Document Number: AFT23H200−4S2L Rev. 1, 5/2013 Freescale Semiconductor Technical Data RF Power LDMOS Transistor N−Channel Enhancement−Mode Lateral MOSFET AFT23H200−4S2LR6 This 45 watt asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 2300 to 2400 MHz. • Typical Doherty Single−Carrier W−CDMA Performance: VDD = 28 Volts, IDQA = 500 mA, VGSB = 0.5 Vdc, Pout = 45 Watts Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) hD (%) Output PAR (dB) ACPR (dBc) 2300 MHz 15.3 42.8 8.4 −27.6 2350 MHz 15.4 43.3 8.3 −31.1 2400 MHz 15.2 42.8 8.3 −33.9 2300−2400 MHz, 45 W AVG., 28 V Features • Advanced High Performance In−Package Doherty • Greater Negative Gate−Source Voltage Range for Improved Class C Operation • Designed for Digital Predistortion Error Correction Systems • In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13−inch Reel. NI−1230−4LS2L 6 VBWA (1) Carrier RFinA/VGSA 1 5 RFoutA/VDSA RFinB/VGSB 2 4 RFoutB/VDSB Peaking 3 VBWB (1) (Top View) Figure 1. Pin Connections 1. Device cannot operate with the VDD current supplied through pin 3 and pin 6. © Freescale Semiconductor, Inc., 2013. All rights reserved. RF Device Data Freescale Semiconductor, Inc. AFT23H200−4S2LR6 1 Table 1. Maximum Ratings Symbol Value Unit Drain−Source Voltage Rating VDSS −0.5, +65 Vdc Gate−Source Voltage VGS −6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg −65 to +150 °C Case Operating Temperature Range TC −40 to +150 °C TJ −40 to +225 °C CW 294 1.7 W W/°C Operating Junction Temperature Range (1,2) CW Operation @ TC = 25°C Derate above 25°C Table 2. Thermal Characteristics Characteristic Symbol Value (2,3) Unit Thermal Resistance, Junction to Case Case Temperature 75°C, 45 W W−CDMA, 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc, 2350 MHz RθJC 0.32 °C/W Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22−A114) 2 Machine Model (per EIA/JESD22−A115) B Charge Device Model (per JESD22−C101) IV Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate−Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 140 μAdc) VGS(th) 0.8 1.2 1.6 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, IDA = 500 mAdc, Measured in Functional Test) VGS(Q) 1.4 1.8 2.2 Vdc Drain−Source On−Voltage (VGS = 6 Vdc, ID = 1.4 Adc) VDS(on) 0.1 0.14 0.4 Vdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 200 μAdc) VGS(th) 0.8 1.2 1.6 Vdc Drain−Source On−Voltage (VGS = 6 Vdc, ID = 2 Adc) VDS(on) 0.1 0.14 0.4 Vdc Off Characteristics (4) On Characteristics − Side A (4) (Carrier) On Characteristics − Side B (4) (Peaking) 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes − AN1955. 4. Each side of device measured separately. (continued) AFT23H200−4S2LR6 2 RF Device Data Freescale Semiconductor, Inc. Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (1,2,3) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc, Pout = 45 W Avg., f = 2300 MHz, Single−Carrier W−CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Gps 14.6 15.3 17.6 dB Drain Efficiency ηD 38.0 42.8 — % PAR 7.6 8.4 — dB ACPR — −27.6 −25.0 dBc Output Peak−to−Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQA = 500 mA, f = 2350 MHz VSWR 10:1 at 32 Vdc, 330 W CW (4) Output Power (3 dB Input Overdrive from 200 W CW (4) Rated Power) No Device Degradation Typical Performances (2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc, 2300−2400 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 210 (4) — W Pout @ 3 dB Compression Point (5) P3dB — 290 — W Φ — 34 — ° VBWres — 150 — MHz Gain Flatness in 100 MHz Bandwidth @ Pout = 45 W Avg. GF — 0.3 — dB Gain Variation over Temperature (−30°C to +85°C) ΔG — 0.007 — dB/°C ΔP1dB — 0.002 — dB/°C AM/PM (Maximum value measured at the P3dB compression point across the 2300−2400 MHz frequency range) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (−30°C to +85°C) (4) 1. 2. 3. 4. 5. Part internally matched both on input and output. VDDA and VDDB must be tied together and powered by a single DC power supply. Measurements made with device in an asymmetrical Doherty configuration. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W−CDMA single−carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF. AFT23H200−4S2LR6 RF Device Data Freescale Semiconductor, Inc. 3 VDDA VGGA C16 C10 C4 C5 R2 C8 C9 AFT23H200_4WS Rev. 2 C Z1 C11 C1 C3 R1 R3 CUT OUT AREA C2 C12 P C13 C7 C14 C15 C6 VDDB C17 VGGB Figure 2. AFT23H200−4S2LR6 Test Circuit Component Layout Table 5. AFT23H200−4S2LR6 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 0.3 pF Chip Capacitor ATC100B0R3BT500XT ATC C2, C3, C5, C7, C9, C12, C14 6.8 pF Chip Capacitors ATC100B6R8CT500XT ATC C4, C6 2.2 μF Chip Capacitors GRM55DR72H225KA88L Murata C8, C10, C13, C15 10 μF Chip Capacitors GRM55DR61H106KA88L Murata C11 5.1 pF Chip Capacitor ATC100B5R1CT500XT ATC C16, C17 220 μF, 50 V Electrolytic Capacitors MVY50VC221MJ10TP United Chem R1 50 Ω, 10 W Chip Resistor 060120A15Z50−2 Anaren R2, R3 2.7 Ω, 1/16 W Chip Resistors CR10-120J-B Kyocera Z1 2300−2700 MHz Band, 90°, 3 dB Hybrid Coupler X3C25P1-05S Anaren PCB 0.020″, εr = 3.5 RO4350B Rogers AFT23H200−4S2LR6 4 RF Device Data Freescale Semiconductor, Inc. 16 43 15.8 42 41.5 15.2 Gps 14.8 ACPR 14.6 PARC 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 14 2290 2305 2320 2335 2350 2365 -1.5 -28 -1.6 -30 14.4 14.2 -26 -32 -34 2380 -1.7 -1.8 -1.9 -36 2410 2395 PARC (dB) 41 15 ACPR (dBc) Gps, POWER GAIN (dB) 15.6 15.4 42.5 ηD VDD = 28 Vdc, Pout = 45 W (Avg.) IDQA = 500 mA, VGSB = 0.5 Vdc Single-Carrier W-CDMA ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS -2 f, FREQUENCY (MHz) IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single−Carrier Output Peak−to−Average Ratio Compression (PARC) Broadband Performance @ Pout = 45 Watts Avg. -10 VDD = 28 Vdc, Pout = 24 W (PEP), IDQA = 500 mA VGSB = 0.5 Vdc, Two-Tone Measurements -20 (f1 + f2)/2 = Center Frequency of 2350 MHz IM3-U -30 