NB6L11 D

NB6L11
2.5 V/3.3 V Multilevel Input to
Differential LVPECL/LVNECL
1:2 Clock or Data
Fanout Buffer/Translator
The NB6L11 is an enhanced differential 1:2 clock or data fanout
buffer/translator. The device has the same pinout and is functionally
equivalent to the LVEL11, EP11, LVEP11 devices. Moreover, the
device is optimized for the systems that require LOW skew, LOW
jitter and LOW power consumption.
Differential input can be configured to accept single−ended signal
by applying an external reference voltage to unused complementary
input pin. Input accept LVNECL, LVPECL, LVTTL, LVCMOS,
CML, or LVDS. The outputs are 800 mV ECL signals.
http://onsemi.com
MARKING
DIAGRAMS*
8
8
1
SO−8
D SUFFIX
CASE 751
1
6L11
ALYW G
G
Features
•
•
•
•
•
•
•
•
•
•
•
•
Input Clock Frequency w 6 GHz
Input Data Rate w 6 Gb/s
Low 14 mA Typical Power Supply Current
150 ps Typical Propagation Delay
5 ps Typical Within Device Skew
75 ps Typical Rise/Fall Times
PECL Mode Operating Range:
VCC = 2.375 V to 3.465 V with VEE = 0 V
NECL Mode Op rating Range:
VCC = 0 V with VEE = −2.375 V to −3.465 V
Open Input Default State
Q Outputs Will Default LOW with Inputs Open or at VEE
LVDS, LVPECL, LVNECL, LCMOS, LVTTL and CML Input
Compatible
These Devices are Pb−Free and are RoHS Compliant
© Semiconductor Components Industries, LLC, 2013
June, 2013 − Rev. 9
1
8
1
TSSOP−8
DT SUFFIX
CASE 948R
8
1
6L11
ALYW G
G
A
= Assembly Location
L
= Wafer Lot
Y
= Year
W
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
Publication Order Number:
NB6L11/D
NB6L11
Q0
1
Q0
2
R2
8
VCC
7
D
6
D
5
VEE
R1
Q1
R1
3
R2
Q1
4
Figure 1. Pinout (Top View) and Logic Diagram
Table 1. PIN DESCRIPTION
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Pin
Name
I/O
Default State
Description
1
Q0
ECL Output
−
2
Q0
ECL Output
−
3
Q1
ECL Output
−
Non−inverted differential clock/data output 1. Typically terminated with 50 W resistor to VTT = VCC − 2 V.
4
Q1
ECL Output
−
Inverted differential clock/data output 1. Typically terminated with
50 W resistor to VTT = VCC − 2 V.
5
VEE
−
−
Negative power supply voltage
6
D
LVDS, CML, LVPECL, LVNECL,
LVCMOS, LVTTL Input
HIGH
Inverted differential clock/data input. Internal 37.5 kW to VCC and
75 kW to VEE.
7
D
LVDS, CML, LVPECL, LVNECL,
LVCMOS, LVTTL Input
LOW
Non−inverted differential clock/data input. Internal 75 kW to VCC
and 37.5 kW to VEE.
8
VCC
−
−
Non−inverted differential clock/data output 0. Typically terminated with 50 W Resistor to VTT = VCC − 2 V.
