Data Sheet

Freescale Semiconductor
Technical Data
Document Number: AFT09S200W02S
Rev. 0, 4/2015
RF Power LDMOS Transistor
N--Channel Enhancement--Mode Lateral MOSFET
This 56 W RF power LDMOS transistor is designed for cellular base station
applications requiring very wide instantaneous bandwidth capability covering
the frequency range of 920 to 960 MHz.
 Typical Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQ = 1400 mA, Pout = 56 W Avg., Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF.
Frequency
Gps
(dB)
D
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
920 MHz
19.6
34.1
6.9
–35.2
–28
940 MHz
19.6
34.7
7.0
–35.4
–18
960 MHz
19.4
35.6
6.8
–34.7
–12
AFT09S200W02SR3
920–960 MHz, 56 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTOR
Features
NI--780S--2L
 Designed for Wide Instantaneous Bandwidth Applications
 Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
 Designed for Digital Predistortion Error Correction Systems
 Able to Withstand Extremely High Output VSWR and Broadband
Operating Conditions
 Optimized for Doherty Applications
1 RFout/VDS
RFin/VGS 2
(Top View)
Figure 1. Pin Connections
 Freescale Semiconductor, Inc., 2015. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFT09S200W02SR3
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +70
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +125
C
Operating Junction Temperature Range (1,2)
TJ
–40 to +225
C
CW
226
1.1
W
W/C
Symbol
Value (2,3)
Unit
RJC
0.34
C/W
CW Operation @ TC = 25C
Derate above 25C
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 81C, 56 W CW, 28 Vdc, IDQ = 1400 mA, 940 MHz
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2
Machine Model (per EIA/JESD22--A115)
B
Charge Device Model (per JESD22--C101)
IV
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 70 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
5
Adc
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 270 Adc)
VGS(th)
1.0
1.5
2.0
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, ID = 1400 mAdc)
VGS(Q)
—
2.15
—
Vdc
Fixture Gate Quiescent Voltage (4)
(VDD = 28 Vdc, ID = 1400 mAdc, Measured in Functional Test)
VGG(Q)
3.2
4.3
5.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 2.7 Adc)
VDS(on)
0.1
0.26
0.3
Vdc
Characteristic
Off Characteristics
On Characteristics
1.
2.
3.
4.
Continuous use at maximum temperature will affect MTTF.
MTTF calculator available at http://www.freescale.com/rf/calculators.
Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.
VGG = 2  VGS(Q). Parameter measured on Freescale Text Fixture, due to resistor divider network on the board. Refer to Test Fixture Layout.
(continued)
AFT09S200W02SR3
2
RF Device Data
Freescale Semiconductor, Inc.
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, Pout = 56 W Avg., f = 960 MHz,
Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz
Channel Bandwidth @ 5 MHz Offset.
Power Gain
Gps
18.5
19.4
21.5
dB
Drain Efficiency
D
32.5
35.6
—
%
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
PAR
6.3
6.8
—
dB
ACPR
—
–34.7
--33.0
dBc
IRL
—
–12
--9
dB
Input Return Loss
Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQ = 1400 mA, f = 940 MHz
VSWR 10:1 at 32 Vdc, 148 W CW Output Power
(0 dB Input Overdrive from 148 W CW Rated Power)
No Device Degradation
Typical Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, 920–960 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
148
—
W

—
--12
—

VBWres
—
230
—
MHz
Gain Flatness in 40 MHz Bandwidth @ Pout = 56 W Avg.
GF
—
0.3
—
dB
Gain Variation over Temperature
(–30C to +85C)
G
—
0.018
—
dB/C
P1dB
—
0.004
—
dB/C
AM/PM
(Maximum value measured at the P3dB compression point across
the 920–960 MHz frequency range)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(–30C to +85C)
Table 5. Ordering Information
Device
AFT09S200W02SR3
Tape and Reel Information
R3 Suffix = 250 Units, 56 mm Tape Width, 13--inch Reel
Package
NI--780S--2L
1. Part internally matched both on input and output.
AFT09S200W02SR3
RF Device Data
Freescale Semiconductor, Inc.
3
C25
VGG
C2
C10
R1
R2
VDD
C11
C3
C14
C8
C19*
R3
C1*
C7*
R4
CUT OUT AREA
C6*
C17
C20
C23
C16
C21
C22
C24*
C18*
C9
C15
C4
C12
VGG
C13
VDD
C5
AFT09S200W02S
Rev. 0
D60691
*C1, C6, C7, C18, C19 and C24 are mounted vertically.
