NB6L16 2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer The NB6L16 is a high precision, low power ECL differential clock or data receiver/driver/translator buffer. The device is functionally equivalent to the EL16, EP16, LVEL16 and NBSG16 devices. With output transition times of 70 ps, it is ideally suited for high frequency, low power systems. The device is targeted for Backplane buffering, GbE clock/data distribution, Fibre Channel distribution and SONET clock/data distribution applications. Input accept LVNECL (Negative ECL), LVPECL (Positive ECL), LVTTL, LVCMOS, CML, or LVDS. Outputs are 800 mV ECL signals. The VBB pin, an internally generated voltage supply, is available to this device only. For single−ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 mF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. http://onsemi.com MARKING DIAGRAMS* 8 8 6L16 ALYW G 1 SOIC−8 D SUFFIX CASE 751 8 1 8 1 TSSOP−8 DT SUFFIX CASE 948R 6L16 ALYWG G 1 Features • • • • • • • • • • • Input Clock Frequency w 6 GHz Input Data Rate Frequency w 6 Gb/s Low 12 mA Typical Power Supply Current 70 ps Typical Rise/Fall Times 130 ps Input Propagation Delay On−Chip Reference for ECL Single−Ended Input − VBB Output PECL Mode Operating Range: VCC = 2.375 V to 3.465 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = −2.375 V to −3.465 V Open Input Default State LVDS, LVPECL, LVNECL, LVCMOS, LVTTL and CML Input Compatible Pb−Free Packages are Available © Semiconductor Components Industries, LLC, 2008 December, 2008 − Rev. 8 1 A L Y W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. Publication Order Number: NB6L16/D NB6L16 NC 1 D 2 R2 8 VCC 7 Q 6 Q 5 VEE R1 D R1 3 R2 VBB 4 Figure 1. Pinout (Top View) and Logic Diagram Table 1. PIN DESCRIPTION Pin Name I/O Default State Description 1 NC − − No Connect. The NC pin is electrically connected to the die and MUST be left open. 2 D LVDS, CML, LVPECL, LVNECL, LVTTL, LVCMOS Input LOW Non−inverted differential clock/data input. Internal 75 kW to VCC and 37.5 kW to VEE. 3 D LVDS, CML, LVPECL, LVNECL, LVTTL, LVCMOS Input HIGH Inverted differential clock/data input. Internal 37.5 kW to VCC and 75 kW to VEE. 4 VBB − − Internally generated ECL reference voltage supply. 5 VEE − − Negative power supply voltage. 6 Q ECL Output Inverted differential ECL output. Typically terminated with 50 W resistor to VCC – 2.0 V. 7 Q ECL Output Non−inverted differential ECL output. Typically terminated with 50 W resistor to VCC – 2.0 V. 8 VCC − − Positive power supply voltage. Table 2. ATTRIBUTES Characteristics Value Internal Input Default State Resistor (R1) 37.5 kW Internal Input Default State Resistor (R2) 75 kW ESD Protection Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index: 28 to 34 Transistor Count > 2 kV > 100 V > 1 kV Level 1 UL 94 V−0 @ 1.125 in 167 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 2 NB6L16 Table 3. MAXIMUM RATINGS Symbol Parameter Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 3.6 V VEE NECL Mode Power Supply VCC = 0 V −3.6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 3.6 −3.6 V V Iout Output Current Continuous Surge 25 50 mA mA VINPP Differential Input Voltage 2.8 |VCC − VEE| V IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction−to−Ambient) 0 lfpm 500 lfpm SOIC−8 SOIC−8 190 130 °C/W °C/W qJC Thermal Resistance (Junction−to−Case) Standard Board SOIC−8 41 to 44 °C/W qJA Thermal Resistance (Junction−to−Ambient) 0 lfpm 500 lfpm TSSOP−8 TSSOP−8 185 140 °C/W °C/W qJC Thermal Resistance (Junction−to−Case) Standard Board TSSOP−8 41 to 44 °C/W Tsol Wave Solder v 3 sec @ 248°C v 3 sec @ 260°C 265 265 °C |D − D| VI v VCC VI w VEE VCC − VEE w 2.8 V VCC − VEE t 2.8 V Standard Pb−Free Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. http://onsemi.com 3 NB6L16 Table 4. DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 4) −40°C 25°C 85°C Characteristic Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current (Note 5) 10 12 18 10 12 18 10 12 18 mA VOH Output HIGH Voltage (Note 6) 1350 1450 1550 1400 1500 1600 1450 1550 1650 mV VOL Output LOW Voltage (Note 6) 565 725 870 630 765 920 690 825 970 mV Symbol DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 10, 12) (Note 8) Vth Input Threshold Reference Voltage Range (Notes 2, 7) 1125 VCC −75 1125 VCC −75 1125 VCC −75 mV VIH Single−Ended Input HIGH Voltage Vth +75 VCC Vth +75 VCC Vth +75 VCC mV VIL Single−Ended Input LOW Voltage VEE Vth −75 VEE Vth −75 VEE Vth −75 mV DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11, 13) (Note 9) VIHD Differential Input HIGH Voltage 1200 VCC 1200 VCC 1200 VCC mV VILD Differential Input LOW Voltage VEE VCC −75 VEE VCC −75 VEE VCC −75 mV VCMR Input Common Mode Range (Differential Cross−Point Voltage) (Note 3) 950 VCC −38 950 VCC −38 950 VCC −38 mV VID Differential Input Voltage (VIHD − VILD) 75 2500 75 2500 75 2500 mV IIH Input HIGH Current D D 150 150 mA IIL Input LOW Current D D 50 10 −150 −150 150 150 −5 −30 50 10 −150 −150 −5 −30 150 150 50 10 −150 −150 −5 −30 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 2. Vth is applied to the complementary input when operating in single−ended mode. 3. VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC. 4. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to −1.3 V. 5. All input and output pins left open. 6. All loading with 50 W to VCC − 2.0 V. 7. Do not use VBB as a reference voltage for single−ended PECL signals when operating device at VCC − VEE < 3.0 V. 8. Vth, VIH, and VIL parameters must be complied with simultaneously. 9. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously. http://onsemi.com 4 NB6L16 Table 5. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) Characteristic Min −40°C Typ Max Min 25°C Typ Max Min 85°C Typ Max Unit IEE Negative Power Supply Current (Note 13) 10 12 18 10 12 18 10 12 18 mA VOH Output HIGH Voltage (Note 14) 2150 2250 2350 2200 2300 2400 2250 2350 2450 mV VOL Output LOW Voltage (Note 14) 1365 1525 1670 1430 1565 1720 1490 1625 1770 mV Symbol DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 10, 12) (Note 15) Vth Input Threshold Reference Voltage Range (Note 10) 1125 VCC −75 1125 VCC −75 1125 VCC −75 mV VIH Single−Ended Input HIGH Voltage Vth +75 VCC Vth +75 VCC Vth +75 VCC mV VIL Single−Ended Input LOW Voltage VEE Vth −75 VEE Vth −75 VEE Vth −75 mV VBB Output Voltage Reference 1880 2070 1880 2070 1880 2070 mV 1980 1980 1980 DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11, 13) (Note 16) VIHD Differential Input HIGH Voltage 1200 VCC 1200 VCC 1200 VCC mV VILD Differential Input LOW Voltage VEE VCC −75 VEE VCC −75 VEE VCC −75 mV VCMR Input Common Mode Range (Differential Cross−Point Voltage) (Note 11) 950 VCC −38 950 VCC −38 950 VCC −38 mV VID Differential Input Voltage (VIHD − VILD) 75 2500 75 2500 75 2500 mV IIH Input HIGH Current D D 150 150 mA IIL Input LOW Current D D 50 10 −150 −150 150 150 −5 −30 50 10 −150 −150 −5 −30 150 150 50 10 −150 −150 −5 −30 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 10. Vth is applied to the complementary input when operating in single−ended mode. 11. VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to −0.5 V. 13. All input and output pins left open. 14. All loading with 50 W to VCC − 2.0 V. 15. Vth, VIH, and VIL parameters must be complied with simultaneously. 16. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously. http://onsemi.com 5 NB6L16 Table 6. DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −3.465 V to −2.375 V (Note 19) Min −40°C Typ Max Min 25°C Typ Max Min 85°C Typ Max Unit IEE Negative Power Supply Current (Note 21) 10 12 18 10 12 18 10 12 18 mA VOH Output HIGH Voltage (Note 20) −1150 −1050 −950 −1100 −1000 −900 −1050 −950 −850 mV VOL Output LOW Voltage (Note 20) −1935 −1775 −1630 −1870 −1735 −1580 −1810 −1675 −1530 mV Symbol Characteristic DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 10, 12) (Note 22) Vth Input Threshold Reference Voltage Range (Note 10) VEE +1125 VCC −75 VEE +1125 VCC −75 VEE +1125 VCC −75 mV VIH Single−Ended Input HIGH Voltage Vth +75 VCC Vth +75 VCC Vth +75 VCC mV VIL Single−Ended Input LOW Voltage VEE Vth −75 VEE Vth −75 VEE Vth −75 mV VBB Output Voltage Reference −1230 −1420 −1230 −1420 −1230 mV −1420 −1320 −1320 −1320 DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 11, 13) (Note 23) VIHD Differential Input HIGH Voltage VEE+ 1200 VCC VEE+ 1200 VCC VEE+ 1200 VCC mV VILD Differential Input LOW Voltage VEE VCC −75 VEE VCC −75 VEE VCC −75 mV VCMR Input Common Mode Range (Differential Cross−Point Voltage) (Note 11) VEE+ 950 VCC −38 VEE+ 950 VCC −38 VEE+ 950 VCC −38 mV VID Differential Input Voltage (VIHD − VILD) 75 2500 75 2500 75 2500 mV IIH Input HIGH Current D D 150 150 mA IIL Input LOW Current D D 50 10 −150 −150 150 150 −5 −30 50 10 −150 −150 −5 −30 150 150 50 10 −150 −150 −5 −30 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 17. Vth is applied to the complementary input when operating in single−ended mode. 18. VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC. 19. Input and output parameters vary 1:1 with VCC. 20. All loading with 50 W to VCC − 2.0 V. 21. All input and output pins left open. 22. Vth, VIH, and VIL parameters must be complied with simultaneously. 23. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously. http://onsemi.com 6 NB6L16 Table 7. AC CHARACTERISTICS VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V (Note 24) −40°C Symbol VOUTPP Characteristic Output Voltage Amplitude fin < 3 GHz fin < 6 GHz (See Figures 2 & 3) Min Typ 500 270 700 350 fDATA Maximum Operating Data Rate 6 tPLH, tPHL Propagation Delay to Output Differential @ 1 GHz 80 tSKEW Duty Cycle Skew (Note 25) Device−to−Device Skew tJITTER RMS Random Clock Jitter (Note 26) fin < 6 GHz Peak−to−Peak Data Dependent JItter (Note 27) fin < 6 Gb/s 25°C Max Min Typ 500 270 700 350 85°C Max Min Typ 500 270 700 300 Max Unit mV Gb/s 130 180 3 30 80 130 180 25 60 3 30 0.2 1 2 12 85 135 185 ps 25 60 3 30 25 60 ps 0.2 1 0.2 1 2 12 2 12 ps VINPP Input Voltage Swing / Sensitivity (Differential Configuration) (Note 28) 75 700 2500 75 700 2500 75 700 2500 mV tr tf Output Rise/Fall Times (20% − 80%) 30 70 120 30 70 120 30 70 120 ps Q, Q NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 24. Measured using a 800 mV source, 50% duty cycle clock source. All loading with 50 W to VCC. Input edge rates 40 ps (20% − 80%). 