Freescale Semiconductor Technical Data Document Number: A2T09VD300N Rev. 0, 8/2015 RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 79 W RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 716 to 960 MHz. A2T09VD300NR1 900 MHz Typical Single--Carrier W--CDMA Performance: VDD = 48 Vdc, IDQ(A+B) = 1200 mA, Pout = 79 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) IRL (dB) 920 MHz 21.5 34.4 7.1 –34.6 –13 940 MHz 21.6 34.7 7.0 –33.5 –14 960 MHz 21.5 34.7 6.8 –33.6 –14 716–960 MHz, 79 W AVG., 48 V AIRFAST RF POWER LDMOS TRANSISTOR TO--270WB--6A PLASTIC 800 MHz Typical Single--Carrier W--CDMA Performance: VDD = 48 Vdc, IDQ(A+B) = 1200 mA, Pout = 79 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) IRL (dB) 790 MHz 21.4 35.3 7.2 –35.1 –18 806 MHz 21.6 35.7 7.1 –34.5 –19 GND 2 821 MHz 21.6 36.0 6.9 –34.3 –16 RFinB/VGSB 3 RFinA/VGSA 1 6 RFoutA/VDSA 5 GND 4 RFoutB/VDSB Features Greater Negative Gate--Source Voltage Range for Improved Class C Operation Designed for Digital Predistortion Error Correction Systems Optimized for Doherty Applications Freescale Semiconductor, Inc., 2015. All rights reserved. RF Device Data Freescale Semiconductor, Inc. (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Pin Connections A2T09VD300NR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS –0.5, +105 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Operating Voltage VDD 55, +0 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C TJ –40 to +225 C Symbol Value (2,3) Unit RJC 0.66 C/W Operating Junction Temperature Range (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 98C, 79 W CW, 48 Vdc, IDQ(A+B) = 1200 mA, 940 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) A Charge Device Model (per JESD22--C101) IV Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 105 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 55 Vdc, VGS = 0 Vdc) IDSS — — 1 Adc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 116 Adc) VGS(th) 1.3 1.8 2.3 Vdc Gate Quiescent Voltage (VDS = 48 Vdc, IDQ(A+B) = 1200 mAdc) VGS(Q) — 2.5 — Vdc Fixture Gate Quiescent Voltage (5) (VDD = 48 Vdc, IDQ(A+B) = 1200 mAdc, Measured in Functional Test) VGG(Q) 4.0 5.0 6.0 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.16 Adc) VDS(on) 0.1 0.21 0.5 Vdc Characteristic Off Characteristics (4) On Characteristics (4) 1. 2. 3. 4. 5. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.freescale.com/rf/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955. Each side of device measured separately. VGG = 2 VGS(Q). Parameter measured on Freescale Test Fixture, due to resistor divider network on the board. Refer to Test Fixture Layout. (continued) A2T09VD300NR1 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (1,2) (In Freescale Test Fixture, 50 ohm system) VDD = 48 Vdc, IDQ(A+B) = 1200 mA, Pout = 79 W Avg., f = 920 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Power Gain Gps 20.0 21.5 23.0 dB Drain Efficiency D 31.5 34.4 — % Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio PAR 6.6 7.1 — dB ACPR — –34.6 –32.0 dBc IRL — –13 –10 dB Input Return Loss Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQ(A+B) = 1200 mA, f = 940 MHz, 12 sec(on), 10% Cycle VSWR 10:1 at 52 Vdc, 420 W Pulsed CW Output