INFINEON TLD5095EL

Infineon® Power LED Driver
TLD5095EL
DC/DC Boost, Buck-Boost, SEPIC
controller
Datasheet
Rev. 1.1, 2009-12-16
Automotive Power
TLD5095EL
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6
6.1
6.2
Oscillator and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7
7.1
7.2
Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8
8.1
8.2
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9
9.1
9.2
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10
10.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
11
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
12
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Datasheet
2
7
7
8
8
Rev. 1.1, 2009-12-16
DC/DC Boost, Buck-Boost, SEPIC controller
TLD5095EL
TLD5095EL
1
Overview
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Wide Input Voltage Range from 4.75 V to 45 V
Constant Current or Constant Voltage Regulation
Drives LEDs in Boost (B2G), Buck-Boost (B2B) and SEPIC Topology
Very Low Shutdown Current: IQ< 10 µA
Flexible Switching Frequency Range, 100 kHz to 500 kHz
Synchronization with external clock source
Output Open Circuit Diagnostic Output
PWM Dimming
PG-SSOP-14 (e-Pad)
Internal Soft Start
300mV High Side Current Sense to ensure highest flexibility and LED current accuracy
Internal 5 V Low Drop Out Voltage Regulator
Wide LED current range via simple adaptation of external components
Available in a small thermally enhanced PG-SSOP-14 (e-Pad) package
Output Overvoltage Protection
Over Temperature Shutdown
Automotive AEC Qualified
Green Product (RoHS) Compliant
Description
The TLD5095EL is a smart LED boost controller with built in protection and diagnostic features. The main function of
this device is to regulate a constant LED current. The constant current regulation is especially beneficial for LED color
accuracy and longer lifetime. The controller concept of the TLD5095EL allows a multi-purpose usage such as Boost,
Buck-Boost and SEPIC configuration with various load current levels by simply adjusting the external components. The
TLD5095EL has a PWM output for dimming a LED load. The diagnostics are communicated on a status output (pin ST)
to indicate a fault condition such as an LED open circuit. The switching frequency is adjustable in the range of 100 kHz
to 500 kHz and can be synchronized to an external clock source. The TLD5095EL features an enable function reducing
the shut-down current consumption to <10 µA. The current mode regulation scheme of this device provides a stable
regulation loop maintained by small external compensation components. The integrated soft-start feature limits the
current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments
and provides protection functions such as output overvoltage protection and overtemperature shutdown.
Applications
•
•
Automotive Exterior Lighting (Brake Light, Tail Light, Fog Light, CHMSL, Daytime Running Light, Position
Light, Turn Indicators)
Automotive Interior Lighting (Reading Light, Dome Light, Display Backlighting)
Type
Package
Marking
TLD5095EL
PG-SSOP-14 (e-Pad)
TLD5095
Datasheet
3
Rev. 1.1, 2009-12-16
TLD5095EL
Block Diagram
2
Block Diagram
IN
EN / PWMI
FREQ/
SYNC
14
LDO
EN_INT/
PWM_INT
On/Off
Logic
13
Oscillator
Power Switch
Gate Driver
Soft
Start
2
PWM
Generator
11
4
Switch Current
Error Amplifier
3
Diagnostics
Logic
Over Volage
Protection
9
Open Load
Detection
COMP
SWO
SWCS
SGND
Leading Edge
Blanking
Thermal
Protection
10
IVCC
Power On
Reset
Internal
Supply
Slope
Comp.
ST
1
OVFB
FBH
Feedback Voltage
Error Amplifier
8
EN_INT/
PWM_INT
Dimming Switch
Gate Driver
6
7
5
FBL
PWMO
12
BlockDiagram .vsd
GND
Figure 1
Datasheet
Block Diagram
4
Rev. 1.1, 2009-12-16
TLD5095EL
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
,9&&
,1
6:2
(13:0,
6*1'
*1'
6:&6
)5(46<1&
3:02
6(7
)%+
)%/
(3
29)%
&203
3,1&21),*B662369*
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Pin
Symbol
Function
1
IVCC
Internal LDO Output;
Used for internal biasing and gate drive. Bypass with external capacitor. Pin must
not left open.
2
SWO
Switch Output;
Connect to gate of external boost converter switching MOSFET
3
SGND
Current Sense Ground;
Ground return for current sense switch
4
SWCS
Current Sense Input;
Detects the peak current through switch
5
PWMO
PWM Dimming Output;
Connect to gate of external MOSFET
6
FBH
Voltage Feedback Positive;
Non inverting Input (+)
7
FBL
Voltage Feedback Negative;
Inverting Input (-)
8
COMP
Compensation Input;
Connect R and C network to pin for stability
Datasheet
5
Rev. 1.1, 2009-12-16
TLD5095EL
Pin Configuration
Pin
Symbol
Function
9
OVFB
Output Overvoltage Protection Feedback;
Connect to resistive voltage divider to set overvoltage threshold.
