BTS426L1 E3062A Data Sheet (454 KB, EN)

PROFET® BTS426L1
Smart High-Side Power Switch
Product Summary
Overvoltage protection
Operating voltage
On-state resistance
Load current (ISO)
Current limitation
Features
 Overload protection
 Current limitation
 Short circuit protection
 Thermal shutdown
 Overvoltage protection (including load dump)
 Fast demagnetization of inductive loads
 Reverse battery protection1)
 Undervoltage and overvoltage shutdown with auto-restart
and hysteresis
 Open drain diagnostic output
 Open load detection in ON-state
 CMOS compatible input
 Loss of ground and loss of Vbb protection
 Electrostatic discharge (ESD) protection
 Green Product (RoHS compliant)
 AEC Qualified
Vbb(AZ)
Vbb(on)
RON
IL(ISO)
IL(SCr)
43
V
5.0 ... 34 V
60 m
7.0
A
16
A
PG-TO263-5-2
Application
 C compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
 All types of resistive, inductive and capacitve loads
 Replaces electromechanical relays, fuses and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically

integrated in Smart SIPMOS technology. Providing embedded protective functions.
+ V bb
Voltage
source
Overvoltage
protection
Current
limit
3
Gate
protection
V Logic
2
Charge pump
sensor
Level shifter
Limit for
unclamped
ind. loads
Rectifier
IN
ESD
4
Voltage
OUT
5
Temperature
sensor
Open load
Short to Vbb
detection
Logic
Load
R
ST
O
GND

PROFET
GND
1
Signal GND
)
1
Load GND
With external current limit (e.g. resistor RGND=150 ) in GND connection, resistor in series with ST connection, reverse load
current limited by connected load.
Data Sheet
1
2013-10-10
BTS426L1
Pin
Symbol
Function
1
GND
-
Logic ground
2
IN
I
Input, activates the power switch in case of logical high signal
3
Vbb
+
Positive power supply voltage,
the tab is shorted to this pin
4
ST
S
Diagnostic feedback, low on failure
5
OUT
(Load, L)
O
Output to the load
Maximum Ratings at Tj = 25 °C unless otherwise specified
Parameter
Supply voltage (overvoltage protection see page 3)
Supply voltage for short circuit protection
Tj Start=-40 ...+150°C
2
Load
dump protection ) VLoadDump = UA + Vs, UA = 13.5 V
3)
RI = 2 , RL= 1.7 , td= 200 ms, IN= low or high
Load current (Short circuit current, see page 4)
Operating temperature range
Storage temperature range
Power dissipation (DC), TC  25 °C
Inductive load switch-off energy dissipation, single pulse
Vbb = 12V, Tj,start = 150°C, TC = 150°C const.
IL = 7.0 A, ZL = 24 mH, 0 :
Electrostatic discharge capability (ESD)
IN:
(Human Body Model)
all other pins:
Symbol
Vbb
Vbb
Values
43
34
Unit
V
V
60
V
self-limited
-40 ...+150
-55 ...+150
75
A
°C
0.74
1.0
2.0
J
kV
-10 ... +16
2.0
5.0
V
mA
4
VLoad dump )
IL
Tj
Tstg
Ptot
EAS
VESD
W
acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993
Input voltage (DC)
Current through input pin (DC)
Current through status pin (DC)
VIN
IIN
IST
see internal circuit diagrams page 6
Thermal Characteristics
Parameter and Conditions
Thermal resistance
)
2
3)
4)
)
5
Symbol
chip - case: RthJC
junction - ambient (free air): RthJA
SMD version, device on PCB5):
min
---
Values
typ
--34
max
1.67
75
Unit
K/W
Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a 150  resistor in the
GND connection and a 15 k resistor in series with the status pin. A resistor for the protection of the input is integrated.
RI = internal resistance of the load dump test pulse generator
VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70m thick) copper area for Vbb connection. PCB is vertical
without blown air.
