TLE8386EL Smart Boost Controller Datasheet Rev. 1.0, 2009-11-30 Automotive Power TLE8386EL Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 6.1 6.2 Oscillator and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 7.1 7.2 Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 8 8.1 8.2 Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 9 9.1 9.2 Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 10 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 11 11.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 12 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Datasheet 2 7 7 8 8 Rev. 1.0, 2009-11-30 Smart Boost Controller 1 TLE8386EL Overview Features • • • • • • • • • • • • • Wide Input Voltage Range from 4.75 V to 45 V Constant Current or Constant Voltage Regulation Very Low Shutdown Current: IQ< 10 µA Flexible Switching Frequency Range, 100 kHz to 500 kHz Synchronization with external clock source Output Open Circuit Diagnostic Output Available in a small thermally enhanced PG-SSOP-14 package Internal 5 V Low Drop Out Voltage Regulator Output Overvoltage Protection Internal Soft Start Over Temperature Shutdown Automotive AEC Qualified Green Product (RoHS) Compliant PG-SSOP-14 Description The TLE8386EL is a boost controller with built in protection and diagnostic features. The main function of this device is step-up (boost) an input voltage to a larger output voltage. The diagnostics are communicated on a status output (pin ST) to indicate a fault conditions such as over temperature, open feedback and open load. The switching frequency is adjustable in the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLE8386EL features an enable function reducing the shut-down current consumption to <10 µA. The current mode regulation scheme of this device provides a stable regulation loop maintained by small external compensation components. The integrated soft-start feature limits the current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments and provides protection functions such as output overvoltage protection and overtemperature shutdown. Type Package Marking TLE8386EL PG-SSOP-14 TLE8386 Datasheet 3 Rev. 1.0, 2009-11-30 TLE8386EL Block Diagram 2 Block Diagram IN 14 LDO 13 On/Off Logic 11 Power Switch Gate Driver Oscillator Switch Current Error Amplifier 4 SWCS 3 SGND 9 OVFB 6 FBH 7 FBL Leading Edge Blanking Thermal Protection 10 SWO PWM Generator Slope Comp. ST 2 EN_INT Soft Start FREQ/ SYNC IVCC Power On Reset Internal Supply EN 1 Diagnostics Logic Over Volage Protection Open Load Detection COMP Feedback Voltage Error Amplifier 8 12 B lockDiagram.vsd GND Figure 1 Datasheet Block Diagram 4 Rev. 1.0, 2009-11-30 TLE8386EL Pin Configuration 3 Pin Configuration 3.1 Pin Assignment ,9&& ,1 6:2 (1 6*1' *1' 6:&6 )5(46<1& 1& 67 )%+ 29)% )%/ &203 SLQFRQILJBVVRSVYJ Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Function 1 IVCC Internal LDO Output; Used for internal biasing and gate drive. Bypass with external capacitor. Do not leave pin IVCC open. 2 SWO Switch Output; Connect to gate of external boost converter switching MOSFET 3 SGND Current Sense Ground; Ground return for current sense switch 4 SWCS Current Sense Input; Detects the peak current through switch 5 NC No Connect; 6 FBH Voltage Feedback Positive; Non inverting Input (+) 7 FBL Voltage Feedback Negative; Inverting Input (-) 8 COMP Compensation Input; Connect R and C network to pin for stability Datasheet 5 Rev. 1.0, 2009-11-30 TLE8386EL Pin Configuration Pin Symbol Function 9 OVFB Output Overvoltage Protection Feedback; Connect to resistive voltage divider to set overvoltage threshold. 