PROFET® BTS426L1 Smart Highside Power Switch Features • Overload protection • Current limitation • Short circuit protection • Thermal shutdown • Overvoltage protection (including load dump) • Fast demagnetization of inductive loads • Reverse battery protection1) • Undervoltage and overvoltage shutdown with auto-restart and hysteresis • Open drain diagnostic output • Open load detection in ON-state • CMOS compatible input • Loss of ground and loss of Vbb protection • Electrostatic discharge (ESD) protection Product Summary Overvoltage protection Operating voltage On-state resistance Load current (ISO) Current limitation Vbb(AZ) Vbb(on) RON IL(ISO) IL(SCr) 43 V 5.0 ... 34 V 60 mΩ 7.0 A 16 A TO-220AB/5 5 5 1 1 Straight leads Standard 5 SMD Application • µC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads • All types of resistive, inductive and capacitve loads • Replaces electromechanical relays, fuses and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions. + V bb Voltage Overvoltage Current Gate source protection limit protection 3 V Logic 2 Charge pump sensor Level shifter Limit for unclamped ind. loads Rectifier IN ESD 4 Voltage OUT 5 Temperature sensor Open load Short to Vbb detection Logic Load R ST O GND PROFET GND 1 Signal GND 1) Load GND With external current limit (e.g. resistor RGND=150 Ω) in GND connection, resistor in series with ST connection, reverse load current limited by connected load. Semiconductor Group 1 of 14 2003-Oct-01 BTS426L1 Pin Symbol Function 1 GND - Logic ground 2 IN I Input, activates the power switch in case of logical high signal 3 Vbb + Positive power supply voltage, the tab is shorted to this pin 4 ST S Diagnostic feedback, low on failure 5 OUT (Load, L) O Output to the load Maximum Ratings at Tj = 25 °C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 3) Supply voltage for full short circuit protection Tj Start=-40 ...+150°C Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V RI3)= 2 Ω, RL= 1.7 Ω, td= 200 ms, IN= low or high Load current (Short circuit current, see page 4) Operating temperature range Storage temperature range Power dissipation (DC), TC ≤ 25 °C Inductive load switch-off energy dissipation, single pulse Vbb = 12V, Tj,start = 150°C, TC = 150°C const. IL = 7.0 A, ZL = 24 mH, 0 Ω: Electrostatic discharge capability (ESD) IN: (Human Body Model) all other pins: Symbol Vbb Vbb Values 43 34 Unit V V 60 V self-limited -40 ...+150 -55 ...+150 75 A °C 0.74 1.0 2.0 J kV -10 ... +16 ±2.0 ±5.0 V mA VLoad dump4) IL Tj Tstg Ptot EAS VESD W acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 Input voltage (DC) Current through input pin (DC) Current through status pin (DC) VIN IIN IST see internal circuit diagrams page 6 Thermal Characteristics Parameter and Conditions Thermal resistance 2) 3) 4) 5) Symbol chip - case: RthJC junction - ambient (free air): RthJA SMD version, device on PCB5): min --- Values typ --34 Unit max 1.67 75 K/W Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 kΩ resistor in series with the status pin. A resistor for the protection of the input is integrated. RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb connection. PCB is vertical without blown air. Semiconductor Group 2 2003-Oct-01 BTS426L1 Electrical Characteristics Parameter and Conditions Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified min Values typ Unit max Load Switching Capabilities and Characteristics On-state resistance (pin 3 to 5) IL = 2 A Tj=25 °C: RON -- 50 60 120 5.8 100 7.0 Tj=150 °C: Nominal load current, ISO Norm (pin 3 to 5) VON = 0.5 V, TC = 85 °C Output current (pin 5) while GND disconnected or GND pulled up, Vbb=30 V, VIN= 0, see diagram page 7 Turn-on time IN to 90% VOUT: Turn-off time IN to 10% VOUT: RL = 12 Ω, Tj =-40...+150°C Slew rate on 10 to 30% VOUT, RL = 12 Ω, Tj =-40...+150°C Slew rate off 70 to 40% VOUT, RL = 12 Ω, Tj =-40...+150°C IL(ISO) IL(GNDhigh) -- -- -10 ton toff 80 80 200 230 400 450 µs dV /dton 0.1 -- 1 V/µs -dV/dtoff 0.1 -- 1 V/µs 5.0 3.5 -- ---- V V V -- 5.6 34 5.0 5.0 7.0 7.0 -34 33 -42 0.2 --0.5 47 -43 ---- V V V V V ---- 10 12 -- 25 28 12 µA -- 1.8 3.5 mA Operating Parameters Operating voltage6) Undervoltage shutdown Undervoltage restart Tj =-40...+150°C: Vbb(on) Tj =-40...+150°C: Vbb(under) Tj =-40...+25°C: Vbb(u rst) Tj =+150°C: Undervoltage restart of charge pump Vbb(ucp) see diagram page 12 Tj =-40...