Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MW7IC008N
Rev. 3, 12/2013
RF LDMOS Wideband Integrated
Power Amplifier
MW7IC008NT1
The MW7IC008N wideband integrated circuit is designed with on--chip
matching that makes it usable from 20 to 1000 MHz. This multi--stage
structure is rated for 24 to 32 volt operation and covers most narrow
bandwidth communication application formats.
Driver Applications
 Typical CW Performance: VDD = 28 Volts, IDQ1 = 25 mA, IDQ2 = 75 mA
Frequency
Gps
(dB)
PAE
(%)
100 MHz @ 11 W CW
23.5
55
400 MHz @ 9 W CW
22.5
41
900 MHz @ 6.5 W CW
23.5
34
100--1000 MHz, 8 W PEAK, 28 V
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIER
 Capable of Handling 10:1 VSWR, @ 32 Vdc, 900 MHz, Pout = 6.5 Watts CW
(3 dB Input Overdrive from Rated Pout)
 Stable into a 5:1 VSWR. All Spurs Below --60 dBc @ 1 mW to 8 Watts CW
Pout @ 900 MHz
 Typical Pout @ 1 dB Compression Point ≃ 11 Watts CW @ 100 MHz,
9 Watts CW @ 400 MHz, 6.5 Watts CW @ 900 MHz
PQFN 8  8
PLASTIC
NC
VTTS2
RFinS1
RFoutS2/VDS2
RFoutS1/VDS1
RFinS2
Figure 1. Functional Block Diagram
RFinS1
VGS1
24 23 22 21 20 19
7 8 9 10 11 12
18
17
16
15
14
13
NC
NC
NC
NC
NC
RFoutS2/VDS2
NC
NC
VGS2
NC
NC
NC
1
2
3
4
5
6
VGLS2
VGS1
VGLS1
VTTS1
Quiescent Current
Temperature Compensation (1)
NC
NC
VTTS1
RFoutS1/VDS1
RFinS2
NC
VGS2
VTTS2
Features
 Broadband, Single Matching Network from 20 to 1000 MHz
 Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (1)
 Integrated ESD Protection
 In Tape and Reel. T1 Suffix = 1,000 Units, 16 mm Tape Width, 13--inch Reel.
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977 or AN1987.
 Freescale Semiconductor, Inc., 2009, 2011--2013. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MW7IC008NT1
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +65
Vdc
Gate--Source Voltage
VGS
--6.0, +12
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
--65 to +150
C
Operating Junction Temperature
TJ
150
C
CW
11
W
400 MHz CW Operation @ TA = 25C (3)
6
W
900 MHz CW Operation @ TA = 25C (3)
5
W
Pin
27
23
38
dBm
Symbol
Value (1,2)
Unit
100 MHz CW Operation @ TA = 25C
(3)
Input Power
100 MHz
400 MHz
900 MHz
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
(CW Signal @ 100 MHz)
(Case Temperature 82C, Pout = 11 W CW)
(CW Signal @ 400 MHz)
(Case Temperature 87C, Pout = 9 W CW)
(CW Signal @ 900 MHz)
(Case Temperature 86C, Pout = 6.5 W CW)
RJC
C/W
Stage 1, 28 Vdc, IDQ1 = 25 mA
Stage 2, 28 Vdc, IDQ2 = 75 mA
5.3
4.9
Stage 1, 28 Vdc, IDQ1 = 25 mA
Stage 2, 28 Vdc, IDQ2 = 75 mA
4.4
2.7
Stage 1, 28 Vdc, IDQ1 = 25 mA
Stage 2, 28 Vdc, IDQ2 = 75 mA
3.5
3.2
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1B
Machine Model (per EIA/JESD22--A115)
A
Charge Device Model (per JESD22--C101)
III
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
3. CW Ratings at the individual frequencies are limited by a 100--year MTTF requirement. See MTTF calculator (referenced in Note 1).