10 ST Status Output; Open drain diagnostic output to indicate fault condition. Connect pull up resistor to pin. 11 FREQ / SYNC Frequency Select or Synchronization Input; Connect external resistor to GND to set frequency. Or apply external clock signal for synchronization within frequency capture range. 12 GND Ground; Connect to system ground. 13 EN Enable; Apply logic high signal to enable device. 14 IN Supply Input; Supply for internal biasing. Exposed Pad Datasheet Connect to GND. 6 Rev. 1.0, 2009-11-30 TLE8386EL General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Max. Unit Conditions Voltages 4.1.1 IN Supply Input VIN -0.3 45 V 4.1.2 EN Enable Input VEN -40 45 V 4.1.3 FBH-FBL; Feedback Error Amplifier Differential VFBH-VFBL -5.5 5.5 V 4.1.4 FBH; VFBH Feedback Error Amplifier Positive Input -0.3 45 V 4.1.5 VFBL FBL Feedback Error Amplifier Negative Input -0.3 45 V 4.1.6 OVFB Over Voltage Feedback Input VOVP -0.3 5.5 V -0.3 6.2 V SWCS Switch Current Sense Input VSWCS -0.3 5.5 V -0.3 6.2 V SWO Switch Gate Drive Output VSWO -0.3 5.5 V -0.3 6.2 V 4.1.12 SGND Current Sense Switch GND VSGND -0.3 0.3 V 4.1.13 COMP Compensation Input VCOMP -0.3 5.5 V -0.3 6.2 V VFREQ / SYNC -0.3 5.5 V 4.1.16 FREQ / SYNC; Frequency and Synchronization Input -0.3 6.2 V 4.1.17 ST -0.3 45 V 4.1.18 Diagnostic Status Output -5 5 mA 4.1.19 IVCC Internal Linear Voltage Regulator Output VST IST VIVCC 4.1.7 4.1.8 4.1.9 4.1.10 4.1.11 4.1.14 4.1.15 4.1.20 t < 10s t < 10s t < 10s t < 10s t < 10s -0.3 5.5 V -0.3 6.2 V t < 10s -40 150 °C – -55 150 °C – Temperatures 4.1.21 Junction Temperature 4.1.22 Storage Temperature Datasheet Tj Tstg 7 Rev. 1.0, 2009-11-30 TLE8386EL General Product Characteristics Absolute Maximum Ratings1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Max. -2 2 kV HBM2) -500 500 V CDM3) -750 750 V CDM3) ESD Susceptibility 4.1.23 ESD Resistivity to GND 4.1.24 ESD Resistivity to GND 4.1.25 ESD Resistivity Pin 1, 7, 8, 14 (corner pins) to GND VESD,HBM VESD,CDM VESD,CDM,C 1) Not subject to production test, specified by design. 2) ESD susceptibility, Human Body Model “HBM” according to EIA/JESD 22-A114B 3) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1 Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Pos. Functional Range Parameter Symbol 4.2.1 Supply Voltage Input 4.2.2 Feedback Voltage Input 4.2.3 Junction Temperature VIN VFBH; VFBL Tj Limit Values Unit Conditions Min. Max. 4.75 45 V VIVCC > VIVCC,RTH,d 4.5 45 V – -40 150 °C – Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Pos. 4.3.1 4.3.2 Parameter Symbol 1) Junction to Case Junction to Ambient 4.3.3 4.3.4 1) 2) RthJC RthJA RthJA RthJA Limit Values Unit Conditions Min. Typ. Max. – 10 – K/W – – 47 – K/W 2s2p – 54 – K/W 1s0p + 600 mm2 – 64 – K/W 1s0p + 300 mm2 1) Not subject to production test, specified by design. 2) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board; Datasheet 8 Rev. 1.0, 2009-11-30 TLE8386EL Boost Regulator 5 Boost Regulator 5.1 Description The TLE8386EL boost (step-up) regulator provides a higher output voltage than input voltage. The boost regulator function is implemented by a pulse width modulated (PWM) current mode controller. The PWM current mode controller uses the peak current through the external power switch and error in the output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode controller it provides a PWM signal to an internal gate driver which then outputs the same PWM signal to external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch. The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a characteristic of current mode controllers operating at high duty cycles (>50% duty). An additional built-in feature is