Inverted differential clock/data output 0. Typically terminated with
50 W resistor to VTT = VCC − 2 V.
Positive power supply voltage
Table 2. ATTRIBUTES
Characteristics
Value
Internal Input Resistor R1
37.5 kW
Internal Input Resistor R2
75 kW
ESD Protection
Human Body Model
Machine Model
Charged Device Model
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)
SOIC−8
TSSOP−8
Flammability Rating
Oxygen Index: 28 to 34
Transistor Count
> 2 kV
> 100 V
> 1 kV
Pb Pkg
Pb−Free Pkg
Level 1
Level 1
Level 1
Level 3
UL 94 V−0 @ 0.125 in
167 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
http://onsemi.com
2
NB6L11
Table 3. MAXIMUM RATINGS
Symbol
Rating
Unit
VCC
Positive Power Supply
Parameter
VEE = 0 V
Condition 1
3.6
V
VEE
Negative Power Supply
VCC = 0 V
−3.6
V
VI
Positive Input Voltage
Negative Input Voltage
VEE = 0 V
VCC = 0 V
3.6
−3.6
V
V
VINPP
Differential Input Voltage
2.8
|VCC − VEE|
V
Iout
Output Current
25
50
mA
mA
TA
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction−to−Ambient)
0 lfpm
500 lfpm
SOIC−8
SOIC−8
190
130
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
Standard Board
SOIC−8
41 to 44
°C/W
qJA
Thermal Resistance (Junction−to−Ambient)
0 lfpm
500 lfpm
TSSOP−8
TSSOP−8
185
140
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
Standard Board
TSSOP−8
41 to 44
°C/W
Tsol
Wave Solder
v 3 sec @ 248°C
v 3 sec @ 260°C
265
265
°C
|D − D|
Condition 2
VI v VCC
VI w VEE
VCC − VEE w 2.8 V
VCC − VEE t 2.8 V
Continuous
Surge
Standard
Pb−Free
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
http://onsemi.com
3
NB6L11
Table 4. DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 4)
−40°C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
5
14
20
5
14
20
5
14
20
mA
IEE
Negative Power Supply Current (Note 5)
VOH
Output HIGH Voltage (Note 6)
1350
1450
1550
1400
1500
1600
1450
1550
1650
mV
VOL
Output LOW Voltage (Note 6)
565
725
870
630
765
920
690
825
970
mV
DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 14, 16) (Note 7)
Vth
Input Threshold Reference Voltage Range
(Note 2)
1125
VCC
−75
1125
VCC
−75
1125
VCC
−75
mV
VIH
Single−Ended Input HIGH Voltage
Vth
+75
VCC
Vth
+75
VCC
Vth
+75
VCC
mV
VIL
Single−Ended Input LOW Voltage
VEE
Vth
−75
VEE
Vth
−75
VEE
Vth
−75
mV
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15, 17) (Note 8)
VIHD
Differential Input HIGH Voltage
1200
VCC
1200
VCC
1200
VCC
mV
VILD
Differential Input LOW Voltage
VEE
VCC
−75
VEE
VCC
−75
VEE
VCC
−75
mV
VCMR
Input Common Mode Range
(Differential Cross−Point Voltage) (Note 3)
950
VCC
−38
950
VCC
−38
950
VCC
−38
mV
VID
Differential Input Voltage (VIHD − VILD)
75
2500
75
2500
75
2500
mV
IIH
Input HIGH Current
D
D
150
150
mA
IIL
Input LOW Current
D
D
50
10
−150
−150
150
150
−5
−30
50
10
−150
−150
−5
−30
150
150
50
10
−150
−150
−5
−30
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification
limit values are applied individually under normal operating conditions and not valid simultaneously.
2. Vth is applied to the complementary input when operating in single−ended mode.
3. VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC.
4. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to −1.3 V.
5. All input and output pins left open.
6. All loading with 50 W to VCC − 2.0 V.
7. Vth, VIH, and VIL parameters must be complied with simultaneously.
8. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously.
http://onsemi.com
4
NB6L11
Table 5. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 11)
−40°C
25°C
85°C
Characteristic
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current (Note 12)
5
14
20
5
14
20
5
14
20
mA
VOH
Output HIGH Voltage (Note 13)
2150
2250
2350
2200
2300
2400
2250
2350
2450
mV
VOL
Output LOW Voltage (Note 13)
1365
1525
1670
1430
1565
1720
1490
1625
1770
mV
Symbol
DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 14, 16) (Note 14)
Vth
Input Threshold Reference Voltage Range
(Note 9)
1125
VCC
−75
1125
VCC
−75
1125
VCC
−75
mV
VIH
Single−Ended Input HIGH Voltage
Vth
+75
VCC
Vth
+75
VCC
Vth
+75
VCC
mV
VIL
Single−Ended Input LOW Voltage
VEE
Vth
−75
VEE
Vth
−75
VEE
Vth
−75
mV
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15, 17) (Note 15)
VIHD
Differential Input HIGH Voltage
1200
VCC
1200
VCC
1200
VCC
mV
VILD
Differential Input LOW Voltage
VEE
VCC
−75
VEE
VCC
−75
VEE
VCC
−75
mV
VCMR
Input Common Mode Range
(Differential Cross−Point Voltage)
(Note 10)
950
VCC
−38
950
VCC
−38
950
VCC
−38
mV
VID
Differential Input Voltage (VIHD − VILD)
2500
75
2500
75
2500
mV
IIH
Input HIGH Current
D
D
150
150
mA
IIL
Input LOW Current
D
D
75
50
10
−150
−150
150
150
−5
−30
50
10
−150
−150
−5
−30
150
150
50
10
−150
−150
−5
−30
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification
limit values are applied individually under normal operating conditions and not valid simultaneously.
