Data Sheet

Freescale Semiconductor
Technical Data
Document Number: A2T09D400--23N
Rev. 0, 3/2016
RF Power LDMOS Transistor
N--Channel Enhancement--Mode Lateral MOSFET
This 93 W symmetrical Doherty RF power LDMOS transistor is designed for
cellular base station applications covering the frequency range of 716 to
960 MHz.
800 MHz
 Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQA = 1200 mA, VGSB = 1.12 Vdc, Pout = 93 W Avg., Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
D
(%)
Output PAR
(dB)
ACPR
(dBc)
776 MHz
17.8
45.9
7.0
–36.8
806 MHz
18.2
46.8
7.2
–37.8
836 MHz
17.9
48.0
7.1
–37.1
A2T09D400--23NR6
716–960 MHz, 93 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTOR
Features
OM--1230--4L2S
PLASTIC
 Production Tested in a Symmetrical Doherty Configuration
 Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
 Designed for Digital Predistortion Error Correction Systems
6 VBWA(1)
Carrier
RFinA/VGSA 1
5 RFoutA/VDSA
RFinB/VGSB 2
4 RFoutB/VDSB
Peaking
3 VBWB(1)
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Pin Connections
1. Device cannot operate with VDD current
supplied through pin 3 and pin 6.
 Freescale Semiconductor, Inc., 2016. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
A2T09D400--23NR6
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +70
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
Operating Junction Temperature Range (1,2)
TJ
–40 to +225
C
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 78C, 93 W Avg., W--CDMA, 28 Vdc, IDQA = 1200 mA, VGSB = 1.12 Vdc,
806 MHz
Symbol
Value (2,3)
Unit
RJC
0.29
C/W
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2
Machine Model (per EIA/JESD22--A115)
B
Charge Device Model (per JESD22--C101)
IV
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 70 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 270 Adc)
VGS(th)
1.0
1.5
2.0
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 1200 mAdc, Measured in Functional Test)
VGSA(Q)
1.5
2.2
2.5
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 2.7 Adc)
VDS(on)
0.1
0.14
0.3
Vdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 270 Adc)
VGS(th)
1.0
1.5
2.0
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 2.7 Adc)
VDS(on)
0.05
0.14
0.3
Vdc
Characteristic
Off Characteristics
(4)
On Characteristics -- Side A (4)
On Characteristics -- Side B (4)
1.
2.
3.
4.
Continuous use at maximum temperature will affect MTTF.
MTTF calculator available at http://www.nxp.com/RF/calculators.
Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
Each side of device measured separately.
(continued)
A2T09D400--23NR6
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
(1,2)
Functional Tests – 776 MHz
(In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 1200 mA, VGSB = 1.12 Vdc,
Pout = 93 W Avg., f = 776 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.
ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset.
Power Gain
Gps
16.5
17.8
19.0
dB
Drain Efficiency
D
43.5
45.9
—
%
PAR
6.8
7.0
—
dB
ACPR
—
–36.8
–34.7
dBc
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
(1,2)
Functional Tests – 836 MHz
(In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 1200 mA, VGSB = 1.12 Vdc,
Pout = 93 W Avg., f = 836 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.
ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset.
Power Gain
Gps
16.5
17.9
19.0
dB
Drain Efficiency
D
43.5
48.0
—
%
PAR
6.8
7.1
—
dB
ACPR
—
–37.1
–34.7
dBc
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Load Mismatch (2) (In Freescale Doherty Test Fixture, 50 ohm system) IDQA = 1200 mA, VGSB = 1.12 Vdc, f = 806 MHz, 12 sec(on),
10% Duty Cycle
VSWR 10:1 at 32 Vdc, 497 W Pulsed CW Output Power
(3 dB Input Overdrive from 400 W Pulsed CW Rated Power)
No Device Degradation
Typical Performance (2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 1200 mA, VGSB = 1.12 Vdc,
776–836 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
400
—
W
(3)
P3dB
—
540
—
W
AM/PM
(Maximum value measured at the P3dB compression point across
the 776–836 MHz bandwidth)

