Data Sheet

Freescale Semiconductor
Technical Data
Document Number: AFT23H160--25S
Rev. 0, 11/2015
RF Power LDMOS Transistor
N--Channel Enhancement--Mode Lateral MOSFET
AFT23H160--25SR3
This 32 W asymmetrical Doherty RF power LDMOS transistor is designed for
cellular base station applications covering the frequency range of 2300 to
2400 MHz.
2300 MHz
 Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQA = 450 mA, VGSB = 0.6 Vdc, Pout = 32 W Avg., Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
D
(%)
Output PAR
(dB)
ACPR
(dBc)
2300 MHz
16.7
46.6
8.0
–31.7
2350 MHz
16.9
46.4
7.7
–32.8
2400 MHz
16.8
46.3
7.6
–34.1
2300–2400 MHz, 32 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTOR
Features
 Advanced High Performance In--Package Doherty
 Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
 Designed for Digital Predistortion Error Correction Systems
NI--880XS--4L4S
N.C. 1
8 VBWA(1)
Carrier
RFinA/VGSA 2
7 RFoutA/VDSA
RFinB/VGSB 3
6 RFoutB/VDSB
N.C. 4
Peaking
5 VBWB(1)
(Top View)
Figure 1. Pin Connections
1. Device cannot operate with VDD current
supplied through pin 5 and pin 8.
 Freescale Semiconductor, Inc., 2015. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFT23H160--25SR3
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain--Source Voltage
Rating
VDSS
–0.5, +65
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
TJ
–40 to +225
C
Operating Junction Temperature Range
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 72C, 32 W Avg., W--CDMA, 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc,
2350 MHz
Symbol
Value (2,3)
Unit
RJC
0.40
C/W
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2
Machine Model (per EIA/JESD22--A115)
B
Charge Device Model (per JESD22--C101)
IV
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 80 Adc)
VGS(th)
0.8
1.2
1.6
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 450 mAdc, Measured in Functional Test)
VGSA(Q)
1.4
1.8
2.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 0.8 Adc)
VDS(on)
0.1
0.15
0.3
Vdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 120 Adc)
VGS(th)
0.8
1.2
1.6
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 1.2 Adc)
VDS(on)
0.1
0.15
0.3
Vdc
Characteristic
Off Characteristics
(4)
On Characteristics -- Side A, Carrier
On Characteristics -- Side B, Peaking
1.
2.
3.
4.
Continuous use at maximum temperature will affect MTTF.
MTTF calculator available at http://www.freescale.com/rf/calculators.
Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.
Each side of device measured separately.
(continued)
AFT23H160--25SR3
2
RF Device Data
Freescale Semiconductor, Inc.
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (1,2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc, Pout = 32 W Avg.,
f = 2300 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in
3.84 MHz Channel Bandwidth @ 5 MHz Offset.
Power Gain
Gps
15.3
16.7
18.3
dB
Drain Efficiency
D
43.0
46.6
—
%
PAR
7.4
8.0
—
dB
ACPR
—
–31.7
–28.0
dBc
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Load Mismatch (2) (In Freescale Doherty Test Fixture, 50 ohm system) IDQA = 450 mA, VGSB = 0.6 Vdc, f = 2300 MHz
No Device Degradation
VSWR 10:1 at 32 Vdc, 224 W CW Output Power
(3 dB Input Overdrive from 114 W CW Rated Power)
Typical Performance (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc,
2300–2400 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
114
—
W
Pout @ 3 dB Compression Point (3)
P3dB
—
203
—
W

—
–14
—

VBWres
—
95
—
MHz
Gain Flatness in 100 MHz Bandwidth @ Pout = 32 W Avg.
GF
—
1.3
—
dB
Gain Variation over Temperature
(–30C to +85C)
G
—
0.008
—
dB/C
P1dB
—
0.008
—
dB/C
AM/PM
(Maximum value measured at the P3dB compression point across
the 2300–2400 MHz frequency range)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(–30C to +85C)
Table 5. Ordering Information
Device
AFT23H160--25SR3
Tape and Reel Information
R3 Suffix = 250 Units, 56 mm Tape Width, 13--inch Reel
Package
NI--880XS--4L4S
1. Part internally matched both on input and output.
2. Measurements made with device in an asymmetrical Doherty configuration.
3. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
AFT23H160--25SR3
RF Device Data
Freescale Semiconductor, Inc.