Data Sheet
2
2013-10-10
BTS426L1
Electrical Characteristics
Parameter and Conditions
Symbol
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
min
Values
typ
Unit
max
Load Switching Capabilities and Characteristics
On-state resistance (pin 3 to 5)
IL = 2 A
Tj=25 °C: RON
--
50
60
120
5.8
100
7.0
--
ton
toff
Tj=150 °C:
Nominal load current, ISO Norm (pin 3 to 5)
VON = 0.5 V, TC = 85 °C
Output current (pin 5) while GND disconnected or GND pulled
up, Vbb=30 V, VIN= 0, see diagram page 7
Turn-on time
IN
to 90% VOUT:
Turn-off time
IN
to 10% VOUT:
RL = 12 , Tj =-40...+150°C
Slew rate on
10 to 30% VOUT, RL = 12 , Tj =-40...+150°C
Slew rate off
70 to 40% VOUT, RL = 12 , Tj =-40...+150°C
IL(ISO)
IL(GNDhigh)
--
-10
A
mA
80
80
200
230
400
450
s
dV /dton
0.1
--
1
V/s
-dV/dtoff
0.1
--
1
V/s
5.0
3.5
--
----
V
V
V
--
5.6
34
5.0
5.0
7.0
7.0
-34
33
-42
0.2
--0.5
47
-43
----
V
V
V
V
V
----
10
12
--
25
28
12
A
--
1.8
3.5
mA
Operating Parameters
Operating voltage6)
Undervoltage shutdown
Undervoltage restart
Tj =-40...+150°C: Vbb(on)
Tj =-40...+150°C: Vbb(under)
Tj =-40...+25°C: Vbb(u rst)
Tj =+150°C:
Undervoltage restart of charge pump
Vbb(ucp)
see diagram page 12
Tj =-40...+150°C:
Undervoltage hysteresis Vbb(under) = Vbb(u rst) - Vbb(under)
Vbb(under)
Overvoltage shutdown
Tj =-40...+150°C: Vbb(over)
Overvoltage restart
Tj =-40...+150°C: Vbb(o rst)
Overvoltage hysteresis
Tj =-40...+150°C: Vbb(over)
7)
Overvoltage protection
Tj =-40...+150°C: Vbb(AZ)
Ibb=40 mA
Standby current (pin 3)
VIN=0
Tj=-40...+25°C: Ibb(off)
Tj= 150°C:
IL(off)
Leakage output current (included in Ibb(off))
VIN=0
Operating current (Pin 1)8), VIN=5 V, Tj =-40...+150°C
IGND
6)
7)
)
8
m
V
A
At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT Vbb - 2 V
See also VON(CL) in table of protection functions and circuit diagram page 7.
Add IST, if IST > 0, add IIN, if VIN>5.5 V
Data Sheet
3
2013-10-10
BTS426L1
Parameter and Conditions
Symbol
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
min
Values
typ
Unit
max
9)
Protection Functions
Initial peak short circuit current limit (pin 3 to 5)
IL(SCp)
Tj =-40°C:
Tj =25°C:
Tj =+150°C:
Repetitive short circuit shutdown current limit
Tj = Tjt (see timing diagrams, page 10)
Output clamp (inductive load switch off)
at VOUT = Vbb - VON(CL)
Thermal overload trip temperature
Thermal hysteresis
Reverse battery (pin 3 to 1) 10)
IL= 40 mA: VON(CL)
Tjt
Tjt
-Vbb
Reverse battery voltage drop (Vout > Vbb)
IL = -4 A
Tj=150 °C: -VON(rev)
Diagnostic Characteristics
Open load detection current
(on-condition)
)
)
10
11)
32
25
17
43
35
24
A
--
16
--
A
41
150
---
47
-10
--
53
--32
V
°C
K
V
--
610
--
mV
20
10
---
850
750
mA
2
3
4
V
4
10
30
k
IL(SCr)
Tj=-40 °C: IL (OL)
Tj=25 ..150°C:
Open load detection voltage11) (off-condition) Tj=-40..150°C: VOUT(OL)
Internal output pull down
(pin 5 to 1), VOUT=5 V, Tj=-40..150°C
RO
9
21
15
11
Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault
conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive
operation.
Requires 150  resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by
the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop
across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status
currents have to be limited (see max. ratings page 2 and circuit page 7).
External pull up resistor required for open load detection in off state.
Data Sheet
4
2013-10-10
BTS426L1
Parameter and Conditions
Symbol
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
Input and Status Feedback12)
Input resistance
Tj=-40..150°C, see circuit page 6
Input turn-on threshold voltage
Input turn-off threshold voltage
Input threshold hysteresis
Off state input current (pin 2), VIN = 0.4 V,
Tj =-40..+150°C
min
RI
Tj =-40..+150°C:
VIN(T+)
Tj =-40..+150°C:VIN(T-)
 VIN(T)
IIN(off)
On state input current (pin 2), VIN = 3.5 V,
Tj =-40..+150°C
IIN(on)
Delay time for status with open load after switch off
(see timing diagrams, page 11), Tj =-40..+150°C
Status invalid after positive input slope
(open load)
Tj=-40 ... +150°C:
Status output (open drain)
Zener limit voltage
Tj =-40...+150°C, IST = +1.6 mA:
ST low voltage
Tj =-40...+25°C, IST = +1.6 mA:
Tj = +150°C, IST = +1.6 mA:
td(ST OL4)
12)
td(ST)
VST(high)
VST(low)
Values
typ
Unit
max
2.5
3.5
6
k
1.7
1.5
-1
--0.5
--
3.5
--50
V
V
V
A
20
50
90
A
100
520
1000
s
--
250
600
s
5.4
---
6.1
---
-0.4
0.6
V
If a ground resistor RGND is used, add the voltage drop across this resistor.
