INFINEON TLE8386EL

TLE8386EL
Smart Boost Controller
Datasheet
Rev. 1.0, 2009-11-30
Automotive Power
TLE8386EL
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6
6.1
6.2
Oscillator and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7
7.1
7.2
Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8
8.1
8.2
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9
9.1
9.2
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11
11.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Datasheet
2
7
7
8
8
Rev. 1.0, 2009-11-30
Smart Boost Controller
1
TLE8386EL
Overview
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
Wide Input Voltage Range from 4.75 V to 45 V
Constant Current or Constant Voltage Regulation
Very Low Shutdown Current: IQ< 10 µA
Flexible Switching Frequency Range, 100 kHz to 500 kHz
Synchronization with external clock source
Output Open Circuit Diagnostic Output
Available in a small thermally enhanced PG-SSOP-14 package
Internal 5 V Low Drop Out Voltage Regulator
Output Overvoltage Protection
Internal Soft Start
Over Temperature Shutdown
Automotive AEC Qualified
Green Product (RoHS) Compliant
PG-SSOP-14
Description
The TLE8386EL is a boost controller with built in protection and diagnostic features. The main function of this
device is step-up (boost) an input voltage to a larger output voltage. The diagnostics are communicated on a status
output (pin ST) to indicate a fault conditions such as over temperature, open feedback and open load. The
switching frequency is adjustable in the range of 100 kHz to 500 kHz and can be synchronized to an external clock
source. The TLE8386EL features an enable function reducing the shut-down current consumption to <10 µA. The
current mode regulation scheme of this device provides a stable regulation loop maintained by small external
compensation components. The integrated soft-start feature limits the current peak as well as voltage overshoot
at start-up. This IC is suited for use in the harsh automotive environments and provides protection functions such
as output overvoltage protection and overtemperature shutdown.
Type
Package
Marking
TLE8386EL
PG-SSOP-14
TLE8386
Datasheet
3
Rev. 1.0, 2009-11-30
TLE8386EL
Block Diagram
2
Block Diagram
IN
14
LDO
13
On/Off
Logic
11
Power Switch
Gate Driver
Oscillator
Switch Current
Error Amplifier
4
SWCS
3
SGND
9
OVFB
6
FBH
7
FBL
Leading Edge
Blanking
Thermal
Protection
10
SWO
PWM
Generator
Slope
Comp.
ST
2
EN_INT
Soft
Start
FREQ/
SYNC
IVCC
Power On
Reset
Internal
Supply
EN
1
Diagnostics
Logic
Over Volage
Protection
Open Load
Detection
COMP
Feedback Voltage
Error Amplifier
8
12
B lockDiagram.vsd
GND
Figure 1
Datasheet
Block Diagram
4
Rev. 1.0, 2009-11-30
TLE8386EL
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
,9&&
,1
6:2
(1
6*1'
*1'
6:&6
)5(46<1&
1&
67
)%+
29)%
)%/
&203
SLQFRQILJBVVRSVYJ
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Pin
Symbol
Function
1
IVCC
Internal LDO Output;
Used for internal biasing and gate drive. Bypass with external capacitor. Do not
leave pin IVCC open.
2
SWO
Switch Output;
Connect to gate of external boost converter switching MOSFET
3
SGND
Current Sense Ground;
Ground return for current sense switch
4
SWCS
Current Sense Input;
Detects the peak current through switch
5
NC
No Connect;
6
FBH
Voltage Feedback Positive;
Non inverting Input (+)
7
FBL
Voltage Feedback Negative;
Inverting Input (-)
8
COMP
Compensation Input;
Connect R and C network to pin for stability
Datasheet
5
Rev. 1.0, 2009-11-30
TLE8386EL
Pin Configuration
Pin
Symbol
Function
9
OVFB
Output Overvoltage Protection Feedback;
Connect to resistive voltage divider to set overvoltage threshold.
10
ST
Status Output;
Open drain diagnostic output to indicate fault condition.
Connect pull up resistor to pin.
11
FREQ / SYNC
Frequency Select or Synchronization Input;
Connect external resistor to GND to set frequency.
Or apply external clock signal for synchronization within frequency capture range.
