IRFP4868PbF VDSS 300V RDS(on) typ. max. ID D 25.5m 32m 70A D S G Applications High Efficiency Synchronous Rectification in SMPS Uninterruptible Power Supply High Speed Power Switching Hard Switched and High Frequency Circuits TO-247AC G D S Gate Drain Source Benefits Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free Base Part Number Package Type IRFP4868PbF TO-247AC Standard Pack Form Quantity Tube 25 Absolute Maximum Ratings Symbol Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V ID @ TC = 100°C Continuous Drain Current, VGS @ 10V Pulsed Drain Current IDM Maximum Power Dissipation PD @TC = 25°C Linear Derating Factor Gate-to-Source Voltage VGS Operating Junction and TJ Storage Temperature Range TSTG Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy Thermal Resistance Symbol Parameter Junction-to-Case RJC Case-to-Sink, Flat Greased Surface RCS Junction-to-Ambient RJA 1 www.irf.com © 2012 International Rectifier Orderable Part Number IRFP4868PbF Max. 70 49 280 517 3.4 ± 20 -55 to + 175 Units A W W/°C V °C 300 10lbfin (1.1Nm) 1093 See Fig. 14, 15, 22a, 22b Typ. ––– 0.24 ––– mJ A mJ Max. 0.29 ––– 40 Units °C/W October 30, 2012 IRFP4868PbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Drain-to-Source Breakdown Voltage V(BR)DSS V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage Drain-to-Source Leakage Current IDSS IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage RG Internal Gate Resistance Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter gfs Forward Transconductance Qg Total Gate Charge Qgs Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Qgd Total Gate Charge Sync. (Qg - Qgd) Qsync Turn-On Delay Time td(on) tr Rise Time Turn-Off Delay Time td(off) tf Fall Time Input Capacitance Ciss Coss Output Capacitance Reverse Transfer Capacitance Crss Coss eff. (ER) Effective Output Capacitance (Energy Related) Coss eff. (TR) Effective Output Capacitance (Time Related) Diode Characteristics Symbol Parameter Continuous Source Current IS (Body Diode) Pulsed Source Current ISM (Body Diode) Diode Forward Voltage VSD dv/dt Peak Diode Recovery trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 1.2mH RG = 50, IAS = 42A, VGS =10V. Part not recommended for use above this value. ISD ≤ 42A, di/dt ≤ 1706A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com © 2012 International Rectifier Min. Typ. Max. 300 ––– ––– ––– 0.29 ––– ––– 25.5 32 3.0 ––– 5.0 ––– ––– 20 ––– ––– 250 ––– ––– 100 ––– ––– -100 ––– 1.1 ––– Min. Typ. Max. 80 ––– ––– ––– 180 270 ––– 60 ––– ––– 57 ––– ––– 123 ––– ––– 24 ––– ––– 16 ––– ––– 62 ––– ––– 45 ––– ––– 10774 ––– ––– 612 ––– ––– 193 ––– ––– 406 ––– ––– Units Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA m VGS = 10V, ID = 42A V VDS = VGS, ID = 250µA µA VDS = 300V, VGS = 0V VDS = 300V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Units Conditions S VDS = 50V, ID = 42A nC ID = 42A VDS =150V VGS = 10V ID = 42A, VDS =0V, VGS = 10V ns VDD = 195V ID = 42A RG = 1.0 VGS = 10V pF VGS = 0V VDS = 50V ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 240V , See Fig. 11 ––– VGS = 0V, VDS = 0V to 240V 710 Min. Typ. Max. Units Conditions D ––– ––– 70 A MOSFET symbol showing the G ––– ––– 280 A integral reverse S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 42A, VGS = 0V ––– 7.3 ––– V/ns TJ = 25°C, IS = 42A, VDS = 300V ––– 351 ––– ns TJ = 25°C VR = 255V, ––– 454 ––– TJ = 125°C IF = 42A ––– 2520 ––– nC TJ = 25°C di/dt = 100A/µs ––– 3686 ––– TJ = 125°C ––– 16 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. RJC value shown is at time zero. October 30, 2012 IRFP4868PbF 1000 1000 ID, Drain-to-Source Current (A) 100 10 BOTTOM 100 1 0.1 4.75V VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 4.75V TOP ID, Drain-to-Source Current (A) TOP VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 4.75V BOTTOM 4.75V 10 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.01 1 0.1 1 10 100 1000 0.1 V DS, Drain-to-Source Voltage (V) 3.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 100 Fig 2. Typical Output Characteristics 1000 100 TJ = 175°C TJ = 25°C 10 1 V DS = 50V 60µs PULSE WIDTH 0.1 ID = 70A VGS = 10V 3.0 2.5 2.0 1.5 1.0 0.5 0.0 3 4 5 6 7 8 -60 -40 -20 0 20 40 60 80 100120140160180 V GS, Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 14.