Figure 2. AFT09S200W02SR3 Test Circuit Component Layout — 920–960 MHz
Table 6. AFT09S200W02SR3 Test Circuit Component Designations and Values — 920–960 MHz
Part
Description
Part Number
Manufacturer
C1, C3, C4, C14, C15, C24
47 pF Chip Capacitors
ATC100B470JT500XT
ATC
C2, C5, C8, C9, C10, C11,
C12, C13
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C6, C7
2.7 pF Chip Capacitors
ATC100B2R7BT500XT
ATC
C16, C17
5.6 pF Chip Capacitors
ATC100B5R6CT500XT
ATC
C18, C19
2.0 pF Chip Capacitors
ATC100B2R0BT500XT
ATC
C20, C21
1.0 pF Chip Capacitors
ATC100B1R0BT500XT
ATC
C22, C23
0.3 pF Chip Capacitors
ATC100B0R3BT500XT
ATC
C25
220 F, 100 V Electrolytic Capacitor
EEV-FK2A221M
Panasonic-ECG
R1, R2
1000 , 1/4 W Chip Resistors
CRCW12061K00FKEA
Vishay
R3, R4
10 , 1/8 W Chip Resistors
RK73H2ATTD10R0F
KOA Speer
PCB
Rogers RO4350B, 0.020, r = 3.66
D60691
MTL
AFT09S200W02SR3
4
RF Device Data
Freescale Semiconductor, Inc.
D
19.6
19.4
19
PARC
18.8
ACPR
18.2
820
IRL
840
860
880
900
920
--28
--0
--30
--6
--32
18.6
18.4
35
34
Gps
19.2
36
940
960
--34
--36
980
--12
--18
--24
--30
--38
--2.5
--3
--3.5
--4
--4.5
PARC (dB)
19.8
37
IRL, INPUT RETURN LOSS (dB)
20
Gps, POWER GAIN (dB)
38
VDD = 28 Vdc, Pout = 56 W (Avg.), IDQ = 1400 mA
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
ACPR (dBc)
20.2
D, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
--5
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 56 Watts Avg.
0
VDD = 28 Vdc, Pout = 82 W (PEP)
IDQ = 1400 mA, Two--Tone Measurements
–15 (f1 + f2)/2 = Center Frequency of 940 MHz
IM3–U
IM3–L
–30
IM5–L
IM5–U
–45
–60
–75
IM7–U IM7–L
1
10
300
100
TWO–TONE SPACING (MHz)
20
0
19.5
19
18.5
18
17.5
VDD = 28 Vdc, IDQ = 1400 mA, f = 940 MHz
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth
--1
--1 dB = 27 W
--3
--5
ACPR
5
20
Gps
50
65
--30
20
PARC
Input Signal PAR = 9.9 dB
@ 0.01% Probability on CCDF
35
50
30
--3 dB = 56 W
--2 dB = 40 W
--4
--25
40
D
--2
60
80
--35
--40
ACPR (dBc)
1
D DRAIN EFFICIENCY (%)
20.5
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 4. Intermodulation Distortion Products
versus Two--Tone Spacing
--45
10
--50
0
--55
95
Pout, OUTPUT POWER (WATTS)
Figure 5. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
AFT09S200W02SR3
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
Gps, POWER GAIN (dB)
20
940 MHz
19 VDD = 28 Vdc, IDQ = 1400 mA, Single--Carrier
W--CDMA, 3.84 MHz Channel Bandwidth
18 Input Signal PAR = 9.9 dB
@ 0.01% Probability on CCDF
17
D
--5
50
--15
40
ACPR
30
20
960 MHz
920 MHz 940 MHz
Gps
16
15
1
60
10
100
10
0
200
--25
--35
--45
ACPR (dBc)
920 MHz
960 MHz
940 MHz
920 MHz
960 MHz
D, DRAIN EFFICIENCY (%)
21
--55
--65
Pout, OUTPUT POWER (WATTS) AVG.
30
10
25
0
20
--10
Gain
15
--20
IRL
10
--30
VDD = 28 Vdc
Pin = 0 dBm
IDQ = 1400 mA
5
0
550
700
850
IRL (dB)
GAIN (dB)
Figure 6. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
--40
1000
1150
1300
--50
1450
f, FREQUENCY (MHz)
Figure 7. Broadband Frequency Response
AFT09S200W02SR3
6
RF Device Data
Freescale Semiconductor, Inc.