an integrated soft start that limits the current through the inductor and external power switch during initialization. The soft start function gradually increases the inductor and switch current over 1 ms (typical) to minimize potential overvoltage at the output. OVFB OV FB H when OVFB >1.25V V Ref = 1.25 V H when IVCC <4 .0V COMP UV IVCC = FBH x1 EA gmEA I EA FBL Current Comp H when l EA-ISLOPE -ICS > 0 _ OFF when H VRef = 0.3 V L when Tj > 175 °C Soft start FREQ/ SYNC Oscillator Datasheet Output Stage OFF when L R I S t & Q Error -FF IVCC SWO 1 Gate Driver & Q Current Sense PWM-FF Q Gate Driver Supply INV & Q S Clock Figure 3 & > 1 ISL O P E Slope Comp R V Ref 4.0 V NOR NAND 2 & I CS SWCS SGND Boost Regulator Block Diagram 9 Rev. 1.0, 2009-11-30 TLE8386EL Boost Regulator 5.2 Electrical Characteristics 1) VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions VIN = 19 V; VREF= VFBH -VFBL VIN = 6 to 19 V; VBO= 30 V; IBO = 100 mA Boost Regulator: 5.2.1 Feedback Reference Voltage VREF 0.28 0.30 0.32 V 5.2.2 Voltage Line Regulation ∆VREF /∆VIN – – 0.15 %/V Figure 13 5.2.3 Voltage Load Regulation ∆VREF /∆IBO – – 5 %/A VIN = 19 V; VBO = 30V; IBO = 100 to 500 mA Figure 13 5.2.4 Switch Peak Over Current Threshold VSWCS 5.2.5 Maximum Duty Cycle 5.2.6 Maximum Duty Cycle 5.2.7 Soft Start Ramp DMAX,fixed 90 DMAX,sync 88 tSS 350 5.2.8 Feedback Input Current 5.2.9 Switch Current Sense Input Current 5.2.10 Input Undervoltage Shutdown 5.2.11 Input Voltage Startup 130 150 170 mV VIN = 6 V VFBH = VFBL = 5 V VCOMP = 3.5V 93 95 % Fixed frequency mode – – % Synchronization mode 1000 1500 µs VFB rising from 5% to 95% of VFB, typ. VFBH - VFBL = 0.3 V VSWCS = 150 mV IFBx ISWCS -10 -50 -100 µA 10 50 100 µA VIN,off VIN,on 3.75 – – V – – 4.75 V VIN decreasing VIN increasing Gate Driver for Boost Switch 5.2.12 Gate Driver Peak Sourcing Current1) ISWO,SRC – 380 – mA VSWO = 3.5V 5.2.13 Gate Driver Peak Sinking Current1) ISWO,SNK – 550 – mA VSWO = 1.5V 5.2.14 Gate Driver Output Rise Time tR,SWO – 30 60 ns 5.2.15 Gate Driver Output Fall Time tF,SWO – 20 40 ns 5.2.16 Gate Driver Output Voltage1) VSWO 4.5 – 5.5 V CL,SWO = 3.3nF; VSWO = 1V to 4V CL,SWO = 3.3nF; VSWO = 1V to 4V CL,SWO = 3.3nF; 1) Not subject to production test, specified by design Datasheet 10 Rev. 1.0, 2009-11-30 TLE8386EL Oscillator and Synchronization 6 Oscillator and Synchronization 6.1 Description R_OSC vs. switching frequency The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an external resistor the following formula can be applied. R FREQ = 1 (141 × 10 [ ])× ( f − 12 s Ω FREQ [1s ]) ( ) [Ω ] − 3 . 5 × 10 3 [Ω ] In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz. TLE8386 FREQ / SYN C Oscillator Multiplexer Clock Frequency D etector VCLK PWM Logic Gate Driver SW O R FREQ Oscillator_ BlkDiag.vsd Figure 4 Oscillator and Synchronization Block Diagram and Simplified Application Circuit 76<1& I6<1& 96<1& W6<1&75 W6<1&75 W6<1&3:+ 9 96<1&+ 9 96<1&/ W 2VFLOODWRUB7LPLQJVYJ Figure 5 Datasheet Synchronization Timing Diagram 11 Rev. 1.0, 2009-11-30 TLE8386EL Oscillator and Synchronization 6.2 Electrical Characteristics VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. fFREQ fFREQ 250 300 350 kHz RFREQ = 20kΩ 100 – 500 kHz 17% internal tolerance + external resistor tolerance Oscillator: 6.2.1 Oscillator Frequency 6.2.2 Oscillator Frequency Adjustment Range 6.2.3 FREQ / SYNC Supply Current IFREQ – – -700 µA VFREQ = 0 V 6.2.4 Frequency Voltage VFREQ 1.16 1.24 1.32 V fFREQ = 100 kHz Synchronization 6.2.5 Synchronization Frequency Capture Range fSYNC 250 – 500 kHz – 6.2.6 Synchronization Signal High Logic Level Valid VSYNC,H 3.0 – – V 1) 6.2.7 