Data Sheet
5
2013-10-10
BTS426L1
Truth Table
Input-
Output
level
level
426 L1
L
H
L
H
L
H
L
H
L
H
L
H
L
H
H
H
14
H (L ))
L
15
L )
16
H (L ))
H
L
H
H
H
H
Normal
operation
Open load
Short circuit to
Vbb
Overtemperature
Undervoltage
Overvoltage
L = "Low" Level
H = "High" Level
Status
13
)
H
H
H
L
L
L
L
L
L
X = don't care
Z = high impedance, potential depends on external circuit
Status signal after the time delay shown in the diagrams (see fig 5. page 11...12)
Terms
Status output
+5V
Ibb
3
I IN
Vbb
IN
2
IL
PROFET
I ST
V
V
IN
VST
OUT
4
R ST(ON)
VON
ST
GND
1
bb
R
IGND
VOUT
GND
GND
R
ESDZD
ESD-Zener diode: 6.1 V typ., max 5 mA; RST(ON) < 380  at 1.6
mA, ESD zener diodes are not to be used as voltage clamp at DC
conditions. Operation in this mode may result in a drift of the zener
voltage (increase of up to 1 V).
Input circuit (ESD protection)
IN
ST
5
I
Inductive and overvoltage output clamp
+ V bb
ESD-ZD I
I
I
V
Z
GND
VON
ESD zener diodes are not to be used as voltage clamp at DC
conditions. Operation in this mode may result in a drift of the zener
voltage (increase of up to 1 V).
OUT
GND
P R OFE T
VON clamped to 47 V typ.
)
)
13
14
15)
)
16
Power Transistor off, high impedance
with external resistor between pin 3 and pin 5
An external short of output to Vbb, in the off state, causes an internal current from output to ground. If RGND is used, an offset
voltage at the GND and ST pins will occur and the VST low signal may be errorious.
Low resistance to Vbb may be detected in ON-state by the no-load-detection
Data Sheet
6
2013-10-10
BTS426L1
Overvolt. and reverse batt. protection
GND disconnect
+ V bb
V
R IN
IN
RI
3
Z2
Logic
R ST
IN
2
ST
Vbb
PROFET
V
Z1
P R O FE T
4
V
bb
V
IN
V
5
ST
GND
GND
R GND
OUT
1
ST
V
GND
Signal GND
VZ1 = 6.2 V typ., VZ2 = 47 V typ., RGND = 150 , RST= 15 k,
RI= 3.5 k typ.
Any kind of load. In case of Input=high is VOUT  VIN - VIN(T+) .
Due to VGND >0, no VST = low signal available.
GND disconnect with GND pull up
Open-load detection
ON-state diagnostic condition: VON < RON * IL(OL); IN high
3
+ V bb
2
IN
Vbb
PROFET
4
GND
1
V
OUT
Logic
unit
5
ST
VON
ON
OUT
Open load
detection
V
bb
V
IN ST
V
GND
Any kind of load. If VGND > VIN - VIN(T+) device stays off
Due to VGND >0, no VST = low signal available.
Vbb disconnect with energized inductive load
3
OFF-state diagnostic condition: VOUT > 3 V typ.; IN low
high
2
IN
Vbb
PROFET
R
EXT
4
OFF
5
ST
GND
1
V
Logic
unit
OUT
Open load
detection
R
OUT
V
bb
Normal load current can be handled by the PROFET itself.
O
Signal GND
Data Sheet
7
2013-10-10
BTS426L1
Vbb disconnect with charged external inductive
load
high
2
Maximum allowable load inductance for
a single switch off
S
3
L = f (IL ); Tj,start = 150°C,TC = 150°C const.,
Vbb = 12 V, RL = 0 
IN
Vbb
L [mH]
10000
OUT
PROFET
5
D
ST
4
GND
1
1000
V
bb
If other external inductive loads L are connected to the PROFET, additional
elements like D are necessary.