10
ST
Status Output;
Open drain diagnostic output to indicate fault condition.
Connect pull up resistor to pin.
11
FREQ / SYNC
Frequency Select or Synchronization Input;
Connect external resistor to GND to set frequency.
Or apply external clock signal for synchronization within frequency capture range.
12
GND
Ground;
Connect to system ground.
13
EN / PWMI
Enable or PWM Input;
Apply logic high signal to enable device or PWM signal for dimming LED.
14
IN
Supply Input;
Supply for internal biasing.
EP
Datasheet
Exposed Pad;
Connect to external heatspreading Cu area with electrically GND (e.g. inner GND
layer of multilayer PCB with thermal vias)
6
Rev. 1.1, 2009-12-16
TLD5095EL
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings1)
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Conditions
Voltages
4.1.1
IN
Supply Input
VIN
-0.3
45
V
4.1.2
EN / PWMI
Enable or PWM Input
VEN
-40
45
V
4.1.3
FBH-FBL;
Feedback Error Amplifier Differential
VFBH-VFBL
-5.5
5.5
V
4.1.4
FBH;
VFBH
Feedback Error Amplifier Positive Input
-0.3
45
V
4.1.5
VFBL
FBL
Feedback Error Amplifier Negative Input
-0.3
45
V
4.1.6
OVFB
Over Voltage Feedback Input
VOVP
-0.3
5.5
V
-0.3
6.2
V
SWCS
Switch Current Sense Input
VSWCS
-0.3
5.5
V
-0.3
6.2
V
SWO
Switch Gate Drive Output
VSWO
-0.3
5.5
V
-0.3
6.2
V
4.1.12
SGND
Current Sense Switch GND
VSGND
-0.3
0.3
V
4.1.13
COMP
Compensation Input
VCOMP
-0.3
5.5
V
-0.3
6.2
V
FREQ / SYNC; Frequency and
Synchronization Input
VFREQ / SYNC
-0.3
5.5
V
-0.3
6.2
V
PWMO
PWM Dimming Output
VPWMO
-0.3
5.5
V
-0.3
6.2
V
4.1.19
ST
45
V
Diagnostic Status Output
-5
5
mA
4.1.21
IVCC
Internal Linear Voltage Regulator Output
VST
IST
VIVCC
-0.3
4.1.20
-0.3
5.5
V
-0.3
6.2
V
t < 10s
Tj
Tstg
-40
150
°C
–
-55
150
°C
–
VESD,HBM
-2
2
kV
HBM2)
4.1.7
4.1.8
4.1.9
4.1.10
4.1.11
4.1.14
4.1.15
4.1.16
4.1.17
4.1.18
4.1.22
t < 10s
t < 10s
t < 10s
t < 10s
t < 10s
t < 10s
Temperatures
4.1.23
Junction Temperature
4.1.24
Storage Temperature
ESD Susceptibility
4.1.25
Datasheet
ESD Resistivity to GND
7
Rev. 1.1, 2009-12-16
TLD5095EL
General Product Characteristics
Absolute Maximum Ratings1)
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
4.1.26
ESD Resistivity to GND
4.1.27
ESD Resistivity Pin 1, 7, 8, 14 (corner
pins) to GND
VESD,CDM
VESD,CDM,C
Limit Values
Unit
Conditions
Min.
Max.
-500
500
V
CDM3)
-750
750
V
CDM3)
1) Not subject to production test, specified by design.
2) ESD susceptibility, Human Body Model “HBM” according to EIA/JESD 22-A114B
3) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
4.2
Pos.
Functional Range
Parameter
Symbol
4.2.1
Supply Voltage Input
4.2.2
Feedback Voltage Input
4.2.3
Junction Temperature
VIN
VFBH;
VFBL
Tj
Limit Values
Unit
Conditions
45
V
VIVCC > VIVCC,RTH,d
4.5
45
V
–
-40
150
°C
–
Min.
Max.
4.75
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go
to www.jedec.org.
Pos.
4.3.1
4.3.2
Parameter
Junction to Case
Symbol
1) 2)
Junction to Ambient
4.3.3
4.3.4
1) 3)
RthJC
RthJA
RthJA
RthJA
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
–
10
K/W
–
47
–
K/W
2s2p
–
54
–
K/W
1s0p + 600 mm2
–
64
–
K/W
1s0p + 300 mm2
1) Not subject to production test, specified by design.
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and exposed pad are fixed to ambient
temperature). Ta=25°C, IC is dissipating 1W.
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink
area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5mm board. The 2s2p board has
2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu), A thermal via (diameter = 0.3mm and 25µm
plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second
outer layer (bottom) of the JEDEC PCB. Ta=25°C, IC is dissipating 1W.