Table 7. Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ = 1389 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
0.69 – j1.56
18.5
54.2
266
52.4
–6
2.43 + j4.41
0.69 – j1.61
18.2
54.2
266
52.4
–6
2.83 + j4.76
0.69 – j1.67
18.0
54.1
259
51.9
–6
f
(MHz)
Zsource
()
Zin
()
920
2.13 – j4.05
2.08 + j4.13
940
2.50 – j4.42
960
2.80 – j4.82
Zload
()
(1)
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
920
2.13 – j4.05
2.09 + j4.23
0.65 – j1.63
16.2
55.5
351
56.4
–9
940
2.50 – j4.42
2.45 + j4.52
0.63 – j1.67
15.8
55.5
353
56.1
–9
960
2.80 – j4.82
2.86 + j4.89
0.63 – j1.68
15.6
55.4
348
56.1
–9
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 8. Load Pull Performance — Maximum Drain Efficiency Tuning
VDD = 28 Vdc, IDQ = 1389 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload (1)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
920
2.13 – j4.05
2.09 + j4.20
1.84 – j0.62
22.1
51.6
143
66.4
–13
940
2.50 – j4.42
2.47 + j4.48
1.79 – j0.56
21.9
51.4
137
66.8
–14
960
2.80 – j4.82
2.88 + j4.81
1.69 – j0.72
21.5
51.5
142
65.7
–13
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
()
Zin
()
920
2.13 – j4.05
2.10 + j4.29
940
2.50 – j4.42
2.47 + j4.56
960
2.80 – j4.82
2.90 + j4.92
Zload
()
(2)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
1.65 – j0.75
19.8
52.9
196
70.5
–18
1.56 – j0.87
19.4
53.1
203
70.4
–18
1.54 – j0.90
19.1
53.0
197
69.2
–17
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT09S200W02SR3
RF Device Data
Freescale Semiconductor, Inc.
7
P1dB -- TYPICAL LOAD PULL CONTOURS — 940 MHz
1
1
0.5
0.5
0
0
E
--1
IMAGINARY ()
53.5
54
--1.5
52.5 52
53
51
50
51.5
50.5
IMAGINARY ()
--0.5
--2.5
--2.5
1
2
1.5
2.5
3.5
3
52
56
E
64
--1
--2
0.5
66
--0.5
--2
0
54
--1.5
P
62 60 58
P
50
52
0
0.5
1
2
1.5
2.5
3
3.5
REAL ()
REAL ()
Figure 8. P1dB Load Pull Output Power Contours (dBm)
Figure 9. P1dB Load Pull Efficiency Contours (%)
1
1
0.5
0.5
0
0
23
--0.5
E
22.5
--1
22
--1.5
P
0
0.5
1
1.5
2
2.5
--14
--18
--0.5
E
--12
--1
--10
P
--8
--2
21
20.5
20
19
--16
--1.5
21.5
19.5
--2
--2.5
IMAGINARY ()
IMAGINARY ()
50
3
3.5
--2.5
--6
--4
0
0.5
1
1.5
2
2.5
3
3.5
REAL ()
REAL ()
Figure 10. P1dB Load Pull Gain Contours (dB)
Figure 11. P1dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT09S200W02SR3
8
RF Device Data
Freescale Semiconductor, Inc.
1
1
0.5
0.5
51.5
--0.5
53
55
--1.5
52.5
54.5
53.5
0.5
--0.5
E
--1
1
2
1.5
68
70
66
2.5
--2.5
3.5
3
64
62
P
60
--2
54
0
0
--1.5
P
--2
IMAGINARY ()
52
E
--1
--2.5
IMAGINARY ()
0
56
54
0
0.5
1
58
1.5
2
2.5
54
3
3.5
REAL ()
REAL ()
Figure 12. P3dB Load Pull Output Power Contours (dBm)
Figure 13. P3dB Load Pull Efficiency Contours (%)
1
1
0.5
0.5
0
0
--0.5
20.5
E
--1
20
--1.5
P
--2
--2.5
IMAGINARY ()
IMAGINARY ()
P3dB -- TYPICAL LOAD PULL CONTOURS — 940 MHz
18
17
0
0.5
1
1.5
2
--0.5
2.5
3
3.5
--2.5
--16
--14
E
--1
--12
P
--10
--2
18.5
--20
--18
--1.5
19.5
19
16.5 17.5
--22
--8
--6
0
0.5
1
1.5
2
2.5
3
3.5
REAL ()
REAL ()
Figure 14. P3dB Load Pull Gain Contours (dB)
Figure 15. P3dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT09S200W02SR3
RF Device Data
Freescale Semiconductor, Inc.
9
PACKAGE DIMENSIONS
AFT09S200W02SR3
10
RF Device Data
Freescale Semiconductor, Inc.
AFT09S200W02SR3
RF Device Data
Freescale Semiconductor, Inc.
11
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 .s2p File
Development Tools
 Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.freescale.com/rf
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Apr. 2015
Description
 Initial Release of Data Sheet
AFT09S200W02SR3
12
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2014 Freescale Semiconductor, Inc.
AFT09S200W02SR3
Document
Number:
RF
Device
Data AFT09S200W02S
Rev. 0, 4/2015Semiconductor, Inc.
Freescale
13