driver Off OR Open Feedback Overtemperature Linear Regualtor Off OR Input Undervoltage Pro_Diag_BlckDiag.vsd Figure 9 Protection and Diagnostic Function Block Diagram Input Condition Overvoltage Open Load Open Feedback Overtemperature Level* False True False True False True False True ST H L H L H L H L Pro_Diag_TT.vsd *Note: Sw = Switching False = Condition does not exist True = Condition does exist Figure 10 Datasheet Output SWO PWMO IVCC Sw* H or Sw * Active L L Active Sw* H or Sw * Active L L Active Sw* H or Sw * Active L L Active Sw* H or Sw * Active L L Shutdown Status Output Truth Table 19 Rev. 1.1, 2009-12-16 TLD5095EL Protection and Diagnostic Functions VBO Output Open Circuit Conditions Open Circuit 3 TLD5095 Open Circuit 1 ROVH Open Circuit 2 9 VOVFB,TH D1 ROVL D2 Fault Threshold Voltage VREF 1 Open FBH -20 to -100 mV 2 Open FBL 0.5 to 1.0 V 3 Open VBO VFBx < VFBx,min = 4.5V 4 Open PWMO Detected by overvoltage D3 Feedback Voltage Error Amplifier FBH FBL VREF D4 6 7 D5 + VREF - D6 Max Threshold = 1.0 V D7 D8 Min Threshold = 0.5 V D9 D10 Typical V REF = 0.3 V Open Circuit 4 Max Threshold = -20 mV TDIM PWMO Figure 11 Open FBL OVFB Fault Condition Min Threshold = -100 mV 5 Open FBH Open VBO Overvoltage Compartor RFB Open Circuit Condition Open Load and Open Feedback Conditions VOVFB example: VOUT,max=40V VOVP,max 1.25mA ROVH TLD5095 OVFB VOVFB,TH 9 ROVL GND Overvoltage Protection ACTIVE 40V ≅ 33.2kΩ 1.25mA 1kΩ 1.25V 1.25V Overvoltage Protection is disabled 12 t Figure 12 Datasheet Overvoltage Protection description 20 Rev. 1.1, 2009-12-16 TLD5095EL Protection and Diagnostic Functions Status Output Timing Diagram Startup Normal Thermal Shutdown 1 VIVCC Overvoltage Open Load / Feedback 2 3 Shutdown VIVCC,RTH,i VIVCC,RTH ,d TJ T J,SD,HYST t 1 TJ,SD VBO t 2 VOVFB ≥ VOVFB,TH VOVFB < V OVFB,T L VFBH -VFBL VREF,2 t 3 tSS tSS 0.3 V Typ t VREF,1 VST tSD tSD tSD t Figure 13 Datasheet Status Output Timing Diagram 21 Rev. 1.1, 2009-12-16 TLD5095EL Protection and Diagnostic Functions VEN/PWMI H L t Tj TjSD ∆Τ TjSO t Ta VSWO t ILED Ipeak t VPWMO t VST and VIVCC 5V t Device OFF Figure 14 Datasheet Normal Operation Overtemp Fault ON Overtemp Fault ON Overtemp ON Fault Overtemp Fault Device overtemperature protection behavior 22 Rev. 1.1, 2009-12-16 TLD5095EL Protection and Diagnostic Functions 9.2 Electrical Characteristics VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. – – 0.4 V 2 – – mA – – 1 µA IST = 1mA VST = 1V VST = 5V 8 10 12 ms – Tj,SD 160 Tj,SD,HYST – 175 190 °C – 15 – °C – 1.25 1.29 V – Status Output: 9.2.1 Status Output Voltage Low 9.2.2 Status Sink Current Limit 9.2.3 Status Output Current 9.2.4 Status Delay Time VST,LOW IST,MAX IST,HIGH tSD Temperature Protection: 9.2.5 Over Temperature Shutdown 9.2.6 Over Temperature Shutdown Hystereses Overvoltage Protection: 9.2.7 Output Over Voltage Feedback Threshold Increasing VOVFB,TH 9.2.8 Output Over Voltage Feedback Hysteresis VOVFB,HYS 50 – 150 mV Output Voltage decreasing 9.2.9 Over Voltage Reaction Time tOVPRR 2 – 10 µs Output Voltage decreasing 9.2.10 Over Voltage Feedback Input Current IOVFB -1 0.1 1 µA VOVFB = 1.25 V -100 – -20 mV VREF = VFBH - VFBL 1.21 Open Load and Open Feedback Diagnostics 9.2.11 9.2.12 Open Load/Feedback Threshold VREF,1,3 Open Feedback Threshold VREF,2 Open Circuit 1 or 3 0.5 – 1 V VREF = VFBH - VFBL Open Circuit 2 Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Datasheet 23 Rev. 1.1, 2009-12-16 TLD5095EL Application Information 10 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. IBO DR V L1 VIN VBATT LBO DBO CIN C1 VBO ISW CBO C2 RFB 14 IN VREF TSW SWO 2 SWCS 3 D1 D2 RC S D3 VCC SGND 4 OVFB 9 ROVH D4 IVC C / VC C IC2 Microcontroller (e.g. XC866) IC 1 TLD5095 RST Input 10 ST Output 13 EN / PWMI Output CC OM P RFR EQ 11 FREQ / SYNC 8 COMP 1 IVCC CIVC C RC