9. Vth is applied to the complementary input when operating in single−ended mode.
10. VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC.
11. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V.
12. All input and output pins left open.
13. All loading with 50 W to VCC − 2.0 V.
14. Vth, VIH, and VIL parameters must be complied with simultaneously.
15. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously.
http://onsemi.com
5
NB6L11
Table 6. DC CHARACTERISTICS, NECL VCC = 0 V; VEE = −3.465 V to −2.375 V (Note 18)
−40°C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current
(Note 19)
5
14
20
5
14
20
5
14
20
mA
VOH
Output HIGH Voltage (Note 20)
−1150
−1050
−950
−1100
−1000
−900
−1050
−950
−850
mV
VOL
Output LOW Voltage (Note 20)
−1935
−1775
−1630
−1870
−1735
−1580
−1810
−1675
−1530
mV
DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 14, 16) (Note 21)
Vth
Input Threshold Reference Voltage
Range (Note 16)
VEE
+1125
VCC
−75
VEE
+1125
VCC
−75
VEE
+1125
VCC
−75
mV
VIH
Single−Ended Input HIGH Voltage
Vth
+75
VCC
Vth
+75
VCC
Vth
+75
VCC
mV
VIL
Single−Ended Input LOW Voltage
VEE
Vth
−75
VEE
Vth
−75
VEE
Vth
−75
mV
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 15, 17) (Note 22)
VIHD
Differential Input HIGH Voltage
VEE
+1200
VCC
VEE
+1200
VCC
VEE
+1200
VCC
mV
VILD
Differential Input LOW Voltage
VEE
VCC
−75
VEE
VCC
−75
VEE
VCC
−75
mV
VCMR
Input Common Mode Range
(Differential Cross−Point Voltage)
(Note 17)
VEE
+950
VCC
−38
VEE
+950
VCC
−38
VEE
+950
VCC
−38
mV
VID
Differential Input Voltage (VIHD − VILD)
75
2500
75
2500
75
2500
mV
IIH
Input HIGH Current
D
D
150
150
mA
IIL
Input LOW Current
D
D
50
10
−150
−150
150
150
−5
−30
50
10
−150
−150
−5
−30
150
150
50
10
−150
−150
−5
−30
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification
limit values are applied individually under normal operating conditions and not valid simultaneously.
16. Vth is applied to the complementary input when operating in single−ended mode.
17. VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC
18. Input and output parameters vary 1:1 with VCC.
19. Input and output pins left open.
20. All loading with 50 W to VCC − 2.0 V.
21. Vth, VIH, and VIL parameters must be complied with simultaneously.
22. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously.
