IRF IRFP4868PBF

IRFP4868PbF
VDSS
300V
RDS(on) typ.
max.
ID
D
25.5m
32m
70A
D
S
G
Applications
 High Efficiency Synchronous Rectification in SMPS
 Uninterruptible Power Supply
 High Speed Power Switching
 Hard Switched and High Frequency Circuits
TO-247AC
G
D
S
Gate
Drain
Source
Benefits
 Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
 Fully Characterized Capacitance and Avalanche SOA
 Enhanced body diode dV/dt and dI/dt Capability
 Lead-Free
Base Part Number
Package Type
IRFP4868PbF
TO-247AC
Standard Pack
Form
Quantity
Tube
25
Absolute Maximum Ratings
Symbol
Parameter
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
IDM
Maximum Power Dissipation
PD @TC = 25°C
Linear Derating Factor
Gate-to-Source Voltage
VGS
Operating Junction and
TJ
Storage Temperature Range
TSTG
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy 
IAR
Avalanche Current 
EAR
Repetitive Avalanche Energy 
Thermal Resistance
Symbol
Parameter
Junction-to-Case 
RJC
Case-to-Sink, Flat Greased Surface
RCS
Junction-to-Ambient
RJA
1
www.irf.com
© 2012 International Rectifier
Orderable Part Number
IRFP4868PbF
Max.
70
49
280
517
3.4
± 20
-55 to + 175
Units
A
W
W/°C
V
°C
300
10lbfin (1.1Nm)
1093
See Fig. 14, 15, 22a, 22b
Typ.
–––
0.24
–––
mJ
A
mJ
Max.
0.29
–––
40
Units
°C/W
October 30, 2012
IRFP4868PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Drain-to-Source Breakdown Voltage
V(BR)DSS
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
Drain-to-Source Leakage Current
IDSS
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
RG
Internal Gate Resistance
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
gfs
Forward Transconductance
Qg
Total Gate Charge
Qgs
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Qgd
Total Gate Charge Sync. (Qg - Qgd)
Qsync
Turn-On Delay Time
td(on)
tr
Rise Time
Turn-Off Delay Time
td(off)
tf
Fall Time
Input Capacitance
Ciss
Coss
Output Capacitance
Reverse Transfer Capacitance
Crss
Coss eff. (ER) Effective Output Capacitance
(Energy Related) 
Coss eff. (TR) Effective Output Capacitance
(Time Related)
Diode Characteristics
Symbol
Parameter
Continuous Source Current
IS
(Body Diode)
Pulsed Source Current
ISM
(Body Diode) 
Diode Forward Voltage
VSD
dv/dt
Peak Diode Recovery 
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
Notes:
 Repetitive rating; pulse width limited by max.
junction temperature.
 Limited by TJmax, starting TJ = 25°C, L = 1.2mH
RG = 50, IAS = 42A, VGS =10V. Part not
recommended for use above this value.
 ISD ≤ 42A, di/dt ≤ 1706A/µs, VDD ≤ V(BR)DSS, TJ ≤
175°C.
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
© 2012 International Rectifier
Min. Typ. Max.
300 ––– –––
––– 0.29 –––
––– 25.5 32
3.0 ––– 5.0
––– –––
20
––– ––– 250
––– ––– 100
––– ––– -100
––– 1.1 –––
Min. Typ. Max.
80
––– –––
––– 180 270
–––
60
–––
–––
57
–––
––– 123 –––
–––
24
–––
–––
16
–––
–––
62
–––
–––
45
–––
––– 10774 –––
––– 612 –––
––– 193 –––
––– 406 –––
–––
Units
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mA
m VGS = 10V, ID = 42A 
V VDS = VGS, ID = 250µA
µA VDS = 300V, VGS = 0V
VDS = 300V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V

Units
Conditions
S VDS = 50V, ID = 42A
nC ID = 42A
VDS =150V
VGS = 10V 
ID = 42A, VDS =0V, VGS = 10V
ns VDD = 195V
ID = 42A
RG = 1.0
VGS = 10V 
pF VGS = 0V
VDS = 50V
ƒ = 1.0 MHz, See Fig. 5
VGS = 0V, VDS = 0V to 240V ,
See Fig. 11
–––
VGS = 0V, VDS = 0V to 240V 
710
Min. Typ. Max. Units
Conditions
D
––– –––
70
A MOSFET symbol
showing the
G
––– ––– 280
A integral reverse
S
p-n junction diode.
––– ––– 1.3
V TJ = 25°C, IS = 42A, VGS = 0V 
––– 7.3 ––– V/ns TJ = 25°C, IS = 42A, VDS = 300V
––– 351 –––
ns TJ = 25°C
VR = 255V,
––– 454 –––
TJ = 125°C
IF = 42A
––– 2520 ––– nC TJ = 25°C
di/dt = 100A/µs 
––– 3686 –––
TJ = 125°C
–––
16
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by
LS+LD)
 Coss eff. (TR) is a fixed capacitance that gives
the same charging time as Coss while VDS is
rising from 0 to 80% VDSS.
 Coss eff. (ER) is a fixed capacitance that gives
the same energy as Coss while VDS is rising
from 0 to 80% VDSS.
 R is measured at TJ approximately 90°C.
 RJC value shown is at time zero.