Datasheet
8
Rev. 1.1, 2009-12-16
TLD5095EL
Boost Regulator
5
Boost Regulator
5.1
Description
The TLD5095 regulator is suitable for boost, buck-boost and SEPIC configurations. The constant output current
is especially useful for light emitting diode (LED) applications. The boost regulator function is implemented by a
pulse width modulated (PWM) current mode controller.
The PWM current mode controller uses the peak current through the external power switch and error in the output
current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode
controller it provides a PWM signal to an internal gate driver which then outputs the same PWM signal to external
n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch.
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a
characteristic of current mode controllers operating at high duty cycles (>50% duty).
An additional built-in feature is an integrated soft start that limits the current through the inductor and external
power switch during initialization. The soft start function gradually increases the inductor and switch current over
1 ms (typical) to minimize potential overvoltage at the output.
OV FB
TLD5095
H when
OVFB >1.25V
OVFB
VRef =
1.25V
High when
IVCC < 4.0V
UV IVCC
COMP
FBH
x1
EA
gmEA
High when
lEA - ISLOPE - I CS > 0
OFF
when H
0.3V
=
Oscillator
Low when
Tj > 175 °C
Soft start
I
R
&
>
1
Output Stage
OFF when
Low
Slope Comp
R
t
Clock
&
Q
INV
1
Q
S
S
&
Gate Driver
Supply
&
Q
Error -FF
SWO
Current
Sense
PWM-FF
Q
IVCC
Gate
Driver
I SLOPE
VRef
= VRef
4.0V
NOR
IEA
FBL
FREQ/
SYNC
Current
Comp
NAND 2
&
SWCS
ICS
SGND
Figure 3
Datasheet
Boost Regulator Block Diagram
9
Rev. 1.1, 2009-12-16
TLD5095EL
Boost Regulator
5.2
Electrical Characteristics
1)
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
VIN = 19 V;
VREF= VFBH -VFBL
VIN = 6 to 19 V;
VBO= 30 V;
IBO = 500 mA
Boost Regulator:
5.2.1
Feedback Reference Voltage
VREF
0.28
0.30
0.32
V
5.2.2
Voltage Line Regulation
∆VREF
/∆VIN
–
–
0.15
%/V
Figure 21
5.2.3
Voltage Load Regulation
∆VREF
/∆IBO
–
–
5
%/A
VIN = 6 V;
VBO = 30V;
IBO = 100 to 500 mA
Figure 21
5.2.4
Switch Peak Over Current
Threshold
VSWCS
5.2.5
Maximum Duty Cycle
5.2.6
Maximum Duty Cycle
5.2.7
Soft Start Ramp
DMAX,fixed 90
DMAX,sync 88
tSS
350
5.2.8
Feedback Input Current
5.2.9
Switch Current Sense Input
Current
5.2.10
Input Undervoltage Shutdown
5.2.11
Input Voltage Startup
130
150
170
mV
VIN = 6 V
VFBH = VFBL = 5 V
VCOMP = 3.5V
93
95
%
Fixed frequency mode
–
–
%
Synchronization mode
1000
1500
µs
VFB rising from 5% to
95% of VFB, typ.
VFBH - VFBL = 0.3 V
VSWCS = 150 mV
IFBx
ISWCS
-10
-50
-100
µA
10
50
100
µA
VIN,off
VIN,on
3.75
–
–
V
–
–
4.75
V
VIN decreasing
VIN increasing
Gate Driver for Boost Switch
5.2.12
Gate Driver Peak Sourcing
Current1)
ISWO,SRC
–
380
–
mA
VSWO = 3.5V
5.2.13
Gate Driver Peak Sinking
Current1)
ISWO,SNK
–
550
–
mA
VSWO = 1.5V
5.2.14
Gate Driver Output Rise Time
tR,SWO
–
30
60
ns
5.2.15
Gate Driver Output Fall Time
tF,SWO
–
20
40
ns
5.2.16
Gate Driver Output Voltage1)
VSWO
4.5
–
5.5
V
CL,SWO = 3.3nF;
VSWO = 1V to 4V
CL,SWO = 3.3nF;
VSWO = 1V to 4V
CL,SWO = 3.3nF;
1) Not subject to production test, specified by design
Datasheet
10
Rev. 1.1, 2009-12-16
TLD5095EL
Oscillator and Synchronization
6
Oscillator and Synchronization
6.1
Description
R_OSC vs. switching frequency
The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency
can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an
external resistor the following formula can be applied.