http://onsemi.com
6
NB6L11
Table 7. AC CHARACTERISTICS VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V (Note 23)
−40°C
Characteristic
Symbol
VOUTPP
Output Voltage Amplitude
(See Figures 2 & 3)
fin v 3 GHz
fin v 6 GHz
fDATA
Maximum Operating Data Rate
tPLH,
tPHL
Propagation Delay to
Output Differential @ 1 GHz
tSKEW
Duty Cycle Skew
Within Device Skew
Device−to−Device Skew
tJITTER
RMS Random Clock Jitter
(Note 25)
fin v 6 GHz
Peak−to−Peak Data Dependent Jitter
(Note 26)
fin v 6 Gb/s
VINPP
Input Voltage Swing / Sensitivity
(Differential Configuration) (Note 27)
tr
tf
Output Rise/Fall Times @ 1 GHz
(20% − 80%)
Min
Typ
480
270
700
300
25°C
Max
Min
Typ
480
270
700
300
85°C
Max
Min
Typ
480
270
700
300
Max
mV
6
D to Q, Q
Gb/s
110
(Note 24)
Q, Q
Unit
150
190
2
5
15
0.2
110
150
200
10
15
60
2
5
15
1
0.2
120
160
220
10
15
60
2
5
15
10
15
60
1
0.2
1
ps
ps
ps
2
12
2
12
2
12
75
700
2500
75
700
2500
75
700
2500
mV
30
75
120
30
75
120
30
75
120
ps
0.8
OUTPUT VOLTAGE AMPLITUDE (V)
OUTPUT VOLTAGE AMPLITUDE (V)
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification
limit values are applied individually under normal operating conditions and not valid simultaneously.
23. Measured using a 800 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. Input edge rates 40 ps (20% − 80%).
24. See Figure 13 tskew = |tPLH − tPHL| for a nominal 50% differential clock input waveform. Skew is measured between outputs under identical
transitions and conditions @ 1 GHz.
25. Additive RMS jitter with 50% duty cycle clock signal at 6 GHz.
26. Additive Peak−to−Peak data dependent jitter with NRZ PRBS 223−1 data rate at 6 Gb/s.
27. VINPP(max) cannot exceed VCC − VEE (applicable only when VCC − VEE < 2500 mV). Input voltage swing is a single−ended measurement
operating in differential mode
0.7
0.6
0.5
−40°C
0.4
25°C
0.3
0.2
85°C
0.1
0.0
1
2
3
4
5
6
INPUT CLOCK FREQUENCY (GHz)
7
0.8
0.7
0.6
0.4
25°C
0.3
0.2
85°C
0.1
0.0
8
−40°C
0.5
Figure 2. Output Voltage Amplitude (VOUTPP)
versus Input Clock Frequency (fIN) and
Temperature at VCC − VEE = 3.3 V
1
2
3
4
5
6
INPUT CLOCK FREQUENCY (GHz)
7
Figure 3. Output Voltage Amplitude (VOUTPP)
versus Input Clock Frequency (fIN) and
Temperature at VCC − VEE = 2.5 V
http://onsemi.com
7
8
NB6L11
Figure 4. Typical Phase Noise Plot at
fcarrier = 156.25 MHz
Figure 5. Typical Phase Noise Plot at
fcarrier = 622.08 MHz
Figure 6. Typical Phase Noise Plot at
fcarrier = 1.5 GHz
Figure 7. Typical Phase Noise Plot at
fcarrier = 2 GHz
device (integrated between 12 kHz and 20 MHz; as shown
in the shaded region of the plot) at each of the frequencies
is 75 fs, 12 fs, 6 fs and 4 fs respectively. The input source
used for the phase noise measurements is Agilent E8663B.
The above phase noise plots captured using Agilent
E5052A show additive phase noise of the NB6L11 device at
frequencies 156.25 MHz, 622.08 MHz, 1.5 GHz and 2 GHz
respectively at an operating voltage of 3.3 V in room
temperature. The RMS Phase Jitter contributed by the
http://onsemi.com
8
OUTPUT VOLTAGE AMPLITUDE
(100 mV/div)
OUTPUT VOLTAGE AMPLITUDE
(100 mV/div)
NB6L11
TIME (64 ps/div)
TIME (32 ps/div)
Figure 8. Typical Output Waveform at
2.488 Gb/s with PRBS 223−1 (Total System
Pk−Pk Jitter is 17 ps. Device Pk−Pk Jitter
Contribution is 4 ps)
Figure 9. Typical Output Waveform at
6.125 Gb/s with PRBS 223−1 (Total System
Pk−Pk Jitter is 20 ps. Device Pk−Pk Jitter
Contribution is 5 ps)
NOTE:
VCC − VEE = 3.3 V; VIN = 700 mV; TA = 25°C.