October 30, 2012
IRFP4868PbF
1000
1000
ID, Drain-to-Source Current (A)
100
10
BOTTOM
100
1
0.1
4.75V
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
4.75V
TOP
ID, Drain-to-Source Current (A)
TOP
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
4.75V
BOTTOM
4.75V
10
60µs PULSE WIDTH
60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
0.01
1
0.1
1
10
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
3.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
100
Fig 2. Typical Output Characteristics
1000
100
TJ = 175°C
TJ = 25°C
10
1
V DS = 50V
60µs PULSE WIDTH
0.1
ID = 70A
VGS = 10V
3.0
2.5
2.0
1.5
1.0
0.5
0.0
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180
V GS, Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
14.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
ID= 42A
V GS, Gate-to-Source Voltage (V)
Crss = C gd
Coss = Cds + Cgd
C, Capacitance (pF)
10
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Ciss
10000
Coss
Crss
1000
V DS= 240V
12.0
V DS= 150V
10.0
V DS= 60V
8.0
6.0
4.0
2.0
0.0
100
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
3
1
www.irf.com
© 2012 International Rectifier
0
30
60
90
120 150 180 210 240
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
October 30, 2012
IRFP4868PbF
1000
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TJ = 175°C
TJ = 25°C
10
1
1msec
100
100µsec
10msec
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
V GS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
1
V SD, Source-to-Drain Voltage (V)
60
ID, Drain Current (A)
50
40
30
20
10
0
50
75
100
125
150
100
1000
175
Fig 8. Maximum Safe Operating Area
V (BR)DSS, Drain-to-Source Breakdown Voltage (V)
70
25
10
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-to-Drain Diode
Forward Voltage
370
Id = 5mA
360
350
340
330
320
310
300
290
280
-60 -40 -20 0 20 40 60 80 100120140160180
TC , Case Temperature (°C)
TJ , Temperature ( °C )
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
5000
ID
TOP
11A
20A
BOTTOM 42A
EAS , Single Pulse Avalanche Energy (mJ)
20.0
4000
15.0
Energy (µJ)
DC
3000
10.0
2000
5.0
1000
0
0.0
-50
0
50
100 150 200 250 300 350
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical Coss Stored Energy
4
www.irf.com
© 2012 International Rectifier
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. Drain Current
October 30, 2012
IRFP4868PbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
Duty Cycle = Single Pulse
0.01
10
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs. Pulsewidth
1200
1000
EAR , Avalanche Energy (mJ)
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature
far in excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as Tjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 42A
800
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
5
www.irf.com
© 2012 International Rectifier
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
October 30, 2012
IRFP4868PbF
70
5.0
4.0
3.0
ID = 250µA
ID = 1.0mA
2.0
ID = 1.0A
IRRM (A)
V GS(th) , Gate threshold Voltage (V)
6.0
60
IF = 28A
V R = 255V
50
TJ = 25°C
TJ = 125°C
40
30
1.0
20
0.0
10
-75 -50 -25
0
25 50 75 100 125 150 175
0
200
TJ , Temperature ( °C )
600
800
1000
Fig. 17 Typical Recovery Current vs. dif/dt
Fig. 16 Threshold Voltage vs. Temperature
6000
90
IF = 28A
V R = 255V
IF = 42A
V R = 255V
80
TJ = 25°C
TJ = 125°C
70
TJ = 25°C
TJ = 125°C
5000
QRR (nC)
60
IRRM (A)
400
diF /dt (A/µs)
50
40
4000
3000
30
20
2000
10
0
200
400
600
800
0
1000
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig 19. Typical Stored Charge vs. dif/dt
Fig 18. Typical Recovery Current vs. dif/dt
QRR (nC)
8000
7000
IF = 42A
V R = 255V
6000
TJ = 25°C
TJ = 125°C
5000
4000
3000
2000
0
200
400
600
800
1000
diF /dt (A/µs)
Fig 20. Typical Stored Charge vs. dif/dt
6
www.irf.com
© 2012 International Rectifier
October 30, 2012
IRFP4868PbF
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 22a. Unclamped Inductive Test Circuit
7
Fig 22b. Unclamped Inductive Waveforms
Fig 23a. Switching Time Test Circuit
Fig 23b. Switching Time Waveforms
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
www.irf.com
© 2012 International Rectifier
October 30, 2012
IRFP4868PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
E
Q
A
A
E2/2
"A"
A2
E2
2X
D
B
L1
"A"
L
SEE
VIEW "B"
2x b2
3x b
Ø .010
B A
c
b4
e
A1
2x
LEAD TIP
ØP
Ø .010
B A
-A-
S
D1
VIEW: "B"
THERMAL PAD
PLATING
BASE METAL
E1
Ø .010
(c)
B A
VIEW: "A" - "A"
(b, b2, b4)
SECTION: C-C, D-D, E-E
TO-247AC Part Marking Information
Notes: This part marking information applies to devices produced after 02/26/2001
EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2001
IN THE ASSEMBLY LINE "H"
Note: "P" in assembly line position
indicates "Lead-Free"
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFPE30
56
135H
57
ASSEMBLY
LOT CODE
DATE CODE
YEAR 1 = 2001
WEEK 35
LINE H
TO-247 package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
© 2012 International Rectifier
October 30, 2012
IRFP4868PbF
Qualification information†
Industrial††
Qualification level
(per JEDEC JESD47F ††† guidelines )
Moisture Sensitivity Level
N/A
TO-247AC
RoHS compliant
Yes
†
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
††
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
9
www.irf.com
© 2012 International Rectifier
October 30, 2012