R FREQ =
1
(141 × 10 [ ])× ( f
− 12
s
Ω
FREQ
[1s ])
(
) [Ω ]
− 3 . 5 × 10 3 [Ω ]
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized
frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the
internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the
synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
TLD5095
FREQ
/ SYNC
Oscillator
Multiplexer
Clock Frequency
Detector
VCLK
PWM
Logic
Gate
Driver
SW O
R FREQ
Oscillator_BlkDiag_SyncFixedMode .vsd
Figure 4
Oscillator and Synchronization Block Diagram and Simplified Application Circuit
76<1& I6<1&
96<1&
W6<1&75
W6<1&75
W6<1&3:+
9
96<1&+
9
96<1&/
W
2VFLOODWRUB7LPLQJVYJ
Figure 5
Datasheet
Synchronization Timing Diagram
11
Rev. 1.1, 2009-12-16
TLD5095EL
Oscillator and Synchronization
6.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
fFREQ
fFREQ
250
300
350
kHz
RFREQ = 20kΩ
100
–
500
kHz
17% internal tolerance +
external resistor
tolerance
Oscillator:
6.2.1
Oscillator Frequency
6.2.2
Oscillator Frequency
Adjustment Range
6.2.3
FREQ / SYNC Supply
Current
IFREQ
–
–
-700
µA
VFREQ = 0 V
6.2.4
Frequency Voltage
VFREQ
1.16
1.24
1.32
V
fFREQ = 100 kHz
Synchronization
6.2.5
Synchronization Frequency
Capture Range
fSYNC
250
–
500
kHz
–
6.2.6
Synchronization Signal
High Logic Level Valid
VSYNC,H
3.0
–
–
V
1)
6.2.7
Synchronization Signal
Low Logic Level Valid
VSYNC,L
–
–
0.8
V
1)
6.2.8
Synchronization Signal
Logic High Pulse Width
tSYNC,PWH 200
–
–
ns
1)
1) Synchronization of external PWM ON signal to falling edge
Datasheet
12
Rev. 1.1, 2009-12-16
TLD5095EL
Oscillator and Synchronization
Typical Performance Characteristics of Oscillator
Switching Frequency fSW versus
Frequency Select Resistor to GND RFREQ/SYNC
600
500
fFREQ [kHz]
400
T j = 25 °C
300
200
100
0
0
10 20
30
40 50
60 70
80
RFREQ/SYNC [kohm]
Datasheet
13
Rev. 1.1, 2009-12-16
TLD5095EL
Enable and Dimming Function
7
Enable and Dimming Function
7.1
Description
The enable function powers on or off the device. A valid logic low signal on enable pin EN/PWMI powers off the
device and current consumption is less than 10 µA. A valid logic high enable signal on enable pin EN/PWMI
powers on the device. The enable function features an integrated pull down resistor which ensures that the IC is
shut down and the power switch is off in case the enable pin EN is left open.
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM) input
signal that is fed through to an internal gate driver. The internal gate driver outputs the same PWM signal on the
PWMO pin to an external n-channel enhancement mode MOSFET for PWM dimming an LED load. PWM dimming
an LED is a commonly practiced dimming method to prevent color shift in an LED light source. Moreover the PWM
output function may also be used for to drive other types of loads besides LED.
The enable and PWM input function share the same pin. Therefore a valid logic low signal at the EN/PWMI pin
needs to differentiate between an enable power off signal or an PWM low signal. The device differentiates between
an enable off command and PWM dimming signal by requiring the signal at the EN/PWMI pin to stay low for a
minimum of 8 ms.
,1
(QDEOH
0LFURFRQWUROOHU
(13:0,
(QDEOH3:0,
/RJLF
/'2
(QDEOH
*DWH
'ULYHU
3:0,
*DWH
'ULYHU
,9&&
6:2
3:02
(1B3:0,B%ORFN'LDJUDPVYJ
Figure 6
Datasheet
Block Diagram and Simplified Application Circuit Enable and LED Dimming
14
Rev. 1.1, 2009-12-16
TLD5095EL
Enable and Dimming Function
W(167$57
73:0,
W3:0,+
W(12))'(/
9(13:0,
9(13:0,21
9(13:0,2))
W
9,9&&
9,9&&21
9,9&&57+
W
93:02
W
7)5(4 I)5(4
96:2
W
3RZHU2Q
1RUPDO
'LP
1RUPDO
'LP
1RUPDO
6:22Q
3:022II
6:22Q
3:022II
6:22Q
3:022Q
6:22II
3:022Q
6:22II
3:022Q
3RZHU2II'HOD\7LPH
3RZHU2II
,T—$
(1B3:0,B7LPLQJVYJ
Figure 7
Timing Diagram Enable and LED Dimming
7.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
3.0
–
Unit
Conditions
V
–
Max.