12
GND
Ground;
Connect to system ground.
13
EN
Enable;
Apply logic high signal to enable device.
14
IN
Supply Input;
Supply for internal biasing.
Exposed Pad
Datasheet
Connect to GND.
6
Rev. 1.0, 2009-11-30
TLE8386EL
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings1)
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Conditions
Voltages
4.1.1
IN
Supply Input
VIN
-0.3
45
V
4.1.2
EN
Enable Input
VEN
-40
45
V
4.1.3
FBH-FBL;
Feedback Error Amplifier Differential
VFBH-VFBL
-5.5
5.5
V
4.1.4
FBH;
VFBH
Feedback Error Amplifier Positive Input
-0.3
45
V
4.1.5
VFBL
FBL
Feedback Error Amplifier Negative Input
-0.3
45
V
4.1.6
OVFB
Over Voltage Feedback Input
VOVP
-0.3
5.5
V
-0.3
6.2
V
SWCS
Switch Current Sense Input
VSWCS
-0.3
5.5
V
-0.3
6.2
V
SWO
Switch Gate Drive Output
VSWO
-0.3
5.5
V
-0.3
6.2
V
4.1.12
SGND
Current Sense Switch GND
VSGND
-0.3
0.3
V
4.1.13
COMP
Compensation Input
VCOMP
-0.3
5.5
V
-0.3
6.2
V
VFREQ / SYNC
-0.3
5.5
V
4.1.16
FREQ / SYNC; Frequency and
Synchronization Input
-0.3
6.2
V
4.1.17
ST
-0.3
45
V
4.1.18
Diagnostic Status Output
-5
5
mA
4.1.19
IVCC
Internal Linear Voltage Regulator Output
VST
IST
VIVCC
4.1.7
4.1.8
4.1.9
4.1.10
4.1.11
4.1.14
4.1.15
4.1.20
t < 10s
t < 10s
t < 10s
t < 10s
t < 10s
-0.3
5.5
V
-0.3
6.2
V
t < 10s
-40
150
°C
–
-55
150
°C
–
Temperatures
4.1.21
Junction Temperature
4.1.22
Storage Temperature
Datasheet
Tj
Tstg
7
Rev. 1.0, 2009-11-30
TLE8386EL
General Product Characteristics
Absolute Maximum Ratings1)
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Max.
-2
2
kV
HBM2)
-500
500
V
CDM3)
-750
750
V
CDM3)
ESD Susceptibility
4.1.23
ESD Resistivity to GND
4.1.24
ESD Resistivity to GND
4.1.25
ESD Resistivity Pin 1, 7, 8, 14 (corner
pins) to GND
VESD,HBM
VESD,CDM
VESD,CDM,C
1) Not subject to production test, specified by design.
2) ESD susceptibility, Human Body Model “HBM” according to EIA/JESD 22-A114B
3) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
4.2
Pos.
Functional Range
Parameter
Symbol
4.2.1
Supply Voltage Input
4.2.2
Feedback Voltage Input
4.2.3
Junction Temperature
VIN
VFBH;
VFBL
Tj
Limit Values
Unit
Conditions
Min.
Max.
4.75
45
V
VIVCC > VIVCC,RTH,d
4.5
45
V
–
-40
150
°C
–
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go
to www.jedec.org.
Pos.
4.3.1
4.3.2
Parameter
Symbol
1)
Junction to Case
Junction to Ambient
4.3.3
4.3.4
1) 2)
RthJC
RthJA
RthJA
RthJA
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
10
–
K/W
–
–
47
–
K/W
2s2p
–
54
–
K/W
1s0p + 600 mm2
–
64
–
K/W
1s0p + 300 mm2
1) Not subject to production test, specified by design.
2) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink
area at natural convection on FR4 board;
Datasheet
8
Rev. 1.0, 2009-11-30
TLE8386EL
Boost Regulator
5
Boost Regulator
5.1
Description
The TLE8386EL boost (step-up) regulator provides a higher output voltage than input voltage. The boost regulator
function is implemented by a pulse width modulated (PWM) current mode controller. The PWM current mode
controller uses the peak current through the external power switch and error in the output current to determine the
appropriate pulse width duty cycle (on time) for constant output current. The current mode controller it provides a
PWM signal to an internal gate driver which then outputs the same PWM signal to external n-channel
enhancement mode metal oxide field effect transistor (MOSFET) power switch. The current mode controller also
has built-in slope compensation to prevent sub-harmonic oscillations which is a characteristic of current mode
controllers operating at high duty cycles (>50% duty). An additional built-in feature is an integrated soft start that
limits the current through the inductor and external power switch during initialization. The soft start function
gradually increases the inductor and switch current over 1 ms (typical) to minimize potential overvoltage at the
output.
OVFB
OV FB
H when
OVFB >1.25V
V Ref =
1.25 V
H when
IVCC <4 .0V
COMP
UV IVCC
=
FBH
x1
EA
gmEA
I EA
FBL
Current
Comp H when
l EA-ISLOPE -ICS > 0
_
OFF
when H
VRef =
0.3 V
L when
Tj > 175 °C
Soft start
FREQ/
SYNC
Oscillator
Datasheet
Output Stage
OFF when L R
I
S
t
&
Q
Error -FF
IVCC
SWO
1
Gate
Driver
&
Q
Current
Sense
PWM-FF
Q
Gate Driver
Supply
INV
&
Q
S
Clock
Figure 3
&
>
1
ISL O P E
Slope Comp
R
V Ref
4.0 V
NOR
NAND 2
&
I CS
SWCS
SGND
Boost Regulator Block Diagram
9
Rev. 1.0, 2009-11-30
TLE8386EL
Boost Regulator
5.2
Electrical Characteristics
1)
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
VIN = 19 V;
VREF= VFBH -VFBL
VIN = 6 to 19 V;
VBO= 30 V;
IBO = 100 mA
Boost Regulator:
5.2.1
Feedback Reference Voltage
VREF
0.28
0.30
0.32
V
5.2.2
Voltage Line Regulation
∆VREF
/∆VIN
–
–
0.15
%/V
Figure 13
5.2.3
Voltage Load Regulation
∆VREF
/∆IBO
–
–
5
%/A
VIN = 19 V;
VBO = 30V;
IBO = 100 to 500 mA
Figure 13
5.2.4
Switch Peak Over Current
Threshold
VSWCS
5.2.5
Maximum Duty Cycle
5.2.6
Maximum Duty Cycle
5.2.7
Soft Start Ramp
DMAX,fixed 90
DMAX,sync 88
tSS
350
5.2.8
Feedback Input Current
5.2.9
Switch Current Sense Input
Current
5.2.10
Input Undervoltage Shutdown
5.2.11
Input Voltage Startup
130
150
170
mV
VIN = 6 V
VFBH = VFBL = 5 V
VCOMP = 3.5V
93
95
%
Fixed frequency mode
–
–
%
Synchronization mode
1000
1500
µs
VFB rising from 5% to
95% of VFB, typ.
VFBH - VFBL = 0.3 V
VSWCS = 150 mV
IFBx
ISWCS
-10
-50
-100
µA
10
50
100
µA
VIN,off
VIN,on
3.75
–
–
V
–
–
4.75
V
VIN decreasing
VIN increasing
Gate Driver for Boost Switch
5.2.12
Gate Driver Peak Sourcing
Current1)
ISWO,SRC
–
380
–
mA
VSWO = 3.5V
5.2.13
Gate Driver Peak Sinking
Current1)
ISWO,SNK
–
550
–
mA
VSWO = 1.5V
5.2.14
Gate Driver Output Rise Time
tR,SWO
–
30
60
ns
5.2.15
Gate Driver Output Fall Time
tF,SWO
–
20
40
ns
5.2.16
Gate Driver Output Voltage1)
VSWO
4.5
–
5.5
V
CL,SWO = 3.3nF;
VSWO = 1V to 4V
CL,SWO = 3.3nF;
VSWO = 1V to 4V
CL,SWO = 3.3nF;
1) Not subject to production test, specified by design
Datasheet
10
Rev. 1.0, 2009-11-30
TLE8386EL
Oscillator and Synchronization
6
Oscillator and Synchronization
6.1
Description
R_OSC vs. switching frequency
The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency
can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an
external resistor the following formula can be applied.