100
Inductive Load switch-off energy dissipation
E bb
E AS
IN
Vbb
PROFET
=
ELoad
10
OUT
ST
1
EL
GND
ZL
{
2
L
RL
7
12
17
IL [A]
ER
Typ. transient thermal impedance chip case
ZthJC = f(tp)ZthJC [K/W]
10
Energy stored in load inductance:
2
EL = 1/2·L·I L
While demagnetizing load inductance, the energy dissipated in
PROFET is
EAS= Ebb + EL - ER=  VON(CL)·iL(t) dt,
1
with an approximate solution for RL  0 :
EAS=
IL · L
IL·RL
·(V + |VOUT(CL)|)· ln (1+
)
2·RL bb
|VOUT(CL)|
D=
0.5
0.2
0.1
0.05
0.02
0.01
0
0.1
0.01
1E-5
1E-4
1E-3
1E-2
1E-1
1E0
1E1
tp [s]
Data Sheet
8
2013-10-10
BTS426L1
Transient thermal impedance chip ambient air
ZthJA = f(tp)ZthJA [K/W]
100
10
D=
0.5
0.2
0.1
0.05
0.02
0.01
0
1
0.1
1E-5
1E-4
1E-3
1E-2
1E-1
1E0
1E1
1E2
1E3
tp [s]
Data Sheet
9
2013-10-10
BTS426L1
Timing diagrams
Figure 2b: Switching an inductive load
Figure 1a: Vbb turn on:
IN
IN
V
bb
t
ST
d(ST)
*)
V
V
OUT
OUT
ST open drain
IL
I L(OL)
t
t
proper turn on under all conditions
*) if the time constant of load is too large, open-load-status may occur
Figure 2a: Switching a lamp,
Figure 3a: Short circuit
shut down by overtempertature, reset by cooling
IN
IN
ST
IL
V
I L(SCp)
IL(SCr)
OUT
I
L
t
Data Sheet
ST
10
t
2013-10-10
BTS426L1
Heating up may require several milliseconds, depending on external conditions
Figure 5b: Open load: detection in ON-state, open load occurs in
on-state
Figure 4a: Overtemperature:
Reset if Tj <Tjt
IN
IN
t
d(ST OL1)
t
ST
d(ST OL2)
ST
V
OUT
V
OUT
I
normal
open
normal
L
T
t
J
td(ST OL1) = 20 s typ., td(ST OL2) = 10 s typ
t
Figure 5c: Open load: detection in ON- and OFF-state (with
REXT), turn on/off to open load
Figure 5a: Open load: detection in ON-state, turn on/off to open
load
IN
IN
ST
t
d(ST)
t
ST
t
d(ST)
d(ST OL4)
V
OUT
V
OUT
I
L
I
open
L
t
open
t
The status delay time td(ST OL4) allows to ditinguish between
the failure modes "open load" and "overtemperature".
Data Sheet
11
2013-10-10
BTS426L1
Figure 6a: Undervoltage:
Figure 7a: Overvoltage:
IN
IN
V
V bb
bb
V ON(CL)
Vbb(over)
V bb(o rst)
Vbb(u cp)
V
V
bb(under)
bb(u rst)
V
OUT
V OUT
ST
ST open drain
t
t
Figure 6b: Undervoltage restart of charge pump
on-state
off-state
V
V
V
bb(u rst)
bb(over)
off-state
VON(CL)
V on
bb(o rst)
V
bb(u cp)
V
bb(under)
V bb
charge pump starts at Vbb(ucp) =5.6 V typ.
Data Sheet
12
2013-10-10
BTS426L1
Published by
Infineon Technologies AG,
D-81726 München
© Infineon Technologies AG 2013
All Rights Reserved.
Package and Ordering Code
All dimensions in mm
PG-TO263-5-2
BTS426L1 E3062A
Ordering code
SP001104820
Attention please!
The information herein is given to describe certain components and shall
not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to
warranties of non-infringement, regarding circuits, descriptions and charts
stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and
prices please contact your nearest Infineon Technologies Office in
Germany or our Infineon Technologies Representatives worldwide (see
address list).
Warnings
Due to technical requirements components may contain dangerous
substances. For information on the types in question please contact your
nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support
devices or systems with the express written approval of Infineon
Technologies, if a failure of such components can reasonably be expected
to cause the failure of that life-support device or system, or to affect the
safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.
Data Sheet
13
2013-10-10