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED ID= 42A V GS, Gate-to-Source Voltage (V) Crss = C gd Coss = Cds + Cgd C, Capacitance (pF) 10 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Ciss 10000 Coss Crss 1000 V DS= 240V 12.0 V DS= 150V 10.0 V DS= 60V 8.0 6.0 4.0 2.0 0.0 100 1 10 100 1000 V DS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 3 1 www.irf.com © 2012 International Rectifier 0 30 60 90 120 150 180 210 240 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage October 30, 2012 IRFP4868PbF 1000 1000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) TJ = 175°C TJ = 25°C 10 1 1msec 100 100µsec 10msec 10 1 Tc = 25°C Tj = 175°C Single Pulse V GS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 1 V SD, Source-to-Drain Voltage (V) 60 ID, Drain Current (A) 50 40 30 20 10 0 50 75 100 125 150 100 1000 175 Fig 8. Maximum Safe Operating Area V (BR)DSS, Drain-to-Source Breakdown Voltage (V) 70 25 10 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-to-Drain Diode Forward Voltage 370 Id = 5mA 360 350 340 330 320 310 300 290 280 -60 -40 -20 0 20 40 60 80 100120140160180 TC , Case Temperature (°C) TJ , Temperature ( °C ) Fig 10. Drain-to-Source Breakdown Voltage Fig 9. Maximum Drain Current vs. Case Temperature 5000 ID TOP 11A 20A BOTTOM 42A EAS , Single Pulse Avalanche Energy (mJ) 20.0 4000 15.0 Energy (µJ) DC 3000 10.0 2000 5.0 1000 0 0.0 -50 0 50 100 150 200 250 300 350 VDS, Drain-to-Source Voltage (V) Fig 11. Typical Coss Stored Energy 4 www.irf.com © 2012 International Rectifier 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. Drain Current October 30, 2012 IRFP4868PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) Duty Cycle = Single Pulse 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs. Pulsewidth 1200 1000 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 42A 800 600 400 200 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature 5 www.irf.com © 2012 International Rectifier PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav October 30, 2012 IRFP4868PbF 70 5.0 4.0 3.0 ID = 250µA ID = 1.0mA 2.0 ID = 1.0A IRRM (A) V GS(th) , Gate threshold Voltage (V) 6.0 60 IF = 28A V R = 255V 50 TJ = 25°C TJ = 125°C 40 30 1.0 20 0.0 10 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 TJ , Temperature ( °C ) 600 800 1000 Fig. 17 Typical Recovery Current vs. dif/dt Fig. 16 Threshold Voltage vs. Temperature 6000 90 IF = 28A V R = 255V IF = 42A V R = 255V 80 TJ = 25°C TJ = 125°C 70 TJ = 25°C TJ = 125°C 5000 QRR (nC) 60 IRRM (A) 400 diF /dt (A/µs) 50 40 4000 3000 30 20 2000 10 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig 19. Typical Stored Charge vs. dif/dt Fig 18. Typical Recovery Current vs. dif/dt QRR (nC) 8000 7000 IF = 42A V R = 255V 6000 TJ = 25°C TJ = 125°C 5000 4000 3000 2000 0 200 400 600 800 1000 diF /dt (A/µs) Fig 20. Typical Stored Charge vs. dif/dt 6 www.irf.com © 2012 International Rectifier October 30, 2012 IRFP4868PbF Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Fig 22a. Unclamped Inductive Test Circuit 7 Fig 22b. Unclamped Inductive Waveforms Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform www.irf.com © 2012 International Rectifier October 30, 2012 IRFP4868PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) E Q A A E2/2 "A" A2 E2 2X D B L1 "A" L SEE VIEW "B" 2x b2 3x b Ø .010 B A c b4 e A1 2x LEAD TIP ØP Ø .010 B A -A- S D1 VIEW: "B" THERMAL PAD PLATING BASE METAL E1 Ø .010 (c) B A VIEW: "A" - "A" (b, b2, b4) SECTION: C-C, D-D, E-E TO-247AC Part Marking Information Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPE30 56 135H 57 ASSEMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247 package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com © 2012 International Rectifier October 30, 2012 IRFP4868PbF Qualification information† Industrial†† Qualification level (per JEDEC JESD47F ††† guidelines ) Moisture Sensitivity Level N/A TO-247AC RoHS compliant Yes † Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ ††† Applicable version of JEDEC standard at the time of product release. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 9 www.irf.com © 2012 International Rectifier October 30, 2012