R FREQ =
1
(141 × 10 [ ])× ( f
− 12
s
Ω
FREQ
[1s ])
(
) [Ω ]
− 3 . 5 × 10 3 [Ω ]
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized
frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the
internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the
synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
TLE8386
FREQ
/ SYN C
Oscillator
Multiplexer
Clock Frequency
D etector
VCLK
PWM
Logic
Gate
Driver
SW O
R FREQ
Oscillator_ BlkDiag.vsd
Figure 4
Oscillator and Synchronization Block Diagram and Simplified Application Circuit
76<1& I6<1&
96<1&
W6<1&75
W6<1&75
W6<1&3:+
9
96<1&+
9
96<1&/
W
2VFLOODWRUB7LPLQJVYJ
Figure 5
Datasheet
Synchronization Timing Diagram
11
Rev. 1.0, 2009-11-30
TLE8386EL
Oscillator and Synchronization
6.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
fFREQ
fFREQ
250
300
350
kHz
RFREQ = 20kΩ
100
–
500
kHz
17% internal tolerance +
external resistor
tolerance
Oscillator:
6.2.1
Oscillator Frequency
6.2.2
Oscillator Frequency
Adjustment Range
6.2.3
FREQ / SYNC Supply
Current
IFREQ
–
–
-700
µA
VFREQ = 0 V
6.2.4
Frequency Voltage
VFREQ
1.16
1.24
1.32
V
fFREQ = 100 kHz
Synchronization
6.2.5
Synchronization Frequency
Capture Range
fSYNC
250
–
500
kHz
–
6.2.6
Synchronization Signal
High Logic Level Valid
VSYNC,H
3.0
–
–
V
1)
6.2.7
Synchronization Signal
Low Logic Level Valid
VSYNC,L
–
–
0.8
V
1)
6.2.8
Synchronization Signal
Logic High Pulse Width
tSYNC,PWH 200
–
–
ns
1)
1) Synchronization of external PWM ON signal to falling edge
Datasheet
12
Rev. 1.0, 2009-11-30
TLE8386EL
Oscillator and Synchronization
Typical Performance Characteristics of Oscillator
Switching Frequency fSW versus
Frequency Select Resistor to GND RFREQ/SYNC
600
500
fFREQ [kHz]
400
T j = 25 °C
300
200
100
0
0
10 20
30
40 50
60 70
80
RFREQ/SYNC [kohm]
Datasheet
13
Rev. 1.0, 2009-11-30
TLE8386EL
Enable Function
7
Enable Function
7.1
Description
The enable function powers on or off the device. A valid logic low signal on enable pin EN powers off the device
and current consumption is less than 10 µA. A valid logic high enable signal on enable pin EN powers on the
device. The voltage at pin IVCC (internal biasing) stays present for the Power Off Delay Time after the the device
is switched off by the Enable signal.
W(12))'(/
W(167$57•—V
9(1
9(121
9(12))
W
9,9&&
9,9&&21
W
96:2
W
3RZHU2Q
3RZHU2II
1RUPDO
6:22Q
3RZHU2II'HOD\7LPH
,T—$
3:022Q
(1B7LPLQJVYJ
Figure 6
Datasheet
Timing Diagram Enable
14
Rev. 1.0, 2009-11-30
TLE8386EL
Enable Function
7.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Unit
Conditions
V
–
Max.
Enable Input:
7.2.1
Enable
Turn On Threshold
VEN,ON
3.0
–
7.2.2
Enable
Turn Off Threshold
VEN,OFF
–
–
0.8
V
–
7.2.3
Enable Hysteresis
200
400
mV
–
Enable
High Input Current
VEN,HYS
IEN,H
50
7.2.4
–
–
30
µA
VEN/PWMI = 16.0 V
7.2.5
Enable
Low Input Current
IEN,L
–
0.1
1
µA
VEN/PWMI = 0.5 V
7.2.6
Enable Turn Off
Delay Time
tEN,OFF,DEL
8
10
12
ms
–
7.2.7
Enable Startup Time
tEN,START
100
–
–
µs
–
VEN/PWMI = 0.8 V;
Tj ≤ 105C; VIN = 16V
VEN/PWMI ≥ 4.75 V;
IBO = 0 mA;
VIN = 16V
VSWO = 0% Duty
Current Consumption
7.2.8
Current Consumption,
Shutdown Mode
Iq_off
–
–
10
µA
7.2.9
Current Consumption,
Active Mode1)
Iq_on
–
–
7
mA
1) Dependency on switching frequency and gate charge of boost and dimming switch.