25. See Figure 9 tskew = |tPLH − tPHL| for a nominal 50% differential clock input waveform. Skew is measured between outputs under identical transitions and conditions @ 1 GHz. 26. Additive RMS jitter with 50% duty cycle clock signal at 6 GHz. 27. Additive Peak−to−Peak data dependent jitter with NRZ PRBS 223−1 data rate at 6 Gb/s. 28. VINPP(max) cannot exceed VCC − VEE. (Applicable only when VCC − VEE < 2500 mV). Input voltage swing is a single−ended measurement operating in the differential mode. 0.8 OUTPUT VOLTAGE AMPLITUDE (V) OUTPUT VOLTAGE AMPLITUDE (V) 0.8 −40°C 0.7 0.6 0.5 25°C 0.4 85°C 0.3 0.2 0.1 0.0 1 2 3 4 5 6 7 0.7 −40°C 0.6 0.5 0.4 25°C 0.3 85°C 0.2 0.1 0.0 1 8 2 3 4 5 6 7 INPUT CLOCK FREQUENCY (GHz) INPUT CLOCK FREQUENCY (GHz) Figure 2. Output Voltage Amplitude (VOUTPP) versus Input Clock Frequency (fIN) and Temperature at VCC − VEE = 3.3 V Figure 3. Output Voltage Amplitude (VOUTPP) versus Input Clock Frequency (fIN) and Temperature at VCC − VEE = 2.5 V http://onsemi.com 7 8 OUTPUT VOLTAGE AMPLITUDE (100 mV/div) OUTPUT VOLTAGE AMPLITUDE (100 mV/div) NB6L16 TIME (62 ps/div) TIME (32 ps/div) Figure 4. Typical Output Waveform at 2.488 Gb/s with PRBS 223−1 (Total System Pk−Pk Jitter is 16 ps. Device Pk−Pk Jitter Contribution is 3 ps) VCC − VEE = 3.3 V; VIN = 700 mV; TA = 25°C. 190 120 180 110 RISE/FALL TIME (ps) 170 160 85°C 150 25°C 140 130 120 −40°C 110 100 100 85°C 90 25°C 80 70 60 50 −40°C 40 90 80 30 2.375 2.5 3.3 POWER SUPPLY VOLTAGE (V) 3.465 2.375 Figure 6. Propagation Delay versus Power Supply Voltage and Temperature 2.5 3.3 POWER SUPPLY VOLTAGE (V) 17 16 15 VCC − VEE = −3.465 V 14 13 12 VCC − VEE = −2.375 V 11 10 3.465 Figure 7. Rise/Fall Time versus Power Supply Voltage and Temperature 18 IEE CURRENT (mA) PROPAGATION DELAYS (ps) NOTE: Figure 5. Typical Output Waveform at 6.125 Gb/s with PRBS 223−1 (Total System Pk−Pk Jitter is 17 ps. Device Pk−Pk Jitter Contribution is 4 ps) −40 25 TEMPERATURE (°C) Figure 8. IEE Current versus Temperature and Power Supply Voltage http://onsemi.com 8 85 NB6L16 D VINPP(D) = VIH(D) − VIL(D) VINPP(D) = VIH(D) − VIL(D) D Q VOUTPP(Q) = VOH(Q) − VOL(Q) VOUTPP(Q) = VOH(Q) − VOL(Q) Q tPHL tPLH Figure 9. AC Reference Measurement Vth D D D D Vth Figure 10. Differential Input Driven Single−Ended VCC Vthmax Figure 11. Differential Inputs Driven Differentially VCC VCMmax VIHmax VILmax VIHTYP VthTYP VILTYP Vth VILDtyp GND Figure 12. Vth Diagram Q VIHDmin VILDmin VCMmax VILmin GND VILDmax VID = VIHD − VILD VIHDtyp VCMR VIHmin Vthmin VIHDmax Figure 13. VCMR Diagram Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC − 2.0 V Figure 14. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.) http://onsemi.com 9 NB6L16 ORDERING INFORMATION Package Shipping† SOIC−8 98 Units / Rail NB6L16DG SOIC−8 (Pb−Free) 98 Units / Rail NB6L16DR2 SOIC−8 2500 / Tape & Reel NB6L16DR2G SOIC−8 (Pb−Free) 2500 / Tape & Reel NB6L16DT TSSOP−8 100 Units / Rail NB6L16DTG TSSOP−8 (Pb−Free) 100 Units / Rail NB6L16DTR2 TSSOP−8 2500 / Tape & Reel NB6L16DTR2G TSSOP−8 (Pb−Free) 2500 / Tape & Reel Device NB6L16D †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices http://onsemi.com 10 NB6L16 PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AJ −X− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 −Y− K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE −Z− 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 11 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 NB6L16 PACKAGE DIMENSIONS TSSOP−8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R−02 ISSUE A 8x 0.15 (0.006) T U 0.10 (0.004) S 2X L/2 L 8 5 1 PIN 1 IDENT 0.15 (0.006) T U K REF M T U S V 0.25 (0.010) B −U− 4 M A −V− S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S F DETAIL E C 0.10 (0.004) −T− SEATING PLANE D −W− G DETAIL E DIM A B C D F G K L M MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 0.80 1.10 0.05 0.15 0.40 0.70 0.65 BSC 0.25 0.40 4.90 BSC 0_ 6_ INCHES MIN MAX 0.114 0.122 0.114 0.122 0.031 0.043 0.002 0.006 0.016 0.028 0.026 BSC 0.010 0.016 0.193 BSC 0_ 6_ ECLinPS is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 12 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NB6L16/D