Enable/PWM Input:
7.2.1
Enable/PWMI
Turn On Threshold
VEN/PWMI,ON
7.2.2
Enable/PWMI
Turn Off Threshold
VEN/PWMI,OFF –
–
0.8
V
–
7.2.3
Enable/PWMI Hysteresis
VEN/PWMI,HYS 50
200
400
mV
–
Datasheet
15
Rev. 1.1, 2009-12-16
TLD5095EL
Enable and Dimming Function
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
7.2.4
Enable/PWMI
High Input Current
IEN/PWMI,H
–
–
30
µA
VEN/PWMI = 16.0 V
7.2.5
Enable/PWMI
Low Input Current
IEN/PWMI,L
–
0.1
1
µA
VEN/PWMI = 0.5 V
7.2.6
Enable Turn Off
Delay Time
tEN,OFF,DEL
8
10
12
ms
–
7.2.7
PWMI Min Duty Time
–
–
µs
Enable Startup Time
tPWMI,H
tEN,START
4
7.2.8
100
–
–
µs
Gate Driver for Dimming Switch:
7.2.9
PWMO Gate Driver Peak
Sourcing Current1)
IPWMO,SRC
–
230
–
mA
VPWMO = 3.5V
7.2.10
PWMO Gate Driver Peak
Sinking Current1)
IPWMO,SNK
–
370
–
mA
VPWMO = 1.5V
7.2.11
PWMO Gate Driver
Output Rise Time
tR,PWMO
–
50
100
ns
7.2.12
PWMO Gate Driver
Output Fall Time
tF,PWMO
–
30
60
ns
7.2.13
PWMO Gate Driver
Output Voltage
VPWMO
4.5
–
5.5
V
CL,PWMO = 3.3nF;
VPWMO = 1V to 4V
CL,PWMO = 3.3nF;
VPWMO = 1V to 4V
CL,PWMO = 3.3nF;
Current Consumption
7.2.14
Current Consumption,
Shutdown Mode
Iq_off
–
–
10
µA
7.2.15
Current Consumption,
Active Mode2)
Iq_on
–
–
7
mA
VEN/PWMI = 0.8 V;
Tj ≤ 105C; VIN = 16V
VEN/PWMI ≥ 4.75 V;
IBO = 0 mA;
VIN = 16V
VSWO = 0% Duty
1) Not subject to production test, specified by design
2) Dependency on switching frequency and gate charge of boost and dimming switch.
Datasheet
16
Rev. 1.1, 2009-12-16
TLD5095EL
Linear Regulator
8
Linear Regulator
8.1
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up
to 50 mA. An external output capacitor with low ESR is required on pin IVCC for stability and buffering transient
load currents. During normal operation the external boost and dimming MOSFET switches will draw transient
currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered
to supply sufficient peak current to the gate of the external MOSFET switches.
Integrated undervoltage protection for the external switching MOSFET:
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets
the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold (VIVCC,RTH,d).
The undervoltage reset threshold for the IVCC pin helps to protect the external switches from excessive power
dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel
MOSFET.
IN
14
1
IVCC
Linear Regulator
EN / PWMI
13
Gate
Drivers
LinReg_BlckDiag.vsd
Figure 8
Datasheet
Voltage Regulator Block Diagram and Simplified Application Circuit
17
Rev. 1.1, 2009-12-16
TLD5095EL
Linear Regulator
8.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Min.
Typ.
Max.
8.2.1
Output Voltage
VIVCC
4.6
5
8.2.2
Output Current Limitation
ILIM
51
8.2.3
8.2.6
VDR
Output Capacitor
CIVCC
0.47
Output Capacitor ESR
RIVCC,ESR
Undervoltage Reset Headroom VIVCC,HDRM 100
8.2.7
Undervoltage Reset Threshold VIVCC,RTH,d
8.2.8
Undervoltage Reset Threshold VIVCC,RTH,i
8.2.4
8.2.5
Limit Values
Unit
Conditions
5.4
V
6 V ≤ VIN ≤ 45 V
0.1 mA ≤ IIVCC ≤ 50 mA
90
mA
1.4
V
VIN = 13.5 V
VIVCC = 4.5V
IIVCC = 50mA 1)
–
µF
2)
0.5
Ω
–
–
mV
4.0
–
–
V
–
–
4.5
V
f = 10kHz
VIVCC decreasing
VIVCC - VIVCC,RTH,d
VIVCC decreasing
VIVCC increasing
Drop out Voltage
1) Measured when the output voltage VCC has dropped 100 mV from its nominal value.
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
Datasheet
18
Rev. 1.1, 2009-12-16
TLD5095EL
Protection and Diagnostic Functions
9
Protection and Diagnostic Functions
9.1
Description
The TLD5095EL has integrated circuits to diagnose and protect against output overvoltage, open load, open
feedback and overtemperature faults. In case any of the four fault conditions occur the Status output ST will output
an active logic low signal to communicate that a fault has occurred. During an overvoltage or open load condition
the gate driver outputs SWO and PWMO will turn off. Figure 11 illustrates the various open load and open
feedback conditions. In the event of an overtemperature condition (Figure 14) the integrated thermal shutdown
function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature
is 175°C. After cooling down the IC will automatically restart operation. Thermal shutdown is an integrated
protection function designed to prevent immediate IC destruction and is not intended for continuous use in normal
operation.