Power (3 dB Input Overdrive from 363 W Pulsed CW Rated Power) No Device Degradation Typical Performance (In Freescale Test Fixture, 50 ohm system) VDD = 48 Vdc, IDQ(A+B) = 1200 mA, 920–960 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 250 — W Pout @ 3 dB Compression Point (3) P3dB — 398 — W — –19 — VBWres — 90 — MHz Gain Flatness in 40 MHz Bandwidth @ Pout = 79 W Avg. GF — 0.5 — dB Gain Variation over Temperature (–30C to +85C) G — 0.012 — dB/C P1dB — 0.001 — dB/C AM/PM (Maximum value measured at the P3dB compression point across the 920–960 MHz frequency range) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (–30C to +85C) Table 6. Ordering Information Device A2T09VD300NR1 Tape and Reel Information R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel Package TO--270WB--6A 1. Part internally input matched. 2. Measurement made with device in single--ended configuration. 3. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF. A2T09VD300NR1 RF Device Data Freescale Semiconductor, Inc. 3 A2T09VD300N Rev. 0 D60035 VGG R1 C16 R2 C8 VDD C18 R3 C5 C20 C7 C10 C2 CUT OUT AREA C1 C9 C15 C13 C3 C4 C6 C11 C14 C12 C21 R4 C17 C19 Figure 2. A2T09VD300NR1 Test Circuit Component Layout Table 7. A2T09VD300NR1 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C3, C4 3.3 pF Chip Capacitors ATC800B3R3BT500XT ATC C2 2.7 pF Chip Capacitor ATC800B2R7BT500XT ATC C5, C6, C7, C15, C16, C17 47 pF Chip Capacitors ATC800B470JT500XT ATC C8, C9 1 F Chip Capacitors C5750X7R2A105K230KM TDK C10, C11 15 pF Chip Capacitors ATC800B150JT500XT ATC C12, C13 3 pF Chip Capacitors ATC800B3R0BT500XT ATC C14 5.6 pF Chip Capacitor ATC800B5R6BT500XT ATC C18, C19 10 F Chip Capacitors C5750X7S2A106M230KB TDK C20, C21 220 F, 100 V Electrolytic Capacitors MCGPR100V227M16X26--RH Multicomp R1, R2 1000 , 1/4 W Chip Resistors CRCW12061K00FKEA Vishay R3, R4 10 , 1/4 W Chip Resistors CRCW120610R0JNEA Vishay PCB Rogers RO4350B, 0.020, r = 3.66 D60035 MTL A2T09VD300NR1 4 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS 30 D 21 Gps PARC 20 25 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 20.5 ACPR 19.5 –33 5 –34 0 –35 19 –36 IRL 18.5 18 820 840 860 –37 880 900 920 f, FREQUENCY (MHz) 940 –38 980 960 –5 –10 –15 –20 –2.4 –2.6 –2.8 –3 –3.2 PARC (dB) 21.5 35 IRL, INPUT RETURN LOSS (dB) 40 ACPR (dBc) Gps, POWER GAIN (dB) 22.5 VDD = 48 Vdc, Pout = 79 W (Avg.), IDQ(A+B) = 1200 mA Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth 22 D, DRAIN EFFICIENCY (%) 45 23 –3.4 IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 79 Watts Avg. –10 VDD = 48 Vdc, Pout = 158 W (PEP) IDQ(A+B) = 1200 mA, Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 940 MHz –20 IM3--U –30 IM3--L IM5--U –40 IM5--L IM7--U –50 –60 IM7--L 1 200 100 10 TWO--TONE SPACING (MHz) 23 0 22.5 22 21.5 21 20.5 VDD = 48 Vdc, IDQ(A+B) = 1200 mA, f = 940 MHz Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF –1 –3 ACPR –5 20 Gps –3 dB = 79.1 W 40 40 –30 30 –2 dB = 59.7 W –4 –25 35 D –1 dB = 41.9 W –2 45 60 80 Pout, OUTPUT POWER (WATTS) 25 –35 –40 ACPR (dBc) 1 D DRAIN EFFICIENCY (%) 23.5 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) Figure 4. Intermodulation Distortion Products versus Two--Tone Spacing –45 20 –50 15 120 –55 PARC 100 