Synchronization Signal Low Logic Level Valid VSYNC,L – – 0.8 V 1) 6.2.8 Synchronization Signal Logic High Pulse Width tSYNC,PWH 200 – – ns 1) 1) Synchronization of external PWM ON signal to falling edge Datasheet 12 Rev. 1.0, 2009-11-30 TLE8386EL Oscillator and Synchronization Typical Performance Characteristics of Oscillator Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC 600 500 fFREQ [kHz] 400 T j = 25 °C 300 200 100 0 0 10 20 30 40 50 60 70 80 RFREQ/SYNC [kohm] Datasheet 13 Rev. 1.0, 2009-11-30 TLE8386EL Enable Function 7 Enable Function 7.1 Description The enable function powers on or off the device. A valid logic low signal on enable pin EN powers off the device and current consumption is less than 10 µA. A valid logic high enable signal on enable pin EN powers on the device. The voltage at pin IVCC (internal biasing) stays present for the Power Off Delay Time after the the device is switched off by the Enable signal. W(12))'(/ W(167$57V 9(1 9(121 9(12)) W 9,9&& 9,9&&21 W 96:2 W 3RZHU2Q 3RZHU2II 1RUPDO 6:22Q 3RZHU2II'HOD\7LPH ,T$ 3:022Q (1B7LPLQJVYJ Figure 6 Datasheet Timing Diagram Enable 14 Rev. 1.0, 2009-11-30 TLE8386EL Enable Function 7.2 Electrical Characteristics VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Unit Conditions V – Max. Enable Input: 7.2.1 Enable Turn On Threshold VEN,ON 3.0 – 7.2.2 Enable Turn Off Threshold VEN,OFF – – 0.8 V – 7.2.3 Enable Hysteresis 200 400 mV – Enable High Input Current VEN,HYS IEN,H 50 7.2.4 – – 30 µA VEN/PWMI = 16.0 V 7.2.5 Enable Low Input Current IEN,L – 0.1 1 µA VEN/PWMI = 0.5 V 7.2.6 Enable Turn Off Delay Time tEN,OFF,DEL 8 10 12 ms – 7.2.7 Enable Startup Time tEN,START 100 – – µs – VEN/PWMI = 0.8 V; Tj ≤ 105C; VIN = 16V VEN/PWMI ≥ 4.75 V; IBO = 0 mA; VIN = 16V VSWO = 0% Duty Current Consumption 7.2.8 Current Consumption, Shutdown Mode Iq_off – – 10 µA 7.2.9 Current Consumption, Active Mode1) Iq_on – – 7 mA 1) Dependency on switching frequency and gate charge of boost and dimming switch. Datasheet 15 Rev. 1.0, 2009-11-30 TLE8386EL Linear Regulator 8 Linear Regulator 8.1 Description The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up to 50 mA. An external output capacitor with low ESR is required on pin IVCC for stability and buffering transient load currents. During normal operation the external boost MOSFET switche will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET switch. Please refer to application section for recommendations on sizing the output capacitor. An integrated power-on reset circuit monitors the linear regulator output voltage and resets the device in case the output voltage falls below the power-on reset threshold. The power-on reset helps protect the external switches from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel MOSFET. ,1 ,9&& /LQHDU5HJXODWRU (1 *DWH 'ULYHU /LQ5HJB%OFN'LDJVYJ Figure 7 Voltage Regulator Block Diagram and Simplified Application Circuit 8.2 Electrical Characteristics VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. 5 5.4 V 6 V ≤ VIN ≤ 45 V 0.1 mA ≤ IIVCC ≤ 50 mA 90 mA 1400 mV VIN = 13.5 V VIVCC = 4.5V IIVCC = 50mA 1) – µF 2) 0.5 Ω f = 10kHz VIVCC decreasing VIVCC - VIVCC,RTH,d VIVCC decreasing VIVCC increasing 8.2.1 Output Voltage VIVCC 4.6 8.2.2 Output Current Limitation ILIM 51 8.2.3 8.2.6 VDR Output Capacitor CIVCC 0.47 Output Capacitor ESR RIVCC,ESR Undervoltage Reset Headroom VIVCC,HDRM 100 – – mV 8.2.7 Undervoltage Reset Threshold VIVCC,RTH,d 4.0 – – V 8.2.8 Undervoltage Reset Threshold VIVCC,RTH,i – – 4.5 V 8.2.4 8.2.5 Drop out Voltage 1) Measured when the output voltage VCC has dropped 100 mV from its nominal value. 