3
VGGA
VDDA
C17
C13
C1 C2
C15
R2
C3
Z1
R1
C5
C16
C7
CUT OUT AREA
C4
C
P
D62543
C8
C9
C10
C11
R3
C6
C18
C19
AFT23H160--25S
Rev. 2
C14
C12
C20
VDDB
VGGB
Figure 2. AFT23H160--25SR3 Test Circuit Component Layout
Table 6. AFT23H160--25SR3 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C4, C5, C6, C7, C12
8.2 pF Chip Capacitors
ATC600F8R2BT250XT
ATC
C2, C3
0.2 pF Chip Capacitors
ATC600F0R2BT250XT
ATC
C8, C11
0.9 pF Chip Capacitors
ATC600F0R9BT250XT
ATC
C9
12 pF Chip Capacitor
ATC600F12R0BT250XT
ATC
C10
5.6 pF Chip Capacitor
ATC600F5R6BT250XT
ATC
C13, C14, C15, C16, C18,
C19
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C17, C20
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26
Multicomp
R1
50 , 10 W Termination
CW12010T0050GBK
ATC
R2, R3
5.9 , 1/4 W Chip Resistors
CRCW12065R9FKEA
Vishay
Z1
2300–2700 MHz Band, 90, 5 dB Directional Coupler
X3C25P1-05S
Anaren
PCB
Rogers RO4350B, 0.020, r = 3.66
D62543
MTL
AFT23H160--25SR3
4
RF Device Data
Freescale Semiconductor, Inc.
45.8
45.6
D
16.5
45.4
45.2
16.4
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
16.3
16.2
Gps
16.1
–30
–1.6
–31
–1.8
ACPR (dBc)
Gps, POWER GAIN (dB)
V = 28 Vdc, P = 32 W (Avg.), IDQA = 450 mA
16.7 VDD = 0.6 Vdc, out
Single--Carrier W--CDMA
GSB
16.6 3.84 MHz Channel Bandwidth
–32
ACPR
16
–33
PARC
15.9
15.8
2290
2305
2320
–34
2335 2350 2365
f, FREQUENCY (MHz)
2380
2395
–2
–2.2
–2.4
PARC (dB)
46
16.8
D, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
–2.6
–35
2410
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 32 Watts Avg.
–10
VDD = 28 Vdc, Pout = 64 W (PEP), IDQA = 450 mA
VGSB = 0.6 Vdc, Two--Tone Measurements
(f1 + f2)/2 = Center Frequency of 2350 MHz
–20
IM3--U
–30
IM3--L
–40
IM5--U
IM5--L
–50
IM7--U
–60
1
IM7--L
10
100
200
TWO--TONE SPACING (MHz)
18
0
17.5
17
16.5
16
15.5
VDD = 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc
f = 2350 MHz, Single--Carrier W--CDMA
ACPR
55
–25
50
–30
D
45
–1
–2
–1 dB = 20.47 W
–2 dB = 30.22 W
40
–3 dB = 41.27 W
–3
–4
–5
10
35
PARC
3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB
@ 0.01% Probability on CCDF
20
30
40
Pout, OUTPUT POWER (WATTS)
Gps
50
–35
–40
ACPR (dBc)
1
D DRAIN EFFICIENCY (%)
18.5
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 4. Intermodulation Distortion Products
versus Two--Tone Spacing
–45
30
–50
25
60
–55
Figure 5. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
AFT23H160--25SR3
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
Gps, POWER GAIN (dB)
18
D
Gps
16
2300 MHz
2400 MHz 2350 MHz
14
2300 MHz
2350 MHz
ACPR
2400 MHz
12
0
50
–10
40
30
20
VDD = 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc
Single--Carrier W--CDMA, 3.84 MHz Channel 10
Bandwidth, Input Signal PAR = 9.9 dB @
0.01% Probability on CCDF
0
10
100
Pout, OUTPUT POWER (WATTS) AVG.
10
8
2300 MHz
60
1
–20
–30
–40
ACPR (dBc)
2350 MHz
2400 MHz
D, DRAIN EFFICIENCY (%)
20
–50
–60
Figure 6. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
20
18
Gain
GAIN (dB)
16
14
VDD = 28 Vdc
Pin = 0 dBm
IDQA = 450 mA
VGSB = 0.6 Vdc
12
10
8
2000
2100
2200
2300 2400 2500
f, FREQUENCY (MHz)
2600
2700
2800
Figure 7. Broadband Frequency Response
AFT23H160--25SR3
6
RF Device Data
Freescale Semiconductor, Inc.
Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQA = 493 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
()
Zin
()
2300
7.70 – j15.4
7.58 + j14.9
2350
11.0 – j16.4
10.9 + j15.6
2400
17.1 – j18.0
16.9 + j15.7
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
5.12 – j7.00
18.5
49.4
87
53.6
–12
5.00 – j7.12
18.5
49.4
87
52.7
–12
4.90 – j7.21
18.5
49.4
87
53.6
–13
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2300
7.70 – j15.4
7.82 + j15.8
4.96 – j7.92
16.2
50.2
105
54.1
–16
2350
11.0 – j16.4
11.8 + j16.8
4.97 – j7.93
16.3
50.2
105
54.2
–17
2400
17.1 – j18.0
19.0 + j16.8
4.98 – j8.06
16.3
50.2
104
53.8
–18
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 8. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning
VDD = 28 Vdc, IDQA = 493 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload (1)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2300
7.70 – j15.4
7.53 + j15.5
11.5 – j2.65
21.0
47.3
54
63.3
–19
2350
11.0 – j16.4
11.0 + j16.3
9.63 – j2.57
20.9
47.5
56
63.1
–19
2400
17.1 – j18.0
17.2 + j16.5
7.79 – j3.03
20.6
47.9
61
63.3
–19
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
()
Zin
()
2300
7.70 – j15.4
7.57 + j16.1
Zload
()
(2)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
9.19 – j4.55
18.4
48.9
78
63.7
–23
2350
11.0 – j16.4
11.6 + j17.4
8.35 – j3.56
18.5
48.7
74
63.7
–25
2400
17.1 – j18.0
19.0 + j17.7
7.42 – j3.66
18.4
48.8
76
64.0
–26
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT23H160--25SR3
RF Device Data
Freescale Semiconductor, Inc.
7
Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, VGSB = 0.6 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
()
Zin
()
2300
7.70 – j15.4
6.47 + j15.8
2350
11.0 – j16.4
9.78 + j17.0
2400
16.7 – j15.9
15.4 + j17.5
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
4.76 – j6.72
13.4
51.0
125
53.0
–23
4.63 – j6.66
13.5
51.0
126
53.5
–24
4.47 – j6.69
13.6
51.0
126
54.2
–25
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2300
7.70 – j15.4
6.99 + j16.7
4.85 – j7.29
11.2
51.8
150
54.6
–29
2350
11.0 – j16.4
11.1 + j18.0
4.82 – j7.32
11.3
51.7
149
54.5
–31
2400
16.7 – j15.9
18.2 + j17.9
4.82 – j7.44
11.5
51.7
149
54.8
–31
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 10. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning
VDD = 28 Vdc, VGSB = 0.6 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload (1)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2300
7.70 – j15.4
5.61 + j15.7
8.65 – j1.94
14.4
49.4
88
64.4
–27
2350
11.0 – j16.4
8.68 + j17.3
7.79 – j2.72
14.5
49.7
92
64.5
–28
2400
16.7 – j15.9
13.9 + j18.5
6.48 – j3.10
14.6
49.8
96
64.5
–28
Max Drain Efficiency
P3dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
9.88 – j3.77
12.3
50.4
109
64.2
–33
10.0 + j18.4
8.16 – j2.83
12.4
50.2
106
64.2
–36
16.8 + j19.2
6.75 – j3.16
12.6
50.4
110
64.2
–37
f
(MHz)
Zsource
()
Zin
()
2300
7.70 – j15.4
6.34 + j16.7
2350
11.0 – j16.4
2400
16.7 – j15.9
Zload
()
(2)
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT23H160--25SR3
8
RF Device Data
Freescale Semiconductor, Inc.
P1dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2350 MHz
2
2
45.5
0
0
–2
IMAGINARY ()
IMAGINARY ()
46
E
46.5
–4
47.5
47
–6
49
P
–2
–4
62
–6
48
48.5
–8
–10
–10
4
6
8
14
10
12
REAL ()
16
18
56
48 52
50 54 56
2
6
4
2
2
21.5
8
21
–4
18.5
–6
19
18
–10
2
4
–2
6
19.5
8
10
12
REAL ()
–16
–6
P
14
16
18
Figure 10. P1dB Load Pull Gain Contours (dB)
NOTE:
–18
–4
–8
20
18
–20
E
20.5
P
–8
16
–28 –26
–24
0
IMAGINARY ()
IMAGINARY ()
E
14
10
12
REAL ()
–22
–2
52
54
Figure 9. P1dB Load Pull Efficiency Contours (%)
Figure 8. P1dB Load Pull Output Power Contours (dBm)
0
58
60
P
–8
2
E
–10
–14
–12
2
4
6
8
10
12
REAL ()
14
16
18
Figure 11. P1dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT23H160--25SR3
RF Device Data
Freescale Semiconductor, Inc.