Input
Output
Protection and
Diagnostic Circuit
Output
Overvoltage
Open Load
SWO and PWMO
Gate Driver Off
OR
Open Feedback
Overtemperature
Linear Regualtor
Off
OR
Input
Undervoltage
Pro_Diag_BlckDiag.vsd
Figure 9
Protection and Diagnostic Function Block Diagram
Input
Condition
Overvoltage
Open Load
Open Feedback
Overtemperature
Level*
False
True
False
True
False
True
False
True
ST
H
L
H
L
H
L
H
L
Pro_Diag_TT.vsd
*Note:
Sw = Switching
False = Condition does not exist
True = Condition does exist
Figure 10
Datasheet
Output
SWO
PWMO
IVCC
Sw*
H or Sw *
Active
L
L
Active
Sw*
H or Sw *
Active
L
L
Active
Sw*
H or Sw *
Active
L
L
Active
Sw*
H or Sw *
Active
L
L
Shutdown
Status Output Truth Table
19
Rev. 1.1, 2009-12-16
TLD5095EL
Protection and Diagnostic Functions
VBO
Output Open Circuit Conditions
Open Circuit 3
TLD5095
Open Circuit 1
ROVH
Open Circuit 2
9
VOVFB,TH
D1
ROVL
D2
Fault Threshold Voltage
VREF
1
Open FBH
-20 to -100 mV
2
Open FBL
0.5 to 1.0 V
3
Open VBO
VFBx < VFBx,min = 4.5V
4
Open PWMO
Detected by overvoltage
D3
Feedback Voltage
Error Amplifier
FBH
FBL
VREF
D4
6
7
D5
+
VREF
-
D6
Max Threshold = 1.0 V
D7
D8
Min Threshold = 0.5 V
D9
D10
Typical V REF = 0.3 V
Open Circuit 4
Max Threshold = -20 mV
TDIM
PWMO
Figure 11
Open FBL
OVFB
Fault Condition
Min Threshold = -100 mV
5
Open FBH
Open VBO
Overvoltage
Compartor
RFB
Open Circuit
Condition
Open Load and Open Feedback Conditions
VOVFB
example: VOUT,max=40V
VOVP,max
1.25mA
ROVH
TLD5095
OVFB
VOVFB,TH
9
ROVL
GND
Overvoltage Protection
ACTIVE
40V
≅ 33.2kΩ
1.25mA
1kΩ 1.25V
1.25V
Overvoltage Protection is
disabled
12
t
Figure 12
Datasheet
Overvoltage Protection description
20
Rev. 1.1, 2009-12-16
TLD5095EL
Protection and Diagnostic Functions
Status Output Timing Diagram
Startup
Normal
Thermal
Shutdown
1
VIVCC
Overvoltage
Open Load /
Feedback
2
3
Shutdown
VIVCC,RTH,i
VIVCC,RTH ,d
TJ
T J,SD,HYST
t
1
TJ,SD
VBO
t
2
VOVFB ≥ VOVFB,TH
VOVFB < V OVFB,T L
VFBH -VFBL
VREF,2
t
3
tSS
tSS
0.3 V Typ
t
VREF,1
VST
tSD
tSD
tSD
t
Figure 13
Datasheet
Status Output Timing Diagram
21
Rev. 1.1, 2009-12-16
TLD5095EL
Protection and Diagnostic Functions
VEN/PWMI
H
L
t
Tj
TjSD
∆Τ
TjSO
t
Ta
VSWO
t
ILED
Ipeak
t
VPWMO
t
VST and
VIVCC
5V
t
Device
OFF
Figure 14
Datasheet
Normal Operation
Overtemp
Fault
ON
Overtemp
Fault
ON
Overtemp
ON
Fault
Overtemp
Fault
Device overtemperature protection behavior
22
Rev. 1.1, 2009-12-16
TLD5095EL
Protection and Diagnostic Functions
9.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
–
0.4
V
2
–
–
mA
–
–
1
µA
IST = 1mA
VST = 1V
VST = 5V
8
10
12
ms
–
Tj,SD
160
Tj,SD,HYST –
175
190
°C
–
15
–
°C
–
1.25
1.29
V
–
Status Output:
9.2.1
Status Output Voltage Low
9.2.2
Status Sink Current Limit
9.2.3
Status Output Current
9.2.4
Status Delay Time
VST,LOW
IST,MAX
IST,HIGH
tSD
Temperature Protection:
9.2.5
Over Temperature Shutdown
9.2.6
Over Temperature Shutdown
Hystereses
Overvoltage Protection:
9.2.7
Output Over Voltage Feedback
Threshold Increasing
VOVFB,TH
9.2.8
Output Over Voltage Feedback
Hysteresis
VOVFB,HYS 50
–