2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. Datasheet 16 Rev. 1.0, 2009-11-30 TLE8386EL Protection and Diagnostic Functions 9 Protection and Diagnostic Functions 9.1 Description The TLE8386EL has integrated circuits to diagnose and protect against output overvoltage, open load, open feedback and overtemperature faults. In case any of the four fault conditions occur the Status output ST will output an active logic low signal to communicate that a fault has occurred. During an overvoltage or open load condition the gate driver outputs SWO will turn off. Figure 11 illustrates the various open load and open feedback conditions. In the event of an overtemperature condition the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature is 175°C. After cooling down the IC will automatically restart operation. Thermal shutdown is an integrated protection function designed to prevent immediate IC destruction and is not intended for continuous use in normal operation. Input Output Protection and Diagnostic Circuit Output Overvoltage Open Load SWO Gate Driver Off OR Open Feedback Overtemperature Linear Regulator Off OR Input Undervoltage P ro_Diag_B lc kDiag.v sd Figure 8 Protection and Diagnostic Function Block Diagram Input Condition Overvoltage Open Load Open Feedback Overtemperature Level* False True False True False True False True ST H L H L H L H L Output SWO Sw* L Sw* L Sw* L Sw* L IVCC Active Active Active Active Active Active Active Shutdown P ro_Diag_TT .vs d *Note: Sw = Switching False = Condition does not exist True = Condition does exist Figure 9 Datasheet Status Output Truth Table 17 Rev. 1.0, 2009-11-30 TLE8386EL Protection and Diagnostic Functions 9%2 2SHQ&LUFXLW 7/( 5/ 529+ 2YHUYROWDJH &RPSDUWRU 29)% 929)%7+ 529/ 5)% 2XWSXW2SHQ&LUFXLW&RQGLWLRQV 2SHQ&LUFXLW &RQGLWLRQ )DXOW&RQGLWLRQ )DXOW7KUHVKROG9ROWDJH 95() 2SHQ)%+ WRP9 2SHQ)%/ WR9 2SHQ9%2 9)%[9)%[0,1 9 2SHQ)%*1' 'HWHFWHGE\RYHUYROWDJH 95() )%+ )%/ 2SHQ&LUFXLW 95() 5)% 2SHQ&LUFXLW 0D[7KUHVKROG 9 2SHQ&LUFXLW 5)% 2SHQ)%/ )HHGEDFN9ROWDJH (UURU$PSOLILHU 0LQ7KUHVKROG 9 7\SLFDO95() 9 2SHQ)%+ 0D[7KUHVKROG P9 0LQ7KUHVKROG P9 'LDJ2SHQVYJ Figure 10 Datasheet Open Load and Open Feedback Conditions 18 Rev. 1.0, 2009-11-30 TLE8386EL Protection and Diagnostic Functions 6WDUWXS 1RUPDO 9,9&& 7KHUPDO 6KXWGRZQ 2YHUYROWDJH 2SHQ/RDG )HHGEDFN 6KXWGRZQ 9,9&&57+L 9,9&&57+G 7- 7-6'+<67 W 7-6' 9%2 W 929)%929)%7+ 929)%929)%7/ 95() W 9)%+9)%/ W66 W66 97\S W 95() 967 W6' W6' W6' 3URB'LDJB67B7LPLQJVYJ Figure 11 Datasheet W Status Output Timing Diagram 19 Rev. 1.0, 2009-11-30 TLE8386EL Protection and Diagnostic Functions 9.2 Electrical Characteristics VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. – – 0.4 V 2 – – mA – – 1 µA IST = 1mA VST = 1V VST = 5V 8 10 12 ms – Tj,SD 160 Tj,SD,HYST – 175 190 °C – 15 – °C – 1.25 1.29 V – Status Output: 9.2.1 Status Output Voltage Low 9.2.2 Status Sink Current Limit 9.2.3 Status Output Current 9.2.4 Status Delay Time VST,LOW IST,MAX IST,HIGH tSD Temperature Protection: 9.2.5 Over Temperature Shutdown 9.2.6 Over Temperature Shutdown Hystereses Overvoltage Protection: 9.2.7 Output Over Voltage Feedback Threshold Increasing VOVFB,TH 9.2.8 Output Over Voltage Feedback Hysteresis VOVFB,HYS 50 – 150 mV Output Voltage decreasing 9.2.9 Over Voltage Reaction Time tOVPRR 2 – 10 µs Output Voltage decreasing 9.2.10 Over Voltage Feedback Input Current IOVFB -1 0.1 1 µA VOVFB = 1.25 V -100 – -20 mV VREF = VFBH - VFBL 1.21 Open Load and Open Feedback Diagnostics 9.2.11 9.2.12 Open Load/Feedback Threshold VREF,1,3 Open Feedback Threshold VREF,2 Open Circuit 1 or 3 0.5 – 1 V VREF = VFBH - VFBL Open Circuit 2 Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Datasheet 