9
P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2350 MHz
2
2
46.5
46
47
0
47.5
–2
48
E
–4
IMAGINARY ()
IMAGINARY ()
0
48.5
–6
–8
50
49
49.5
2
4
6
12
8
10
REAL ()
14
16
–12
60
58
P
56
52
48 50
2
4
54
6
8
10
REAL ()
12
2
19.5
0
52
14
–30
–28
0
–26
–2
IMAGINARY ()
–2
19
E
–4
–6
18.5
–8
P
–10
2
4
16
17
15.5
16.5
6
17.5
8
10
REAL ()
–24
E
–4
–22
–6
–20
–8
18
P
–18
–10
12
14
16
Figure 14. P3dB Load Pull Gain Contours (dB)
NOTE:
16
Figure 13. P3dB Load Pull Efficiency Contours (%)
2
IMAGINARY ()
62
–6
–10
Figure 12. P3dB Load Pull Output Power Contours (dBm)
–12
E
–4
–8
P
–10
–12
–2
–12
–16
2
4
6
8
10
REAL ()
12
14
16
Figure 15. P3dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT23H160--25SR3
10
RF Device Data
Freescale Semiconductor, Inc.
P1dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2350 MHz
2
0
48
0
48.5
49
–2
E
IMAGINARY ()
IMAGINARY ()
2
47.5
47
49.5
–4
–6
P
50
50.5
–8
–10
49
–4
62
60
–6
2
3
4
5
6
8
7
REAL ()
9
10
11
12
13
–10
58
P
56
54
52
48
2
3
4
5
6
2
0
–38
–36
IMAGINARY ()
E
14.5
–4
–6
–8
11
3
4
5
6
7
10
50
11
12
13
–30
–28
–2
E
–26
–4
–6
–24
P
–8
13.5
13
12.5
10.5 11.5
2
14
P
12
9
–32
–34
0
–2
7
8
REAL ()
Figure 17. P1dB Load Pull Efficiency Contours (%)
2
IMAGINARY ()
E 64
–8
Figure 16. P1dB Load Pull Output Power Contours (dBm)
–10
64
–2
8
9
10
11
12
13
–10
2
3
4
5
6
7
8
9
10
11
12
REAL ()
REAL ()
Figure 18. P1dB Load Pull Gain Contours (dB)
Figure 19. P1dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
13
Gain
Drain Efficiency
Linearity
Output Power
AFT23H160--25SR3
RF Device Data
Freescale Semiconductor, Inc.
11
P3dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2350 MHz
2
2
47.5 48
49
49.5
–2
EE
50
–4
–6
51
51.5
PP
–8
50.5
E
–4
–12
8
10
REAL ()
12
14
16
2
2
0
0
–2
–2
12.5
E
–4
–6
P
–8
9.5
–10
–12
12
8.5
2
4
6
50
48
2
4
6
8
10
REAL ()
12
14
16
–42
–38
–40
–36
–34
–32
E
–4
–30
–6
P
–28
–10
11
10
9
52
–8
11.5
10.5
54
Figure 21. P3dB Load Pull Efficiency Contours (%)
IMAGINARY ()
IMAGINARY ()
Figure 20. P3dB Load Pull Output Power Contours (dBm)
58
56
P
–8
–12
6
60
–6
–10
4
62
–2
–10
2
52
0
IMAGINARY ()
IMAGINARY ()
0
48.5
8
10
REAL ()
12
14
16
Figure 22. P3dB Load Pull Gain Contours (dB)
NOTE:
–12
–26
2
4
6
8
10
REAL ()
12
14
16
Figure 23. P3dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT23H160--25SR3
12
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
AFT23H160--25SR3
RF Device Data
Freescale Semiconductor, Inc.
13
AFT23H160--25SR3
14
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 s2p File
Development Tools
 Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.freescale.com/rf
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Nov. 2015
Description
 Initial Release of Data Sheet
AFT23H160--25SR3
RF Device Data
Freescale Semiconductor, Inc.
15
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2015 Freescale Semiconductor, Inc.
AFT23H160--25SR3
Document Number: AFT23H160--25S
Rev. 0, 11/2015
16
RF Device Data
Freescale Semiconductor, Inc.