MW7IC008NT1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
10
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 5.3 Adc)
VGS(th)
1.3
2
2.8
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 25 mAdc, Measured in Functional Test)
VGS(Q)
2
2.8
3.5
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
10
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 23 Adc)
VGS(th)
1.3
2
2.8
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 75 mAdc, Measured in Functional Test)
VGS(Q)
2
2.7
3.5
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 3.6 Adc)
VDS(on)
0.1
0.3
1
Vdc
Characteristic
Stage 1 — Off Characteristics
Stage 1 — On Characteristics
Stage 2 — Off Characteristics
Stage 2 — On Characteristics
Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 25 mA, IDQ2 = 75 mA, Pout = 6.5 W CW, f = 900 MHz
Power Gain
Gps
21.5
Power Added Efficiency
PAE
30
34
—
%
Input Return Loss
IRL
—
--15
--11
dB
23.5
31.5
dB
Typical Broadband Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 25 mA, IDQ2 = 75 mA
Frequency
Gps
(dB)
PAE
(%)
IRL
(dB)
100 MHz @ 11 W CW
23.5
55
--20
400 MHz @ 9 W CW
22.5
41
--17
900 MHz @ 6.5 W CW
23.5
34
--15
1. Part internally matched both on input and output.
(continued)
MW7IC008NT1
RF Device Data
Freescale Semiconductor, Inc.
3
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 25 mA, IDQ2 = 75 mA, 100--1000 MHz Bandwidth
Characteristic
Symbol
Min
Typ
Max
—
0.1
—
Unit
IMD Symmetry @ 6.8 W PEP, Pout where IMD Third Order
Intermodulation  30 dBc (1)
(Delta IMD Third Order Intermodulation between Upper and Lower
Sidebands > 2 dB)
IMDsym
VBW Resonance Point (1)
(IMD Third Order Intermodulation Inflection Point)
VBWres
—
0.1
—
MHz
Gain Flatness in 500--1000 MHz Bandwidth @ Pout = 6 W Avg.
GF
—
1.35
—
dB
Gain Variation over Temperature
(--30C to +85C)
G
—
0.024
—
dB/C
P1dB
—
0.005
—
dB/C
Output Power Variation over Temperature
(--30C to +85C)
MHz
Typical CW Performances — 100 MHz (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 25 mA, IDQ2 = 75 mA, Pout = 11 W
CW, f = 100 MHz
Power Gain
Gps
—
23.5
—
dB
Power Added Efficiency
PAE
—
55
—
%
Input Return Loss
IRL
—
--20
—
dB
P1dB
—
11
—
W
Pout @ 1 dB Compression Point, CW
Typical CW Performances — 400 MHz (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 25 mA, IDQ2 = 75 mA, Pout = 9 W
CW, f = 400 MHz
Power Gain
Gps
—
Power Added Efficiency
PAE
Input Return Loss
IRL
P1dB
Pout @ 1 dB Compression Point, CW
22.5
—
dB
—
41
—
%
—
--17
—
dB
—
9
—
W
Typical CW Performances — 900 MHz (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 25 mA, IDQ2 = 75 mA, Pout = 6.5 W
CW, f = 900 MHz
Power Gain
Gps
—
23.5
—
dB
Power Added Efficiency
PAE
—
34
—
%
Input Return Loss
IRL
—
--15
—
dB
P1dB
—
6.5
—
W
Pout @ 1 dB Compression Point, CW
1. Not recommended for wide instantaneous bandwidth modulated signals.
MW7IC008NT1
4
RF Device Data
Freescale Semiconductor, Inc.