+150°C: Undervoltage hysteresis ∆Vbb(under) = Vbb(u rst) - Vbb(under) ∆Vbb(under) Overvoltage shutdown Tj =-40...+150°C: Vbb(over) Overvoltage restart Tj =-40...+150°C: Vbb(o rst) Overvoltage hysteresis Tj =-40...+150°C: ∆Vbb(over) 7 ) Overvoltage protection Tj =-40...+150°C: Vbb(AZ) Ibb=40 mA Standby current (pin 3) VIN=0 Tj=-40...+25°C: Ibb(off) Tj= 150°C: IL(off) Leakage output current (included in Ibb(off)) VIN=0 Operating current (Pin 1)8), VIN=5 V, Tj =-40...+150°C IGND 6) 7) 8) mΩ A mA V µA At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT ≈Vbb - 2 V See also VON(CL) in table of protection functions and circuit diagram page 7. Add IST, if IST > 0, add IIN, if VIN>5.5 V Semiconductor Group 3 2003-Oct-01 BTS426L1 Parameter and Conditions Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified min Protection Functions9) Initial peak short circuit current limit (pin 3 to 5) Diagnostic Characteristics Open load detection current (on-condition) Unit max IL(SCp) Tj =-40°C: Tj =25°C: Tj =+150°C: Repetitive short circuit shutdown current limit Tj = Tjt (see timing diagrams, page 10) Output clamp (inductive load switch off) at VOUT = Vbb - VON(CL) Thermal overload trip temperature Thermal hysteresis Reverse battery (pin 3 to 1) 10) Reverse battery voltage drop (Vout > Vbb) IL = -4 A Values typ 21 15 11 32 25 17 43 35 24 A -- 16 -- A 41 150 --- 47 -10 -- 53 --32 V °C K V -- 610 -- mV 20 10 --- 850 750 mA 2 3 4 V 4 10 30 kΩ IL(SCr) IL= 40 mA: VON(CL) Tjt ∆Tjt -Vbb Tj=150 °C: -VON(rev) Tj=-40 °C: IL (OL) Tj=25 ..150°C: Open load detection voltage11) (off-condition) Tj=-40..150°C: VOUT(OL) Internal output pull down (pin 5 to 1), VOUT=5 V, Tj=-40..150°C RO 9) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. 10) Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7). 11) External pull up resistor required for open load detection in off state. Semiconductor Group 4 2003-Oct-01 BTS426L1 Parameter and Conditions Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified Input and Status Feedback12) Input resistance Tj=-40..150°C, see circuit page 6 Input turn-on threshold voltage Input turn-off threshold voltage Input threshold hysteresis Off state input current (pin 2), VIN = 0.4 V, Tj =-40..+150°C min RI Tj =-40..+150°C: VIN(T+) Tj =-40..+150°C: VIN(T-) ∆ VIN(T) IIN(off) On state input current (pin 2), VIN = 3.5 V, Tj =-40..+150°C IIN(on) Delay time for status with open load after switch off (see timing diagrams, page 11), Tj =-40..+150°C Status invalid after positive input slope (open load) Tj=-40 ... +150°C: Status output (open drain) Zener limit voltage Tj =-40...+150°C, IST = +1.6 mA: ST low voltage Tj =-40...+25°C, IST = +1.6 mA: Tj = +150°C, IST = +1.6 mA: td(ST OL4) 12) td(ST) VST(high) VST(low) Values typ Unit max 2.5 3.5 6 kΩ 1.7 1.5 -1 --0.5 -- 3.5 --50 V V V µA 20 50 90 µA 100 520 1000 µs -- 250 600 µs 5.4 --- 6.1 --- -0.4 0.6 V If a ground resistor RGND is used, add the voltage drop across this resistor. Semiconductor Group 5 2003-Oct-01 BTS426L1 Truth Table Input- Output level level 425 L1 426 L1 L H L H L H L H H H H (L14)) L L15) H (L16)) H L H H H H Normal operation Open load Short circuit to Vbb Overtemperature Undervoltage 13) H H H L H L H L H Overvoltage L = "Low" Level H = "High" Level Status L L L L L L X = don't care Z = high impedance, potential depends on external circuit Status signal after the time delay shown in the diagrams (see fig 5. page 11...12) Terms Input circuit (ESD protection) Ibb I IN 2 V IN V ST IN Vbb IN IL PROFET I ST V R 3 4 OUT VON I ESD-ZD I 5 I I ST bb GND GND 1 R IGND V OUT GND ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). 13) Power Transistor off, high impedance with external resistor between pin 3 and pin 5 15) An external short of output to V , in the off state, causes an internal current from output to ground. If R bb GND is used, an offset voltage at the GND and ST pins will occur and the VST low signal may be errorious. 