150
mV
Output Voltage
decreasing
9.2.9
Over Voltage Reaction Time
tOVPRR
2
–
10
µs
Output Voltage
decreasing
9.2.10
Over Voltage Feedback Input
Current
IOVFB
-1
0.1
1
µA
VOVFB = 1.25 V
-100
–
-20
mV
VREF = VFBH - VFBL
1.21
Open Load and Open Feedback Diagnostics
9.2.11
9.2.12
Open Load/Feedback
Threshold
VREF,1,3
Open Feedback Threshold
VREF,2
Open Circuit 1 or 3
0.5
–
1
V
VREF = VFBH - VFBL
Open Circuit 2
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Datasheet
23
Rev. 1.1, 2009-12-16
TLD5095EL
Application Information
10
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
IBO
DR V
L1
VIN
VBATT
LBO
DBO
CIN
C1
VBO
ISW
CBO
C2
RFB
14
IN
VREF
TSW
SWO
2
SWCS
3
D1
D2
RC S
D3
VCC
SGND
4
OVFB
9
ROVH
D4
IVC C / VC C
IC2
Microcontroller
(e.g. XC866)
IC 1
TLD5095
RST
Input
10
ST
Output
13
EN / PWMI
Output
CC OM P
RFR EQ
11
FREQ / SYNC
8
COMP
1
IVCC
CIVC C
RC OM P
D5
D6
ROVL
D7
D8
D9
FBH
6
FBL
7
PWMO
5
D10
ILED
TD IM
GND
12
Provisional
Parts
Figure 15
LED Low Side Return Application Circuit (Boost to GND, B2G)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D 1 - 10
White
Osram
LW W5SM
LED
10
D BO
Schottky , 3 A, 100 V R
Vishay
SS3H10
Diode
1
CIN , C BO
100 uF, 50V
Panasonic
EEEFK 1H101GP
Capacitor
2
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
C IVCC
1uF , 6.3V
EPCOS
MLC C CC N PZC105 KBW X7 R
Capacitor
1
IC 1
--
Infineon
TLD 5095
IC
1
IC 2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kΩ, 1%
Panasonic
ERJ3EKF 1002V
Resistor
1
R FB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
R FREQ, R ST
20 kΩ, 1%
Panasonic
ERJ3EKF 2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF 3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF 1001V
Resistor
1
R CS
50 mΩ, 1%
Panasonic
ERJB 1CFR 05U
Resistor
1
TDIM ,TSW
Figure 16
Datasheet
Dual N -ch enh .
Infineon
IPG15N06S3L-45
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPD35N10S3L-26
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP 318S
Transistor
2
Bill of Materials for LED Low Side Return Application Circuit
24
Rev. 1.1, 2009-12-16
TLD5095EL
Application Information
L filter
L1
DR V
DBO
CSEPIC
VIN
VBATT
CIN
C1
ISW
C2
RFB
L2
14
IN
Provisional
Parts
SWO
2
SWCS
3
VREF
CBO
TSW
ILED
RC S
VCC
SGND
4
OVFB
9
R OVH
D1
IVC C / VC C
IC2
Microcontroller
(e.g. XC866)
RST
IC 1
TLD5095
Input
10
ST
Output
13
EN / PWMI
Output
D2
11
FREQ / SYNC
8
COMP
D3
R OVL
D4
D5
D6
FBH
6
FBL
7
IVCC
1
D7
D8
CC OM P
DPOL
D9
RPOL
D 10
C IVC C
RFR EQ
RC OM P
PWMO
T D IM
5
GND
12
Figure 17
SEPIC Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - 10
White
Osram
LW W5SM
LED
10
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CSEPIC
3.3 uF, 20V
EPCOS
X7R, Low ESR
Capacitor
1
CIN , CBO
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
2
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5095
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
22 uH
Coilcraft
MSS1278T-223ML
Inductor
2
alternativ: coupled inductor
Coilcraft
MSD1278-223MLD
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM,TSW
Dual N-ch enh.