VDD1
VGG2
GND
C17
R12
L7
L6
C16
C15
C14
L5
R8
C13
C10
C11
C9
C8
C7
L4
C5
R4
R5
R6
VDD2
R11
R10
R9
C12
C3
R1
L2
C2
C1
L1
C4
L3
R2
R3
C6
R7
MW7IC008N
Rev. 1a
VGG1
GND
Figure 3. MW7IC008NT1 Test Circuit Component Layout
Table 6. MW7IC008NT1 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1
0.01 F Chip Capacitor
GRM3195C1E103JA01
Murata
C2, C15
0.1 F Chip Capacitors
GRM219F51H104ZA01
Murata
C3, C16
10 F Chip Capacitors
GRM55DR61H106KA88L
Murata
C4, C5, C7, C8, C10,
C11, C12, C14
0.01 F Chip Capacitors
C0805C103K5RAC
Kemet
C6, C17
1 F, 35 V Tantalum Capacitors
TAJA105K035R
AVX
C9
2.2 pF Chip Capacitor
ATC600S2R2CT250XT
ATC
C13
3.3 pF Chip Capacitor
ATC600S3R3BT250XT
ATC
L1, L7
150 nH Ceramic Chip Inductors
LL2012--FHLR15J
Toko
L2, L6
180 nH Ceramic Chip Inductors
LL2012--FHLR18J
Toko
L3
1.6 nH Inductor
0603HC--1N6XJLW
Coilcraft
L4, L5
5.1 nH Inductors
0603HP--5N1XJLW
Coilcraft
R1, R12
510 , 1/10 W Chip Resistors
RR1220P--511--B--T5
Susumu
R2, R3, R4
91 , 1/8 W Chip Resistors
CRCW080591R0FKEA
Vishay
R5*, R9*
0 , 2.5 A Chip Resistors
CRCW08050000Z0EA
Vishay
R6
10 K, 1/8 W Chip Resistor
CRCW080510K0JNEA
Vishay
R7, R11
12 K, 1/8 W Chip Resistors
CRCW080512K0JNEA
Vishay
R8
43 , 1/8 W Chip Resistor
CRCW080543R0FKEA
Vishay
R10
15 K, 1/8 W Chip Resistor
CRCW080515K0JNEA
Vishay
PCB
0.020, r = 3.66
RO4350B
Rogers
*Add for temperature compensation
MW7IC008NT1
RF Device Data
Freescale Semiconductor, Inc.
5
Gps, POWER GAIN (dB)
27
60
50
PAE
26
25
40
30
Gps
24
23
22
20
19
100
300
12
--20
--25
Pout
200
14
--10
--15
IRL
21
--5
400
500
600
700
800
900
--30
1000
10
8
6
4
Pout, OUTPUT POWER (WATTS)
70
VDD = 28 Vdc, IDQ1 = 25 mA, IDQ2 = 75 mA
Fixed Pin = 14.6 dBm CW
28
IRL, INPUT RETURN
LOSS (dB)
29
PAE, POWER ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 4. Broadband Performance @ Pin = 14.6 dBm CW
--10
IM3--L
IM3--U
--20
IM5--U
IM5--L
--30
--40
VDD = 28 Vdc, Pout = 6.8 W (PEP)
IDQ1 = 25 mA, IDQ2 = 75 mA
Two--Tone Measurements
(f1 + f2)/2 = Center Frequency of 900 MHz
IM7--L
--50
IM7--U
--60
1
10
100
200
TWO--TONE SPACING (MHz)
26
90
25
80
24
900 MHz
Gps
23
22
VDD = 28 Vdc
IDQ1 = 25 mA
IDQ2 = 75 mA
21
20
PAE
19
18
100 MHz
70
60
400 MHz
50
40
100 MHz
400 MHz
30
20
900 MHz
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
Figure 5. Intermodulation Distortion Products
versus Two--Tone Spacing
10
1
10
20
Pout, OUTPUT POWER (WATTS) CW
Figure 6. Power Gain and Power Added
Efficiency versus Output Power
MW7IC008NT1
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
0
30
20 MHz
20
--12
15
--18
IRL
10
--24
VDD = 28 Vdc
Pin = --10 dBm
IDQ1 = 25 mA
IDQ2 = 75 mA
5
--30
0
0
200
400
600
800
1000
1200
IRL (dB)
GAIN (dB)
--6
Gain
25
1400
--36
1600
f, FREQUENCY (MHz)
Figure 7. Broadband Frequency Response
MW7IC008NT1
RF Device Data
Freescale Semiconductor, Inc.