Datasheet
15
Rev. 1.0, 2009-11-30
TLE8386EL
Linear Regulator
8
Linear Regulator
8.1
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up
to 50 mA. An external output capacitor with low ESR is required on pin IVCC for stability and buffering transient
load currents. During normal operation the external boost MOSFET switche will draw transient currents from the
linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply
sufficient peak current to the gate of the external MOSFET switch. Please refer to application section for
recommendations on sizing the output capacitor. An integrated power-on reset circuit monitors the linear regulator
output voltage and resets the device in case the output voltage falls below the power-on reset threshold. The
power-on reset helps protect the external switches from excessive power dissipation by ensuring the gate drive
voltage is sufficient to enhance the gate of an external logic level n-channel MOSFET.
,1
,9&&
/LQHDU5HJXODWRU
(1
*DWH
'ULYHU
/LQ5HJB%OFN'LDJVYJ
Figure 7
Voltage Regulator Block Diagram and Simplified Application Circuit
8.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
5
5.4
V
6 V ≤ VIN ≤ 45 V
0.1 mA ≤ IIVCC ≤ 50 mA
90
mA
1400
mV
VIN = 13.5 V
VIVCC = 4.5V
IIVCC = 50mA 1)
–
µF
2)
0.5
Ω
f = 10kHz
VIVCC decreasing
VIVCC - VIVCC,RTH,d
VIVCC decreasing
VIVCC increasing
8.2.1
Output Voltage
VIVCC
4.6
8.2.2
Output Current Limitation
ILIM
51
8.2.3
8.2.6
VDR
Output Capacitor
CIVCC
0.47
Output Capacitor ESR
RIVCC,ESR
Undervoltage Reset Headroom VIVCC,HDRM 100
–
–
mV
8.2.7
Undervoltage Reset Threshold VIVCC,RTH,d
4.0
–
–
V
8.2.8
Undervoltage Reset Threshold VIVCC,RTH,i
–
–
4.5
V
8.2.4
8.2.5
Drop out Voltage
1) Measured when the output voltage VCC has dropped 100 mV from its nominal value.
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
Datasheet
16
Rev. 1.0, 2009-11-30
TLE8386EL
Protection and Diagnostic Functions
9
Protection and Diagnostic Functions
9.1
Description
The TLE8386EL has integrated circuits to diagnose and protect against output overvoltage, open load, open
feedback and overtemperature faults. In case any of the four fault conditions occur the Status output ST will output
an active logic low signal to communicate that a fault has occurred. During an overvoltage or open load condition
the gate driver outputs SWO will turn off. Figure 11 illustrates the various open load and open feedback conditions.
In the event of an overtemperature condition the integrated thermal shutdown function turns off the gate drivers
and internal linear voltage regulator. The typical junction shutdown temperature is 175°C. After cooling down the
IC will automatically restart operation. Thermal shutdown is an integrated protection function designed to prevent
immediate IC destruction and is not intended for continuous use in normal operation.