16) Low resistance to V may be detected in ON-state by the no-load-detection bb 14) Semiconductor Group 6 2003-Oct-01 BTS426L1 Status output Open-load detection +5V R ST(ON) ON-state diagnostic condition: VON < RON * IL(OL); IN high + V bb ST ESDZD GND VON ON ESD-Zener diode: 6.1 V typ., max 5 mA; RST(ON) < 380 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). OUT Open load detection Logic unit Inductive and overvoltage output clamp OFF-state diagnostic condition: VOUT > 3 V typ.; IN low + V bb V Z R VON EXT OFF OUT GND V PROFET Open load detection Logic unit VON clamped to 47 V typ. R OUT O Signal GND Overvolt. and reverse batt. protection + V bb GND disconnect V R IN IN RI Z2 3 Logic R ST ST 2 V IN PROFET Z1 Vbb PROFET GND 4 R GND V Signal GND VZ1 = 6.2 V typ., VZ2 = 47 V typ., RGND = 150 Ω, RST= 15 kΩ, RI= 3.5 kΩ typ. bb V IN V ST OUT 5 ST GND 1 V GND Any kind of load. In case of Input=high is VOUT ≈ VIN - VIN(T+) . Due to VGND >0, no VST = low signal available. Semiconductor Group 7 2003-Oct-01 BTS426L1 Inductive Load switch-off energy dissipation GND disconnect with GND pull up E bb E AS 3 Vbb IN 2 IN OUT PROFET 4 5 V = GND bb V IN ST ST GND V ZL GND Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND >0, no VST = low signal available. 2 2 Vbb EAS= Ebb + EL - ER= VON(CL)·iL(t) dt, OUT with an approximate solution for RL > 0 Ω: 5 ST GND EAS= 1 V IL · L IL·RL ·(Vbb + |VOUT(CL)|)· ln (1+ ) |VOUT(CL)| 2·RL Maximum allowable load inductance for a single switch off bb L = f (IL ); Tj,start = 150°C,TC = 150°C const., Vbb = 12 V, RL = 0 Ω Normal load current can be handled by the PROFET itself. L [mH] Vbb disconnect with charged external inductive load high 2 S 3 IN Vbb PROFET 4 10000 1000 OUT 5 D ST GND 1 V ER While demagnetizing load inductance, the energy dissipated in PROFET is PROFET 4 RL EL EL = 1/2·L·I L 3 IN { L Energy stored in load inductance: Vbb disconnect with energized inductive load high OUT PROFET ST 1 V ELoad Vbb 100 bb If other external inductive loads L are connected to the PROFET, additional elements like D are necessary. 10 1 2 7 12 17 IL [A] Semiconductor Group 8 2003-Oct-01 BTS426L1 Typ. transient thermal impedance chip case ZthJC = f(tp)ZthJC [K/W] 10 1 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 0.1 0.01 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 tp [s] Transient thermal impedance chip ambient air ZthJA = f(tp)ZthJA [K/W] 100 10 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 1 0.1 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3 tp [s] Semiconductor Group 9 2003-Oct-01 BTS426L1 Timing diagrams Figure 2b: Switching an inductive load Figure 1a: Vbb turn on: IN IN V bb t ST d(ST) *) V V OUT OUT ST open drain IL I L(OL) t t proper turn on under all conditions *) if the time constant of load is too large, open-load-status may occur Figure 2a: Switching a lamp, Figure 3a: Short circuit shut down by overtempertature, reset by cooling IN IN ST IL V IL(SCr) OUT I I L(SCp) L t ST t Heating up may require several milliseconds, depending on external conditions Semiconductor Group 10 2003-Oct-01 BTS426L1 Figure 5b: Open load: detection in ON-state, open load occurs in on-state Figure 4a: Overtemperature: Reset if Tj <Tjt IN IN ST t d(ST OL1) t d(ST OL2) ST V OUT V OUT I T normal open L normal J t t td(ST OL1) = 20 µs typ., td(ST OL2) = 10 µs typ Figure 5c: Open load: detection in ON- and OFF-state (with REXT), turn on/off to open load Figure 5a: Open load: detection in ON-state, turn on/off to open load IN IN ST t d(ST) t d(ST OL4) ST V V OUT I I L open t d(ST) OUT L open t t The status delay time td(ST OL4) allows to ditinguish between the failure modes "open load" and "overtemperature". Semiconductor Group 11 2003-Oct-01 BTS426L1 Figure 7a: Overvoltage: Figure 6a: Undervoltage: IN IN V Vbb bb V ON(CL) Vbb(over) V bb(o rst) Vbb(u cp) V V bb(under) bb(u rst) V OUT V OUT ST ST open drain t t Figure 6b: Undervoltage restart of charge pump on-state off-state V V bb(u rst) V V V bb(over) off-state VON(CL) V on bb(o rst) bb(u cp) bb(under) V bb charge pump starts at Vbb(ucp) =5.6 V typ. Semiconductor Group 12 2003-Oct-01 BTS426L1 Package and Ordering Code All dimensions in mm Standard TO-220AB/5 Ordering code BTS426L1 Q67060-S6108-A2 TO-220AB/5, Option E3043 BTS426L1 E3043 Semiconductor Group SMD TO-220AB/5, Opt. E3062 BTS426L1 E3062A T&R: Ordering code Q67060-S6108-A4 Changed since 04.96 Date Change Dec td(ST OL4) max reduced from 1500 1996 to 800µs, typical from 400 to 320µs, min limit unchanged EAS maximum rating and diagram added Zth specification added Typ. reverse battery voltage drop VON(rev) added Ordering code Q67060-S6108-A3 13 2003-Oct-01 BTS426L1 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Semiconductor Group 14 2003-Oct-01