OM P D5 D6 ROVL D7 D8 D9 FBH 6 FBL 7 PWMO 5 D10 ILED TD IM GND 12 Provisional Parts Figure 15 LED Low Side Return Application Circuit (Boost to GND, B2G) Reference Designator Value Manufacturer Part Number Type Quantity D 1 - 10 White Osram LW W5SM LED 10 D BO Schottky , 3 A, 100 V R Vishay SS3H10 Diode 1 CIN , C BO 100 uF, 50V Panasonic EEEFK 1H101GP Capacitor 2 CCOMP 10 nF EPCOS X7R Capacitor 1 C IVCC 1uF , 6.3V EPCOS MLC C CC N PZC105 KBW X7 R Capacitor 1 IC 1 -- Infineon TLD 5095 IC 1 IC 2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP 10 kΩ, 1% Panasonic ERJ3EKF 1002V Resistor 1 R FB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 R FREQ, R ST 20 kΩ, 1% Panasonic ERJ3EKF 2002V Resistor 2 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF 3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF 1001V Resistor 1 R CS 50 mΩ, 1% Panasonic ERJB 1CFR 05U Resistor 1 TDIM ,TSW Figure 16 Datasheet Dual N -ch enh . Infineon IPG15N06S3L-45 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPD35N10S3L-26 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP 318S Transistor 2 Bill of Materials for LED Low Side Return Application Circuit 24 Rev. 1.1, 2009-12-16 TLD5095EL Application Information L filter L1 DR V DBO CSEPIC VIN VBATT CIN C1 ISW C2 RFB L2 14 IN Provisional Parts SWO 2 SWCS 3 VREF CBO TSW ILED RC S VCC SGND 4 OVFB 9 R OVH D1 IVC C / VC C IC2 Microcontroller (e.g. XC866) RST IC 1 TLD5095 Input 10 ST Output 13 EN / PWMI Output D2 11 FREQ / SYNC 8 COMP D3 R OVL D4 D5 D6 FBH 6 FBL 7 IVCC 1 D7 D8 CC OM P DPOL D9 RPOL D 10 C IVC C RFR EQ RC OM P PWMO T D IM 5 GND 12 Figure 17 SEPIC Application Circuit Reference Designator Value Manufacturer Part Number Type Quantity D1 - 10 White Osram LW W5SM LED 10 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CSEPIC 3.3 uF, 20V EPCOS X7R, Low ESR Capacitor 1 CIN , CBO 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 2 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1uF , 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5095 IC 1 IC2 -- Infineon XC866 IC 1 L1 , L2 22 uH Coilcraft MSS1278T-223ML Inductor 2 alternativ: coupled inductor Coilcraft MSD1278-223MLD Inductor 1 RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 2 DPOL 80V Diode Infineon BAS1603W Diode 1 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ, RST 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM,TSW Dual N-ch enh. Infineon IPG15N06S3L-45 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPD35N10S3L-26 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Figure 18 Datasheet Bill of Materials for SEPIC Application Circuit 25 Rev. 1.1, 2009-12-16 TLD5095EL Application Information CBO VIN DR V D 10 D9 D8 D7 D6 D5 D4 D3 D1 D2 R FB L1 VBATT CIN C1 DZ TD IM2 C2 RD IM2 R D IM1 Provisional Parts LBO DBO TD IM1 ILED ISW VOU T 5 VCC PWMO 6 FBH 7 FBL 14 IN SWCS 3 TSW SGND 4 OVFB 9 ROVH IC 1 TLD5095 RST Input 10 ST Output 13 EN / PWMI Output 11 FREQ / SYNC CC OM P 2 RC S IVCC/VCC IC2 Microcontroller (e.g. XC866) SWO 8 COMP 1 IVCC ROVL CIVC C RFR EQ Figure 19 Value Manufacturer Part Number Type Quantity D1 - 10 White Osram LW W5AP Diode 10 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 DZ 5V Zener Diode -- -- Diode 1 CBO 100 uF, 80V Panasonic EEVFK1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1 uF, 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5095 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP, RDIM1, RDIM2 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 3 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ, RST 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 33.2 kΩ, 1% Panasonic ERJP06F5102V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM1,TDIM2 60V Dual N-ch (3.1A) and P-ch. enh. (2A) Infineon BSO615CG Transistor 1 alternativ: 100V N-ch (0.37A), Infineon