IM3-L -40 IM5-L -50 IM7-U IM7-L IM5-U -60 10 1 200 100 TWO-TONE SPACING (MHz) Figure 4. Intermodulation Distortion Products versus Two−Tone Spacing 15.5 -1 15 14.5 14 13.5 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) -1 dB = 35 W 13 ηD 55 -25 50 -26 Gps -2 45 -2 dB = 47 W -3 ACPR -3 dB = 63 W 40 VDD = 28 Vdc IDQA = 500 mA VGSB = 0.5 Vdc f = 2350 MHz -4 -5 PARC 35 Single-Carrier W-CDMA 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF -6 25 40 55 70 85 -27 -28 ACPR (dBc) 0 ηD, DRAIN EFFICIENCY (%) 16 -29 30 -30 25 -31 100 Pout, OUTPUT POWER (WATTS) Figure 5. Output Peak−to−Average Ratio Compression (PARC) versus Output Power AFT23H200−4S2LR6 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS 2400 MHz 14.5 Gps ACPR 2300 MHz 2350 MHz 14 60 0 50 -10 40 30 2300 MHz 2400 MHz 2350 MHz 2350 MHz 2300 MHz 13.5 13 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 12.5 1 10 100 20 10 0 300 -20 -30 -40 ACPR (dBc) 15 Gps, POWER GAIN (dB) ηD VDD = 28 Vdc, IDQA = 500 mA, VGSB = 0.5 Vdc Single-Carrier W-CDMA ηD, DRAIN EFFICIENCY (%) 15.5 -50 -60 Pout, OUTPUT POWER (WATTS) AVG. Figure 6. Single−Carrier W−CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 24 20 GAIN (dB) 16 VDD = 28 Vdc Pin = 0 dBm IDQA = 500 mA VGSB = 0.5 Vdc Gain 12 8 4 0 2000 2100 2200 2300 2400 2500 2600 2700 2800 f, FREQUENCY (MHz) Figure 7. Broadband Frequency Response AFT23H200−4S2LR6 6 RF Device Data Freescale Semiconductor, Inc. VDD = 28 Vdc, IDQA = 734 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource (W) Zin (W) Zload (1) (W) Gain (dB) (dBm) (W) hD (%) AM/PM (5) 2300 4.98 - j10.2 5.10 + j9.68 2.07 - j3.84 18.4 51.9 154 57.8 -12 2350 8.15 - j11.4 7.40 + j10.5 2.02 - j3.81 18.4 51.8 153 57.3 -13 2400 12.1 - j11.3 11.0 + j10.5 1.89 - j3.59 18.3 51.8 153 56.7 -13 Max Output Power P3dB Gain (dB) (dBm) (W) hD (%) AM/PM (5) 1.89 - j3.98 16.1 52.7 186 58.3 -17 7.86 + j11.5 1.83 - j4.03 16.0 52.6 184 57.4 -17 12.4 + j11.6 1.78 - j3.84 16.1 52.6 183 57.2 -18 f (MHz) Zsource (W) Zin (W) 2300 4.98 - j10.2 5.13 + j10.4 2350 8.15 - j11.4 2400 12.1 - j11.3 Zload (W) (2) (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 8. Carrier Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, IDQA = 734 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Drain Efficiency P1dB Gain (dB) (dBm) (W) hD (%) AM/PM (5) 4.33 - j3.62 20.4 50.4 110 65.8 -17 7.45 + j11.2 3.92 - j2.92 20.3 50.5 113 65.8 -18 11.4 + j11.0 3.72 - j2.68 20.3 50.4 111 65.5 -18 f (MHz) Zsource (W) Zin (W) 2300 4.98 - j10.2 5.15 + j10.1 2350 8.15 - j11.4 2400 12.1 - j11.3 Zload (W) (1) Max Drain Efficiency P3dB f (MHz) Zsource (W) Zin (W) 2300 4.98 - j10.2 5.00 + j10.7 2350 8.15 - j11.4 7.58 + j12.1 2400 12.1 - j11.3 12.3 + j12.3 Gain (dB) (dBm) (W) hD (%) AM/PM (5) 3.99 - j3.52 18.2 51.3 136 66.6 -24 3.77 - j2.92 18.2 51.2 133 66.3 -25 3.44 - j2.68 18.2 51.3 134 66.1 -26 Zload (W) (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 9. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload AFT23H200−4S2LR6 RF Device Data Freescale Semiconductor, Inc. 7 VDD = 28 Vdc, VGSB = 1.8 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource (W) Zin (W) Zload (1) (W) Gain (dB) (dBm) (W) hD (%) AM/PM (5) 2300 4.16 - j8.18 3.52 + j7.55 2.12 - j4.32 17.5 53.0 200 54.8 -11 2350 6.03 - j8.44 4.66 + j8.11 2.09 - j4.32 17.7 53.0 201 55.0 -11 2400 8.93 - j7.56 6.30 + j8.25 2.07 - j4.25 17.8 53.0 201 55.0 -11 Max Output Power P3dB Gain (dB) (dBm) (W) hD (%) AM/PM (5) 2.02 - j4.65 15.2 53.8 242 55.8 -15 4.76 + j8.79 2.00 - j4.52 15.5 53.8 241 55.8 -15 6.76 + j9.07 2.02 - j4.47 15.5 53.8 239 55.5 -16 f (MHz) Zsource (W) Zin (W) 2300 4.16 - j8.18 3.48 + j8.04 2350 6.03 - j8.44 2400 8.93 - j7.56 Zload (W) (2) (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 10. Peaking Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, VGSB = 1.8 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle Max Drain Efficiency P1dB Gain (dB) (dBm) (W) hD (%) AM/PM (5) 4.02 - j2.94 19.5 51.7 148 63.4 -16 4.63 + j8.38 3.77 - j2.78 19.7 51.7 147 63.7 -17 6.25 + j8.53 3.29 - j2.37 19.8 51.5 142 63.7 -18 f (MHz) Zsource (W) Zin (W) 2300 4.16 - j8.18 3.44 + j7.85 2350 6.03 - j8.44 2400 8.93 - j7.56 Zload (W) (1) Max Drain Efficiency P3dB f (MHz) Zsource (W) Zin (W) 2300 4.16 - j8.18 3.31 + j8.22 2350 6.03 - j8.44 4.53 + j8.99 2400 8.93 - j7.56 6.50 + j9.33 Gain (dB) (dBm) (W) hD (%) AM/PM (5) 3.97 - j3.19 17.4 52.5 176 64.4 -22 3.45 - j2.78 17.6 52.4 175 64.6 -24 3.17 - j2.43 17.8 52.2 166 64.2 -25 Zload (W) (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Figure 11. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload AFT23H200−4S2LR6 8 RF Device Data Freescale Semiconductor, Inc. P1dB − TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2350 MHz 0 0 50 52 56 48 49 49.5 50 50.5 48 48.5 -2 IMAGINARY (Ω) IMAGINARY (Ω) 58 60 62 -1 -1 51 E -3 51.5 P -4 54 64 -2 E -3 P -4 -5 -5 50 -6 -6 3 2 1 4 5 7 6 2 1 3 4 5 6 7 REAL (Ω) REAL (Ω) Figure 12. P1dB Load Pull Output Power Contours (dBm) Figure 13. P1dB Load Pull Efficiency Contours (%) 0 0 -1 -1 -26 -2 IMAGINARY (Ω) IMAGINARY (Ω) -24 E -3 21 P -4 18 19 -22 -2 -20 E -3 -18 P -4 20.5 -5 -16 -5 20 19.5 18.5 17.5 -6 1 2 3 4 5 6 7 -12 -10 -6 1 2 -14 3 4 5 6 REAL (Ω) REAL (Ω) Figure 14. P1dB Load Pull Gain Contours (dB) Figure 15. P1dB Load Pull AM/PM Contours (5) NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 7 Power Gain Drain Efficiency Linearity Output Power AFT23H200−4S2LR6 RF Device Data Freescale Semiconductor, Inc. 9 P3dB − TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2350 MHz 0 0 48.5 49 60 62 -1 -1 52 56 49.5 50 50.5 51 -2 IMAGINARY (Ω) IMAGINARY (Ω) 58 54 50 51.5 52 -3 E 52.5 -4 P 64 -2 E -3 66 -4 P 60 -5 -5 58 49 -6 -6 3 2 1 4 5 7 6 2 1 3 4 5 6 7 REAL (Ω) REAL (Ω) Figure 16. P3dB Load Pull Output Power Contours (dBm) Figure 17. P3dB Load Pull Efficiency Contours (%) 0 0 16.5 16 15.5 -3 -4 -32 19 17 -2 -34 -1 IMAGINARY (Ω) IMAGINARY (Ω) 18.5 17.5 18 -1 E P -2 -30 E -3 -26 -4 -24 P -18 -5 -28 -22 -20 -5 -6 -6 1 2 3 4 5 6 7 1 2 3 4 5 6 REAL (Ω) REAL (Ω) Figure 18. P3dB Load Pull Gain Contours (dB) Figure 19. P3dB Load Pull AM/PM Contours (5) NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 7 Power Gain Drain Efficiency Linearity Output Power AFT23H200−4S2LR6 10 RF Device Data Freescale Semiconductor, Inc. P1dB − TYPICAL PEAKING LOAD PULL CONTOURS — 2350 MHz -2.5 -2.5 50.5 E E -3 -3 51 IMAGINARY (Ω) IMAGINARY (Ω) 51.5 -3.5 52 -4 52.5 P -4.5 53 62 -3.5 60 -4 P -4.5 58 -5 -5 -5.5 -5.5 52 46 56 48 50 -6 1.5 2.5 2 3 3.5 4 4.5 5 5.5 -6 1.5 6 2.5 2 54 3 3.5 4 4.5 5 5.5 6 REAL (Ω) REAL (Ω) Figure 20. P1dB Load Pull Output Power Contours (dBm) Figure 21. P1dB Load Pull Efficiency Contours (%) -2.5 -2.5 20 E E -3 -3 -3.5 -3.5 IMAGINARY (Ω) IMAGINARY (Ω) -16 19.5 -4 19 P -4.5 18.5 -5 -5.5 -4 -14 P -4.5 -12 -5 17.5 16.5 16 -6 1.5 18 -10 -5.5 17 2 2.5 3 3.5 4 4.5 5 5.5 6 -6 1.5 2 2.5 3 3.5 4 4.5 5 5.5 REAL (Ω) REAL (Ω) Figure 22. P1dB Load Pull Gain Contours (dB) Figure 23. P1dB Load Pull AM/PM Contours (5) NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 6 Power Gain Drain Efficiency Linearity Output Power AFT23H200−4S2LR6 RF Device Data Freescale Semiconductor, Inc. 11 P3dB − TYPICAL PEAKING LOAD PULL CONTOURS — 2350 MHz -2.5 -2.5 EE E -3 52.5 IMAGINARY (Ω) 52 -3.5 IMAGINARY (Ω) 64 -3 51.5 53 -4 53.5 -4.5 PP -3.5 62 -4 -4.5 P 60 -5 -5 -5.5 -5.5 58 50 48 -6 1.5 2.5 2 3 3.5 4 4.5 5 5.5 -6 1.5 6 52 2 56 54 2.5 3 3.5 54 4 4.5 5 5.5 6 REAL (Ω) REAL (Ω) Figure 24. P3dB Load Pull Output Power Contours (dBm) Figure 25. P3dB Load Pull Efficiency Contours (%) -2.5 -2.5 18 E -24 E -3 -3 -3.5 -3.5 IMAGINARY (Ω) IMAGINARY (Ω) -22 -4 17.5 -4.5 P 17 16.5 -5 -20 -4 -18 -4.5 P -16 -5 14.5 15.5 14 15 16 -5.5 -5.5 -6 1.5 2 -14 2.5 3 3.5 4 4.5 5 5.5 6 -6 1.5 2 2.5 3 3.5 4 4.5 5 5.5 REAL (Ω) REAL (Ω) Figure 26. P3dB Load Pull Gain Contours (dB) Figure 27. P3dB Load Pull AM/PM Contours (5) NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 6 Power Gain Drain Efficiency Linearity Output Power AFT23H200−4S2LR6 12 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS AFT23H200−4S2LR6 RF Device Data Freescale Semiconductor, Inc. 13 AFT23H200−4S2LR6 14 RF Device Data Freescale Semiconductor, Inc. PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File Development Tools • Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 May 2013 • Initial Release of Data Sheet 1 May 2013 • On Characteristics tables: Gate threshold voltage, VGS(th), updated to reflect actual test condition, VDS = 10 Vdc, p. 2 AFT23H200−4S2LR6 RF Device Data Freescale Semiconductor, Inc. 15 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2013 Freescale Semiconductor, Inc. AFT23H200−4S2LR6 Document Number: AFT23H200−4S2L Rev. 16 1, 5/2013 RF Device Data Freescale Semiconductor, Inc.