7
VDD = 28 Vdc, IDQ1 = 25 mA, IDQ2 = 75 mA
Pout = 11 W @ 100 MHz, 9 W @ 400 MHz, 6.5 W @ 900 MHz
Zin
f
MHz
Zin

Zload

100
49.78 + j1.07
47.87 -- j9.85
150
48.96 + j1.44
49.12 -- j5.44
200
48.00 + j1.54
49.09 -- j2.66
250
46.67 + j1.36
48.63 -- j0.79
300
45.30 + j0.91
47.73 + j0.49
350
43.93 + j0.11
46.60 + j1.22
400
42.53 -- j0.86
45.63 + j1.43
450
41.38 -- j2.16
44.97 + j1.13
500
40.30 -- j3.71
45.04 + j0.70
550
39.38 -- j5.44
45.23 + j0.77
600
38.43 -- j7.11
44.80 + j1.29
650
37.94 -- j8.71
44.32 + j1.48
700
37.49 -- j10.52
43.57 + j1.51
750
37.31 -- j12.42
43.19 + j1.32
800
37.00 -- j14.03
42.61 + j0.77
850
36.74 -- j15.64
42.25 + j0.39
900
36.57 -- j17.09
41.90 + j0.03
950
36.37 -- j18.59
41.67 -- j0.41
1000
36.12 -- j20.06
41.77 -- j1.10
1050
35.58 -- j21.43
41.82 -- j1.60
1100
35.00 -- j22.79
41.90 -- j2.01
1150
34.53 -- j24.39
42.26 -- j2.43
1200
33.53 -- j25.97
42.51 -- j2.80
1250
32.67 -- j27.84
42.74 -- j2.99
1300
31.61 -- j29.89
43.10 -- j3.11
1350
30.61 -- j32.34
43.52 -- j3.19
1400
29.55 -- j34.81
43.86 -- j3.13
1450
28.23 -- j37.61
44.03 -- j3.03
1500
27.34 -- j40.59
44.33 -- j2.67
=
Device input impedance as measured from
gate to ground.
Zload =
Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 8. Series Equivalent Input and Load Impedance
MW7IC008NT1
8
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MW7IC008NT1
RF Device Data
Freescale Semiconductor, Inc.
9
MW7IC008NT1
10
RF Device Data
Freescale Semiconductor, Inc.
MW7IC008NT1
RF Device Data
Freescale Semiconductor, Inc.
11
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following documents and software to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN1977 Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
 AN1987 Quiescent Current Control for the RF Integrated Circuit Device Family
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 .s2p File
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software
& Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Aug. 2009
 Initial Release of Data Sheet
1
Sept. 2009
 Modified Fig. 3, Test Circuit Component Layout and Table 6, Test Circuit Component Designations and
Values to include temperature compensation options, p. 5
 Fig. 3, Test Circuit Component Layout, corrected VDD1 to VGG1, p. 5
 Table 6, Test Circuit Component Designations and Values, C6, C17: updated description from “1 F
Tantalum Capacitors” to “1 F, 35 V Tantalum Capacitors”; L1, L7, L2, L6: corrected manufacturer from
Coilcraft to Toko; L3: corrected part number from “0603HC--1N6XJLC” to “0603HC--1N6XJLW”; L4, L5:
corrected part number from “100B100JT500XT” to “0603HP--5N1XJLW”; R1, R12: updated description
from “510  Chip Resistors” to “510 , 1/10 W Chip Resistors”, p. 5
2
Mar. 2011
 Updated frequency in overview paragraph from “100 to 1000 MHz” to “20 to 1000 MHz” to reflect lower
20 MHz capability and narrow bandwidth modulation, p. 1
 Updated IMDsym Typical value from 180 MHz to 0.1 MHz and VBWres Typical value from 210 MHz to
0.1 MHz; modified Footnote 1 to reflect limited device capability regarding wide video bandwidth, Typical
Performance table, p. 4
2.1
Mar. 2012
 Table 3, ESD Protection Characteristics, removed the word “Minimum” after the ESD class rating. ESD
ratings are characterized during new product development but are not 100% tested during production. ESD
ratings provided in the data sheet are intended to be used as a guideline when handling ESD sensitive
devices, p. 2
3
Dec. 2013
 Table 6, Test Circuit Component Designations and Values: updated PCB description to reflect most
current board specifications from Rogers, p. 5
 Replaced Case Outline 98ASA10760D, Rev. O with Rev. A, pp. 9--11. Mechanical outline drawing
modified to reflect the correct lead end features. Format of the mechanical outline was also updated to the
current Freescale format for Freescale mechanical outlines.
MW7IC008NT1
12
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Home Page:
freescale.com
Web Support:
freescale.com/support
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2009, 2011--2013 Freescale Semiconductor, Inc.
MW7IC008NT1
Document
Number:
RF Device
DataMW7IC008N
Rev.
3, 12/2013
Freescale
Semiconductor,
Inc.
13