Figure 5. Output Peak--to--Average Ratio Compression (PARC) versus Output Power A2T09VD300NR1 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS Gps, POWER GAIN (dB) 24 D 22 20 920 MHz 960 MHz 940 MHz 18 16 14 Gps 940 MHz 960 MHz 920 MHz ACPR 10 Pout, OUTPUT POWER (WATTS) AVG. 0 50 –10 40 30 20 10 920 MHz 960 MHz 940 MHz 1 60 100 0 200 –20 –30 –40 ACPR (dBc) VDD = 48 Vdc, IDQ(A+B) = 1200 mA, Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF D, DRAIN EFFICIENCY (%) 26 –50 –60 Figure 6. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 26 5 VDD = 48 Vdc Pin = 0 dBm IDQ(A+B) = 1200 mA 24 0 –5 Gain –10 20 18 IRL (dB) GAIN (dB) 22 –15 IRL 16 14 600 –20 700 800 900 1000 1100 f, FREQUENCY (MHz) 1200 1300 –25 1400 Figure 7. Broadband Frequency Response A2T09VD300NR1 6 RF Device Data Freescale Semiconductor, Inc. Table 8. Single Side Load Pull Performance — Maximum Power Tuning VDD = 48 Vdc, IDQ = 582 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () 920 2.52 – j4.77 2.79 + j5.52 940 2.87 – j5.36 2.92 + j6.17 960 3.52 – j5.36 2.87 + j6.65 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 2.53 + j0.15 20.3 53.1 202 60.0 –13 2.46 – j0.13 20.3 53.1 202 60.3 –12 2.24 – j0.21 20.3 53.0 200 60.3 –11 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 920 2.52 – j4.77 2.58 + j5.79 2.76 – j0.03 18.1 53.8 239 61.3 –18 940 2.87 – j5.36 2.68 + j6.48 2.68 – j0.25 18.2 53.8 238 61.5 –17 960 3.52 – j5.36 2.65 + j7.01 2.60 – j0.48 18.1 53.7 236 60.8 –16 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 9. Single Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 48 Vdc, IDQ = 582 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 920 2.52 – j4.77 2.43 + j5.57 1.96 + j2.30 22.7 50.9 124 70.1 –18 940 2.87 – j5.36 2.56 + j6.19 1.89 + j2.08 22.8 50.8 121 70.8 –18 960 3.52 – j5.36 2.55 + j6.68 1.83 + j1.71 22.4 51.0 125 70.2 –16 Max Drain Efficiency P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 2.31 + j1.99 20.3 52.3 170 71.6 –25 2.45 + j6.49 2.15 + j1.71 20.3 52.2 167 71.5 –25 2.42 + j7.01 2.02 + j1.46 20.2 52.2 165 71.2 –24 f (MHz) Zsource () Zin () 920 2.52 – j4.77 2.37 + j5.85 940 2.87 – j5.36 960 3.52 – j5.36 Zload () (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2T09VD300NR1 RF Device Data Freescale Semiconductor, Inc. 7 P1dB – TYPICAL LOAD PULL CONTOURS — 940 MHz 4 4 50.5 E 2 50 51 51.5 52 1 52.5 0 P 1.5 1 2 2.5 4 3 3.5 REAL () 4.5 68 64 66 62 0 –2 5 60 P 58 56 54 1.5 1 2 2.5 3 3.5 REAL () 4 4 23 23.5 22 E 2 21.5 21 1 20.5 0 P 20 –1 1.5 2 2.5 –10 3 3.5 REAL () 4 –22 2 –20 1 –14 E –12 –18 –16 0 P –1 19.5 1 5 3 22.5 IMAGINARY () 3 4.5 Figure 9. P1dB Load Pull Efficiency Contours (%) 4 IMAGINARY () 70 1 –1 Figure 8. P1dB Load Pull Output Power Contours (dBm) –2 54 E 2 53 –1 –2 56 3 IMAGINARY () IMAGINARY () 49.5 49 3 4.5 5 Figure 10. P1dB Load Pull Gain Contours (dB) NOTE: –2 1 1.5 2 2.5 3 3.5 REAL () 4 4.5 5 Figure 11. P1dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T09VD300NR1 8 RF Device Data Freescale Semiconductor, Inc. P3dB – TYPICAL LOAD PULL CONTOURS — 940 MHz 4 4 50 50.5 51 51.5 58 52 2 52.5 E 1 53 0 P –1 –2 1 52 1.5 2 2.5 3 3.5 REAL () 4 4.5 66 0 64 60 62 P 1 1.5 3 20.5 21 2 19.5 20 E IMAGINARY () IMAGINARY () 68 58 56 2 2.5 4 3 3.5 REAL () 4.5 5 4 21.5 19 1 18.5 0 P 18 –1 1.5 2 2.5 3 3.5 REAL () 4 4.5 5 Figure 14. P3dB Load Pull Gain Contours (dB) NOTE: –26 –22 –28 –24 2 –20 –18 –14 –16 E 1 0 P –1 17.5 1 70 Figure 13. P3dB Load Pull Efficiency Contours (%) 3 –2 E 1 –2 5 Figure 12. P3dB Load Pull Output Power Contours (dBm) 4 2 –1 53.5 51.5 56 3 IMAGINARY () IMAGINARY () 3 –2 1 1.5 2 2.5 3 3.5 REAL () 4 4.5 5 Figure 15. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T09VD300NR1 RF Device Data Freescale Semiconductor, Inc. 9 A2T09VD300N Rev. 0 D60035 VGG R1 C16 R2 C8 VDD C18 R3 C5 C20 C7 C3 C22 C4 C23 C2 C9 C6 C13 CUT OUT AREA C1 C15 C24 C10 C11 C14 C12 C21 R4 C17 C19 Figure 16. A2T09VD300NR1 Test Circuit Component Layout — 790–821 MHz Table 10. A2T09VD300NR1 Test Circuit Component Designations and Values — 790–821 MHz Part Description Part Number Manufacturer C1, C3, C4, C22, C23 3.3 pF Chip Capacitors ATC800B3R3BT500XT ATC C2 3.9 pF Chip Capacitor ATC800B3R9BT500XT ATC C5, C6, C7, C15, C16, C17 47 pF Chip Capacitors ATC800B470JT500XT ATC C8, C9 1 F Chip Capacitors C5750X7R2A105K230KM TDK C10, C11 18 pF Chip Capacitors ATC800B180JT500XT ATC C12, C13 3.6 pF Chip Capacitors ATC800B3R6BT500XT ATC C14 6.8 pF Chip Capacitor ATC800B6R8BT500XT ATC C18, C19 10 F Chip Capacitors C5750X7S2A106M230KB TDK C20, C21 220 F, 100 V Electrolytic Capacitors MCGPR100V227M16X26--RH Multicomp C24 0.5 pF Chip Capacitor ATC800B0R5BT500XT ATC R1, R2 1000 , 1/4 W Chip Resistors CRCW12061K00FKEA Vishay R3, R4 10 , 1/4 W Chip Resistors CRCW120610R0JNEA Vishay PCB Rogers RO4350B, 0.020, r = 3.66 D60035 MTL A2T09VD300NR1 10 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 790–821 MHz 35 D 23 22 30 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF Gps 25 21 20 PARC 19 800 –4 –36 IRL 780 –30 –34 17 16 760 0 –32 ACPR 18 –28 820 840 860 880 900 f, FREQUENCY (MHz) –12 –16 –20 –38 960 940 920 –8 –2 –2.5 –3 –3.5 –4 PARC (dB) 40 IRL, INPUT RETURN LOSS (dB) 24 D, DRAIN EFFICIENCY (%) 25 Gps, POWER GAIN (dB) 45 VDD = 48 Vdc, Pout = 79 W (Avg.), IDQ(A+B) = 1200 mA Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth ACPR (dBc) 26 –4.5 Figure 17. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 79 Watts Avg. Gps, POWER GAIN (dB) 24 Gps 22 790 MHz 20 806 MHz 821 MHz D 806 MHz 14 –10 40 20 790 MHz 10 –20 –30 –40 –50 806 MHz 10 Pout, OUTPUT POWER (WATTS) AVG. 1 50 ACPR 16 821 MHz 0 30 821 MHz 790 MHz 18 60 ACPR (dBc) VDD = 48 Vdc, IDQ(A+B) = 1200 mA, Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF D, DRAIN EFFICIENCY (%) 26 100 0 200 –60 Figure 18. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power GAIN (dB) 22 Gain 5 VDD = 48 Vdc Pin = 0 dBm 0 IDQ(A+B) = 1200 mA 20 –5 18 –10 16 –15 14 IRL (dB) 24 –20 IRL 12 500 600 700 800 900 1000 f, FREQUENCY (MHz) 1100 1200 –25 1300 Figure 19. Broadband Frequency Response A2T09VD300NR1 RF Device Data Freescale Semiconductor, Inc. 11 Table 11. Single Side Load Pull Performance — Maximum Power Tuning VDD = 48 Vdc, IDQ = 588 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () 790 3.02 – j2.72 2.66 + j3.14 806 3.29 – j2.85 2.58 + j3.43 821 3.26 – j3.34 2.47 + j3.75 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 2.84 + j1.14 19.9 53.5 223 63.7 –10 2.70 + j1.24 20.1 53.4 218 62.9 –11 