20 Rev. 1.0, 2009-11-30 TLE8386EL Package Outlines 10 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.1 A 14 6 ±0.2 D Exposed Diepad B 0.1 A-B 2x 14 7 8 2.65 ±0.1 0.25 ±0.05 2) 0.1 D 2x 8° MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45° 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion PG-SSOP-14-1-PO V01 Figure 12 PG-SSOP-14 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further package information, please visit our website: http://www.infineon.com/packages. Datasheet 21 Dimensions in mm Rev. 1.0, 2009-11-30 TLE8386EL Application Information 11 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. ,%2 '59 / 9,1 9%$77 /%2 &,1 & '%2 9%2 ,6: &%2 & 5)% 6:2 5/ 76: ,1 5)% 6:&6 5&6 7/( 0LFURFRQWUROOHU HJ;& 9&& 6*1' 29)% 529+ 529/ 567 67 ,QSXW 2XWSXW (1 2XWSXW )5(46<1& &&203 5)5(4 5&203 5)% &203 ,9&& &,9&& )%+ )%/ *1' $SS'LDJ%RRVWVYJ 3URYLVLRQDO 3DUWV Figure 13 Boost Voltage Application Circuit (Voltage Source) Reference Designator Value Manufacturer Part Number Type Quantity DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CBO 100 uF, 80V Panasonic EEVFK1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF -- -- Capacitor 1 CIVCC 1 uF, 6.3V EPCOS MLCC CCNPZC105KBW X76 Capacitor 1 IC1 -- Infineon TLE8386EL IC 1 IC2 -- Infineon XC886 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP 10 kΩ -- -- Resistor 1 RFB1,RFB3 51 kΩ, 1% Panasonic ERJ3EKF5102V Resistor 1 RFB2 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RFREQ, RST 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 51 kΩ, 1% Panasonic ERJP06F5102V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TSW N-ch, 75 V, 65 mΩ Infineon IPD22N08S2L-50 Transistor 1 A ppDiagB oos tB OM.v sd Figure 14 Bill of Materials for Boost Voltage Application Circuit Note: This is a simplified example of an application circuit. The function must be verified in the real application. Datasheet 22 Rev. 1.0, 2009-11-30 TLE8386EL Application Information IBO DRV L1 VIN VBATT LBO CIN C1 DBO VBO I SW CBO C2 SWO 14 RL SWCS 3 RCS TLE 8386 Microcontroller (e.g . XC 2000) TSW 2 IN VCC SGND 4 OVFB 9 ROVH ROVL RST Input 10 ST Output 13 EN Output 11 FREQ / SYNC 8 COMP 1 IVCC C COMP R FREQ R COMP CIVCC RFB FBH 6 FBL 7 RFB_L GND 12 V isioDoc ument Provisional Parts Figure 15 Datasheet Boost Voltage Application Circuit (Current Source) 23 Rev. 1.0, 2009-11-30 TLE8386EL Application Information 11.1 Further Application Information In fixed frequency mode where an external resistor configures the switching frequency the minimum boost inductor is given by the formula inFigure 16. • • • • LMIN = Minimum Inductacne Required During Fixed Frequency Operation VBO = Boost Output Voltage RCS = Current Sense Resistor fFREQ = Switching Frequency V BO [ V ] × R CS [ Ω ] L MIN ≥ ----------------------------------------------------------------–3 106 ×10 [ V ] × f FREQ [ Hz ] Figure 16 Minimum Inductance Required During Fixed Frequency Operation In synchronization mode where an external clock source configures the switching frequency the minimum boost inductor is given by the formula in Figure 17. • • • LSYNC = Minimum Inductacne Required During Synchronization Operation VBO = Boost Output Voltage RCS = Current Sense Resistor V BO [ V ] × R CS [ Ω ] L SYNC ≥ ---------------------------------------------------------–3 106 ×10 [ V ] × 250kHz Figure 17 Minimum Inductance Required During Synchronization Operation • Datasheet 24 Rev. 1.0, 2009-11-30 TLE8386EL Revision History 12 Revision History Revision Date Changes 1.0 2009-11-30 Initial datasheet Datasheet 25 Rev. 1.0, 2009-11-30 Edition 2009-11-30 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.