BSP123 Transistor 1 alternativ: 60V P-ch (1.9A) Infineon BSP171P Transistor N-ch, OptiMOS-T2 100V, 35A Infineon IPD35N10S3L-26 Transistor alternativ: 60V N-ch, 30A Infineon IPD30N06S4L-23 Transistor 1 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 1 TSW Datasheet 12 LED High Side Return Application Circuit (Boost to Vbatt, B2B) Reference Designator Figure 20 GND RC OM P 1 1 AppDiagLED _HSR_HSSBOM .vsd Bill of Materials for LED High Side Return Application Circuit 26 Rev. 1.1, 2009-12-16 TLD5095EL Application Information IBO DRV L1 VIN VBATT LBO DBO CIN C1 ILoad VBO CBO ISW C2 14 Provisional Parts 1 VCC or V IVCC IC2 Microcontroller (e.g. XC866) SWO 2 SWCS 3 TSW IN IVCC RCS CIVCC RST 10 Output 13 EN / PWMI Output 11 FREQ / SYNC 8 COMP ST SGND 4 OVFB 9 ROVH IC1 TLD5095 Input ROVL RFB1 FBH 6 RFB2 CCOMP RFREQ constant VOUT RL GND RCOMP FBL 7 PWMO 5 VREF RFB3 12 Figure 21 Figure 22 Boost Voltage Application Circuit Reference Designator Value Manufacturer Part Number Type Quantity D1 - 10 White Osram LW W5AP Diode 10 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CBO 100 uF, 80V Panasonic EEVFK1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1 uF, 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5095 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 1 RFB1,RFB3 51 kΩ, 1% Panasonic ERJ3EKF5102V Resistor 1 RFB2 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RFREQ, RST 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TSW N-ch, OptiMOS-T2 100V Infineon IPD35N10S3L-26 Transistor 1 Bill of Materials for Boost Voltage Application Circuit Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the external components must be done accordingly to specific application requirements. Datasheet 27 Rev. 1.1, 2009-12-16 TLD5095EL Application Information 10.1 Further Application Information In fixed frequency mode where an external resistor configures the switching frequency the minimum boost inductor is given by the formula in Figure 23. • • • • LMIN = Minimum Inductance Required During Fixed Frequency Operation VBO = Boost Output Voltage RCS = Current Sense Resistor fFREQ = Switching Frequency V BO [ V ] × R CS [ Ω ] L MIN ≥ ----------------------------------------------------------------–3 106 ×10 [ V ] × f FREQ [ Hz ] Figure 23 Minimum Inductance Required During Fixed Frequency Operation (B2G configuration) In synchronization mode where an external clock source configures the switching frequency the minimum boost inductor is given by the formula in Figure 24. • • • LSYNC = Minimum Inductance Required During Synchronization Operation VBO = Boost Output Voltage RCS = Current Sense Resistor V BO [ V ] × R CS [ Ω ] L SYNC ≥ ---------------------------------------------------------–3 106 ×10 [ V ] × 250kHz Figure 24 • Minimum Inductance Required During Synchronization Operation (B2G configuration) For further information you may contact http://www.infineon.com/ Datasheet 28 Rev. 1.1, 2009-12-16 TLD5095EL Revision History 11 Revision History Revision Date Changes 1.1 2009-12-16 • • • • 1.0 2009-11-30 Initial Datasheet Datasheet Cover sheet updated Package naming updated Figure 2 updated Exposed Pad pin description updated 29 Rev. 1.1, 2009-12-16 TLD5095EL Package Outlines 12 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.2 A 14 6 ±0.2 D Exposed Diepad B 0.1 C A-B 2x 14 7 8 2.65 ±0.2 0.25 ±0.05 2) 0.1 C D 8˚ MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45˚ 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion PG-SSOP-14-1,-2,-3-PO V02 PG-SSOP-14 Figure 25 PG-SSOP-14 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further package information, please visit our website: http://www.infineon.com/packages. Datasheet 30 Dimensions in mm Rev. 1.1, 2009-12-16 Edition 2009-12-16 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.