Infineon
IPG15N06S3L-45
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPD35N10S3L-26
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 18
Datasheet
Bill of Materials for SEPIC Application Circuit
25
Rev. 1.1, 2009-12-16
TLD5095EL
Application Information
CBO
VIN
DR V
D 10
D9
D8
D7
D6
D5
D4
D3
D1
D2
R FB
L1
VBATT
CIN
C1
DZ
TD IM2
C2
RD IM2
R D IM1
Provisional
Parts
LBO
DBO
TD IM1
ILED
ISW
VOU T
5
VCC
PWMO
6
FBH
7
FBL
14
IN
SWCS
3
TSW
SGND
4
OVFB
9
ROVH
IC 1
TLD5095
RST
Input
10
ST
Output
13
EN / PWMI
Output
11
FREQ / SYNC
CC OM P
2
RC S
IVCC/VCC
IC2
Microcontroller
(e.g. XC866)
SWO
8
COMP
1
IVCC
ROVL
CIVC C
RFR EQ
Figure 19
Value
Manufacturer
Part
Number
Type
Quantity
D1 - 10
White
Osram
LW W5AP
Diode
10
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DZ
5V Zener Diode
--
--
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5095
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP, RDIM1, RDIM2
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
3
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJP06F5102V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM1,TDIM2
60V Dual N-ch (3.1A) and P-ch. enh. (2A)
Infineon
BSO615CG
Transistor
1
alternativ: 100V N-ch (0.37A),
Infineon
BSP123
Transistor
1
alternativ: 60V P-ch (1.9A)
Infineon
BSP171P
Transistor
N-ch, OptiMOS-T2 100V, 35A
Infineon
IPD35N10S3L-26
Transistor
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
1
TSW
Datasheet
12
LED High Side Return Application Circuit (Boost to Vbatt, B2B)
Reference
Designator
Figure 20
GND
RC OM P
1
1
AppDiagLED _HSR_HSSBOM .vsd
Bill of Materials for LED High Side Return Application Circuit
26
Rev. 1.1, 2009-12-16
TLD5095EL
Application Information
IBO
DRV
L1
VIN
VBATT
LBO
DBO
CIN
C1
ILoad
VBO
CBO
ISW
C2
14
Provisional
Parts
1
VCC or V IVCC
IC2
Microcontroller
(e.g. XC866)
SWO
2
SWCS
3
TSW
IN
IVCC
RCS
CIVCC
RST
10
Output
13
EN / PWMI
Output
11
FREQ / SYNC
8
COMP
ST
SGND
4
OVFB
9
ROVH
IC1
TLD5095
Input
ROVL
RFB1
FBH
6
RFB2
CCOMP
RFREQ
constant
VOUT
RL
GND
RCOMP
FBL
7
PWMO
5
VREF
RFB3
12
Figure 21
Figure 22
Boost Voltage Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - 10
White
Osram
LW W5AP
Diode
10
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5095
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB1,RFB3
51 kΩ, 1%
Panasonic
ERJ3EKF5102V
Resistor
1
RFB2
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
N-ch, OptiMOS-T2 100V
Infineon
IPD35N10S3L-26
Transistor
1
Bill of Materials for Boost Voltage Application Circuit
Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the
external components must be done accordingly to specific application requirements.
Datasheet
27
Rev. 1.1, 2009-12-16
TLD5095EL
Application Information
10.1
Further Application Information
In fixed frequency mode where an external resistor configures the switching frequency the minimum boost inductor
is given by the formula in Figure 23.
•
•
•
•
LMIN = Minimum Inductance Required During Fixed Frequency Operation
VBO = Boost Output Voltage
RCS = Current Sense Resistor
fFREQ = Switching Frequency
V BO [ V ] × R CS [ Ω ]
L MIN ≥ ----------------------------------------------------------------–3
106 ×10 [ V ] × f FREQ [ Hz ]
Figure 23
Minimum Inductance Required During Fixed Frequency Operation (B2G configuration)
In synchronization mode where an external clock source configures the switching frequency the minimum boost
inductor is given by the formula in Figure 24.
•
•
•
LSYNC = Minimum Inductance Required During Synchronization Operation
VBO = Boost Output Voltage
RCS = Current Sense Resistor
V BO [ V ] × R CS [ Ω ]
L SYNC ≥ ---------------------------------------------------------–3
106 ×10 [ V ] × 250kHz
Figure 24
•
Minimum Inductance Required During Synchronization Operation (B2G configuration)
For further information you may contact http://www.infineon.com/
Datasheet
28
Rev. 1.1, 2009-12-16
TLD5095EL
Revision History
11
Revision History
Revision
Date
Changes
1.1
2009-12-16
•
•
•
•
1.0
2009-11-30
Initial Datasheet
Datasheet
Cover sheet updated
Package naming updated
Figure 2 updated
Exposed Pad pin description updated
29
Rev. 1.1, 2009-12-16
TLD5095EL
Package Outlines
12
Package Outlines
0.19 +0.06
0.08 C
0.15 M C A-B D 14x
0.64 ±0.25
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.2
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 C A-B 2x
14
7
8
2.65 ±0.2
0.25 ±0.05 2)
0.1 C D
8˚ MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45˚
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
PG-SSOP-14-1,-2,-3-PO V02
PG-SSOP-14
Figure 25
PG-SSOP-14
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further package information, please visit our website:
http://www.infineon.com/packages.
Datasheet
30
Dimensions in mm
Rev. 1.1, 2009-12-16
Edition 2009-12-16
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.