2.65 + j1.27 20.3 53.3 215 63.3 –11 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 790 3.02 – j2.72 2.48 + j3.26 2.94 + j1.04 17.9 54.1 259 65.9 –14 806 3.29 – j2.85 2.42 + j3.58 2.99 + j1.01 18.0 54.1 255 64.8 –14 821 3.26 – j3.34 2.31 + j3.89 2.82 + j0.99 18.0 54.0 253 64.3 –14 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 12. Single Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 48 Vdc, IDQ = 588 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 790 3.02 – j2.72 2.12 + j3.24 2.51 + j4.27 22.9 50.6 115 76.2 –17 806 3.29 – j2.85 2.22 + j3.55 2.82 + j3.70 22.4 51.5 141 74.7 –15 821 3.26 – j3.34 2.19 + j3.86 2.83 + j3.42 22.3 51.7 148 74.1 –15 Max Drain Efficiency P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 3.54 + j3.22 19.7 52.8 189 74.2 –18 2.14 + j3.73 3.06 + j3.78 20.3 52.1 164 74.5 –20 2.07 + j4.04 2.96 + j3.63 20.4 52.2 165 74.8 –21 f (MHz) Zsource () Zin () 790 3.02 – j2.72 2.29 + j3.37 806 3.29 – j2.85 821 3.26 – j3.34 Zload () (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2T09VD300NR1 12 RF Device Data Freescale Semiconductor, Inc. P1dB – TYPICAL LOAD PULL CONTOURS — 806 MHz 6 6 49.5 5 50.5 4 51 51.5 E 3 52 52.5 2 53 P 1 1 1.5 2 3 2.5 3.5 4 REAL () 4.5 5 5.5 3 72 70 68 66 64 2 –1 6 62 P 60 58 1 1.5 2 3 2.5 3.5 4 REAL () 4.5 5 5.5 6 Figure 21. P1dB Load Pull Efficiency Contours (%) 6 6 5 23.5 4 5 22.5 23 E 22 3 IMAGINARY () IMAGINARY () E 0 Figure 20. P1dB Load Pull Output Power Contours (dBm) 21.5 21 2 20.5 P 1 19.5 0 –1 60 74 4 1 0 –1 58 5 IMAGINARY () IMAGINARY () 50 1 1.5 2 2.5 3 3.5 4 REAL () –18 –16 4 E –14 3 –12 2 20 –10 P 1 0 4.5 5 5.5 6 Figure 22. P1dB Load Pull Gain Contours (dB) NOTE: –1 1 1.5 2 2.5 3 3.5 4 REAL () 4.5 5 5.5 6 Figure 23. P1dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T09VD300NR1 RF Device Data Freescale Semiconductor, Inc. 13 P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 806 MHz 7 7 5 IMAGINARY () 50.5 50 6 51 5 51.5 4 52 E 52.5 3 53 2 1 P 2 1 3 4 REAL () 20 6 21 20.5 19 18.5 2 –1 18 P 2 3 1 2 4 REAL () 60 62 58 3 4 REAL () 6 5 7 –8 –20 –18 –16 –14 –12 –10 –24 –22 4 E 3 2 1 17.5 1 66 5 3 0 64 P 6 E 1 68 7 19.5 21.5 4 70 Figure 25. P3dB Load Pull Efficiency Contours (%) IMAGINARY () IMAGINARY () 5 74 72 2 –1 7 Figure 24. P3dB Load Pull Output Power Contours (dBm) 7 E 3 0 6 5 4 1 53.5 54 0 –1 IMAGINARY () 6 P 0 5 6 7 –1 1 2 3 4 5 6 7 REAL () Figure 26. P3dB Load Pull Gain Contours (dB) NOTE: Figure 27. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2T09VD300NR1 14 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS A2T09VD300NR1 RF Device Data Freescale Semiconductor, Inc. 15 A2T09VD300NR1 16 RF Device Data Freescale Semiconductor, Inc. A2T09VD300NR1 RF Device Data Freescale Semiconductor, Inc. 17 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator RF High Power Model s2p File Development Tools Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.freescale.com/rf 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Aug. 2015 Description Initial Release of Data Sheet A2T09VD300NR1 18 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2015 Freescale Semiconductor, Inc. A2T09VD300NR1 Document Number: RF Device Data A2T09VD300N Rev. 0, 8/2015Semiconductor, Inc. Freescale 19