210
120
RISE/FALL TIME (ps)
190
85°C
170
150
−40°C
25°C
130
100
90
85°C
80
70
60
25°C
−40°C
50
40
110
30
2.375
2.5
3.3
3.465
2.375
2.5
3.3
3.465
POWER SUPPLY VOLTAGE (V)
POWER SUPPLY VOLTAGE (V)
Figure 10. Propagation Delay versus Power
Supply Voltage and Temperature
Figure 11. Rise/Fall Time versus Power Supply
Voltage and Temperature
20
17
IEE CURRENT (mA)
PROPAGATION DELAY (ps)
110
VCC − VEE = −3.465 V
14
11
VCC − VEE = −2.375 V
8
5
−40
25
85
TEMPERATURE (°C)
Figure 12. IEE Current versus Temperature and
Power Supply Voltage
http://onsemi.com
9
NB6L11
D
VINPP(D) = VIH(D) − VIL(D)
VINPP(D) = VIH(D) − VIL(D)
D
Q
VOUTPP(Q) = VOH(Q) − VOL(Q)
VOUTPP(Q) = VOH(Q) − VOL(Q)
Q
tPHL
tPLH
Figure 13. AC Reference Measurement
Vth
D
D
D
D
Vth
Figure 14. Differential Input Driven
Single−Ended
VCC
Vthmax
Figure 15. Differential Inputs Driven
Differentially
VCC
VCMmax
VIHmax
VIHDmax
VILDmax
VID = VIHD − VILD
VIHDtyp
VILmax
VIH
Vth
VIL
Vth
VCMR
VILDtyp
VIHmin
Vthmin
GND
GND
Figure 16. Vth Diagram
Q
VIHDmin
VILDmin
VCMmin
VILmin
Figure 17. VCMR Diagram
Zo = 50 W
D
Receiver
Device
Driver
Device
Q
D
Zo = 50 W
50 W
50 W
VTT
VTT = VCC − 2.0 V
Figure 18. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D − Termination of ECL Logic Devices.)
http://onsemi.com
10
NB6L11
ORDERING INFORMATION
Package
Shipping†
NB6L11DG
SOIC−8
(Pb−Free)
98 Units / Rail
NB6L11DR2G
SOIC−8
(Pb−Free)
2500 / Tape & Reel
NB6L11DTG
TSSOP−8
(Pb−Free)
100 Units / Rail
NB6L11DTR2G
TSSOP−8
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D
− ECL Clock Distribution Techniques
AN1406/D
− Designing with PECL (ECL at +5.0 V)
AN1503/D
− ECLinPSt I/O SPiCE Modeling Kit
AN1504/D
− Metastability and the ECLinPS Family
AN1568/D
− Interfacing Between LVDS and ECL
AN1672/D
− The ECL Translator Guide
AND8001/D
− Odd Number Counters Design
AND8002/D
− Marking and Date Codes
AND8020/D
− Termination of ECL Logic Devices
AND8066/D
− Interfacing with ECLinPS
AND8090/D
− AC Characteristics of ECL Devices
http://onsemi.com
11
NB6L11
PACKAGE DIMENSIONS
SOIC−8 NB
D SUFFIX
CASE 751−07
ISSUE AK
−X−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
A
8
5
S
B
0.25 (0.010)
M
Y
M
1
4
−Y−
K
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
J
S
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
12
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8_
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
NB6L11
PACKAGE DIMENSIONS
TSSOP−8
DT SUFFIX
CASE 948R−02
ISSUE A
0.15 (0.006) T U
0.10 (0.004)
S
2X
L/2
L
5
1
PIN 1
IDENT
0.15 (0.006) T U
8
M
T U
S
V
S
0.25 (0.010)
B
−U−
4
M
A
−V−
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.
K REF
8x
F
DETAIL E
C
0.10 (0.004)
−T− SEATING
PLANE
D
−W−
G
DETAIL E
DIM
A
B
C
D
F
G
K
L
M
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
0.80
1.10
0.05
0.15
0.40
0.70
0.65 BSC
0.25
0.40
4.90 BSC
0_
6_
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
0.031
0.043
0.002
0.006
0.016
0.028
0.026 BSC
0.010
0.016
0.193 BSC
0_
6_
ECLinPS is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
13
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NB6L11/D