Input
Output
Protection and
Diagnostic Circuit
Output
Overvoltage
Open Load
SWO Gate Driver
Off
OR
Open Feedback
Overtemperature
Linear Regulator
Off
OR
Input
Undervoltage
P ro_Diag_B lc kDiag.v sd
Figure 8
Protection and Diagnostic Function Block Diagram
Input
Condition
Overvoltage
Open Load
Open Feedback
Overtemperature
Level*
False
True
False
True
False
True
False
True
ST
H
L
H
L
H
L
H
L
Output
SWO
Sw*
L
Sw*
L
Sw*
L
Sw*
L
IVCC
Active
Active
Active
Active
Active
Active
Active
Shutdown
P ro_Diag_TT .vs d
*Note:
Sw = Switching
False = Condition does not exist
True = Condition does exist
Figure 9
Datasheet
Status Output Truth Table
17
Rev. 1.0, 2009-11-30
TLE8386EL
Protection and Diagnostic Functions
9%2
2SHQ&LUFXLW
7/(
5/
529+
2YHUYROWDJH
&RPSDUWRU
29)%
929)%7+
529/
5)%
2XWSXW2SHQ&LUFXLW&RQGLWLRQV
2SHQ&LUFXLW
&RQGLWLRQ
)DXOW&RQGLWLRQ
)DXOW7KUHVKROG9ROWDJH
95()
2SHQ)%+
WRP9
2SHQ)%/
WR9
2SHQ9%2
9)%[9)%[0,1 9
2SHQ)%*1'
'HWHFWHGE\RYHUYROWDJH
95()
)%+
)%/
2SHQ&LUFXLW
95()
5)%
2SHQ&LUFXLW
0D[7KUHVKROG 9
2SHQ&LUFXLW
5)%
2SHQ)%/
)HHGEDFN9ROWDJH
(UURU$PSOLILHU
0LQ7KUHVKROG 9
7\SLFDO95() 9
2SHQ)%+
0D[7KUHVKROG P9
0LQ7KUHVKROG P9
'LDJ2SHQVYJ
Figure 10
Datasheet
Open Load and Open Feedback Conditions
18
Rev. 1.0, 2009-11-30
TLE8386EL
Protection and Diagnostic Functions
6WDUWXS
1RUPDO
9,9&&
7KHUPDO
6KXWGRZQ
2YHUYROWDJH
2SHQ/RDG
)HHGEDFN
6KXWGRZQ
9,9&&57+L
9,9&&57+G
7-
7-6'+<67
W
7-6'
9%2
W
929)%•929)%7+
929)%929)%7/
95()
W
9)%+9)%/
W66
W66
97\S
W
95()
967
W6'
W6'
W6'
3URB'LDJB67B7LPLQJVYJ
Figure 11
Datasheet
W
Status Output Timing Diagram
19
Rev. 1.0, 2009-11-30
TLE8386EL
Protection and Diagnostic Functions
9.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
–
0.4
V
2
–
–
mA
–
–
1
µA
IST = 1mA
VST = 1V
VST = 5V
8
10
12
ms
–
Tj,SD
160
Tj,SD,HYST –
175
190
°C
–
15
–
°C
–
1.25
1.29
V
–
Status Output:
9.2.1
Status Output Voltage Low
9.2.2
Status Sink Current Limit
9.2.3
Status Output Current
9.2.4
Status Delay Time
VST,LOW
IST,MAX
IST,HIGH
tSD
Temperature Protection:
9.2.5
Over Temperature Shutdown
9.2.6
Over Temperature Shutdown
Hystereses
Overvoltage Protection:
9.2.7
Output Over Voltage Feedback
Threshold Increasing
VOVFB,TH
9.2.8
Output Over Voltage Feedback
Hysteresis
VOVFB,HYS 50
–
150
mV
Output Voltage
decreasing
9.2.9
Over Voltage Reaction Time
tOVPRR
2
–
10
µs
Output Voltage
decreasing
9.2.10
Over Voltage Feedback Input
Current
IOVFB
-1
0.1
1
µA
VOVFB = 1.25 V
-100
–
-20
mV
VREF = VFBH - VFBL
1.21
Open Load and Open Feedback Diagnostics
9.2.11
9.2.12
Open Load/Feedback
Threshold
VREF,1,3
Open Feedback Threshold
VREF,2
Open Circuit 1 or 3
0.5
–
1
V
VREF = VFBH - VFBL
Open Circuit 2
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Datasheet
20
Rev. 1.0, 2009-11-30
TLE8386EL
Package Outlines
10
Package Outlines
0.19 +0.06
0.08 C
0.15 M C A-B D 14x
0.64 ±0.25
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.1
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 A-B 2x
14
7
8
2.65 ±0.1
0.25 ±0.05 2)
0.1 D 2x
8° MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45°
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
PG-SSOP-14-1-PO V01
Figure 12
PG-SSOP-14
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further package information, please visit our website:
http://www.infineon.com/packages.
Datasheet
21
Dimensions in mm
Rev. 1.0, 2009-11-30
TLE8386EL
Application Information
11
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
,%2
'59
/
9,1
9%$77
/%2
&,1
&
'%2
9%2
,6:
&%2
&
5)%
6:2
5/
76:
,1
5)%
6:&6
5&6
7/(
0LFURFRQWUROOHU
HJ;&
9&&
6*1'
29)%
529+
529/
567
67
,QSXW
2XWSXW
(1
2XWSXW
)5(46<1&
&&203
5)5(4
5&203
5)%
&203
,9&&
&,9&&
)%+
)%/
*1'
$SS'LDJ%RRVWVYJ
3URYLVLRQDO
3DUWV
Figure 13
Boost Voltage Application Circuit (Voltage Source)
Reference
Designator
Value
Manufacturer
Part Number
Type
Quantity
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF
--
--
Capacitor
1
CIVCC
1 uF, 6.3V
EPCOS
MLCC CCNPZC105KBW X76
Capacitor
1
IC1
--
Infineon
TLE8386EL
IC
1
IC2
--
Infineon
XC886
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kΩ
--
--
Resistor
1
RFB1,RFB3
51 kΩ, 1%
Panasonic
ERJ3EKF5102V
Resistor
1
RFB2
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RFREQ, RST
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
51 kΩ, 1%
Panasonic
ERJP06F5102V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
N-ch, 75 V, 65 mΩ
Infineon
IPD22N08S2L-50
Transistor
1
A ppDiagB oos tB OM.v sd
Figure 14
Bill of Materials for Boost Voltage Application Circuit
Note: This is a simplified example of an application circuit. The function must be verified in the real application.
Datasheet
22
Rev. 1.0, 2009-11-30
TLE8386EL
Application Information
IBO
DRV
L1
VIN
VBATT
LBO
CIN
C1
DBO
VBO
I SW
CBO
C2
SWO
14
RL
SWCS
3
RCS
TLE 8386
Microcontroller
(e.g . XC 2000)
TSW
2
IN
VCC
SGND
4
OVFB
9
ROVH
ROVL
RST
Input
10
ST
Output
13
EN
Output
11
FREQ / SYNC
8
COMP
1
IVCC
C COMP
R FREQ
R COMP
CIVCC
RFB
FBH
6
FBL
7
RFB_L
GND
12
V isioDoc ument
Provisional
Parts
Figure 15
Datasheet
Boost Voltage Application Circuit (Current Source)
23
Rev. 1.0, 2009-11-30
TLE8386EL
Application Information
11.1
Further Application Information
In fixed frequency mode where an external resistor configures the switching frequency the minimum boost inductor
is given by the formula inFigure 16.
•
•
•
•
LMIN = Minimum Inductacne Required During Fixed Frequency Operation
VBO = Boost Output Voltage
RCS = Current Sense Resistor
fFREQ = Switching Frequency
V BO [ V ] × R CS [ Ω ]
L MIN ≥ ----------------------------------------------------------------–3
106 ×10 [ V ] × f FREQ [ Hz ]
Figure 16
Minimum Inductance Required During Fixed Frequency Operation
In synchronization mode where an external clock source configures the switching frequency the minimum boost
inductor is given by the formula in Figure 17.
•
•
•
LSYNC = Minimum Inductacne Required During Synchronization Operation
VBO = Boost Output Voltage
RCS = Current Sense Resistor
V BO [ V ] × R CS [ Ω ]
L SYNC ≥ ---------------------------------------------------------–3
106 ×10 [ V ] × 250kHz
Figure 17
Minimum Inductance Required During Synchronization Operation
•
Datasheet
24
Rev. 1.0, 2009-11-30
TLE8386EL
Revision History
12
Revision History
Revision
Date
Changes
1.0
2009-11-30
Initial datasheet
Datasheet
25
Rev. 1.0, 2009-11-30
Edition 2009-11-30
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.