—
–7.1
—

VBWres
—
35
—
MHz
Gain Flatness in 60 MHz Bandwidth @ Pout = 93 W Avg.
GF
—
0.3
—
dB
Gain Variation over Temperature
(--30C to +85C)
G
—
0.01
—
dB/C
P1dB
—
0.01
—
dB/C
Pout @ 3 dB Compression Point
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(--30C to +85C)
Table 6. Ordering Information
Device
A2T09D400--23NR6
Tape and Reel Information
R6 Suffix = 150 Units, 56 mm Tape Width, 13--inch Reel
Package
OM--1230--4L2S
1. Part internally matched both on input and output.
2. Measurements made with device in an asymmetrical Doherty configuration.
3. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
A2T09D400--23NR6
RF Device Data
Freescale Semiconductor, Inc.
3
--
C15
C1
C11
R2
D76131
C3
C26
C4
CUT OUT AREA
R1
Z1
C13
VDDA
C16
VGGA
C2
C5
C6
C7
A2T09D400--24N
Rev. 2
C
C18
C19
C17
C20
C25
P
C8
C21 C27
C22
R3
C12
C10
VGGB
C14
C24
VDDB
--
C23
C9
Figure 2. A2T09D400--23NR6 Test Circuit Component Layout
Table 7. A2T09D400--23NR6 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C10
10 F Chip Capacitors
GRM32ER61H106KA12L
Murata
C2, C3, C6, C9, C15, C23
68 pF Chip Capacitors
ATC600F680R0BT250XT
ATC
C4, C7, C21
4.7 pF Chip Capacitors
ATC600F4R7BT250XT
ATC
C5, C8
6.2 pF Chip Capacitors
ATC600F6R2BT250XT
ATC
C11, C12, C16, C24
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C13, C14
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26-RH
Multicomp
C17
1.8 pF Chip Capacitor
ATC600F1R8BT250XT
ATC
C18
8.2 pF Chip Capacitor
ATC600F8R2BT250XT
ATC
C19
12 pF Chip Capacitor
ATC600F120BT250XT
ATC
C20
0.5 pF Chip Capacitor
ATC600F0R5BT250XT
ATC
C22
15 pF Chip Capacitor
ATC600F150BT250XT
ATC
C25
2.4 pF Chip Capacitor
ATC600F2R4BT250XT
ATC
C26, C27
27 pF Chip Capacitors
ATC600F270BT250XT
ATC
R1
50 , 10 W Chip Resistor
CW12010T0050GBK
ATC
R2, R3
12 , 1/4 W Chip Resistors
CRCW120612R0FKEA
Vishay
Z1
600–900 MHz Band, 90, 3 dB Chip Hybrid Coupler
X3C07P1-03S
Anaren
PCB
Rogers RO3006, 0.025, r = 6.5
D76131
MTL
A2T09D400--23NR6
4
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
50
17
45
16
40
Gps
15
PARC
14
13
–18
–2.5
–22
–3.5
–26
Input Signal PAR = 9.9 dB
@ 0.01% Probability on CCDF
12
11
10
760
–30
–34
ACPR
780
800
820
840 860 880 900
f, FREQUENCY (MHz)
920
940
–38
960
–4.5
–5.5
–6.5
PARC (dB)
55
D
ACPR (dBc)
Gps, POWER GAIN (dB)
VDD = 28 Vdc, Pout = 93 W (Avg.), IDQA = 1200 mA
19 VGSB = 1.12 Vdc, Single--Carrier W--CDMA
18 3.84 MHz Channel Bandwidth
D, DRAIN
EFFICIENCY (%)
60
20
–7.5
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 93 Watts Avg.
–10
VDD = 28 Vdc, Pout = 180 W (PEP), IDQA = 1200 mA
VGSB = 1.12 Vdc, Two--Tone Measurements
(f1 + f2)/2 = Center Frequency of 806 MHz
–20
IM3--L
–30
IM3--U
IM5--U
–40
IM5--L
IM7--U
–50
IM7--L
–60
1
100
10
TWO--TONE SPACING (MHz)
18.2
0
17.8
17.4
17
16.6
16.2
VDD = 28 Vdc, IDQA = 1200 mA, VGSB = 1.12 Vdc
f = 806 MHz, Single--Carrier W--CDMA, 3.84 MHz
Channel Bandwidth, Input Signal PAR = 9.9 dB
@ 0.01% Probability on CCDF
D
–1
–2
–3
–4
–5
10
Gps
–2 dB = 76.31 W
–3 dB = 107.23 W
50
90
130
Pout, OUTPUT POWER (WATTS)
–5
60
–15
50
ACPR
–1 dB = 51.94 W
70
40
30
–25
–35
ACPR (dBc)
1
D DRAIN EFFICIENCY (%)
18.6
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 4. Intermodulation Distortion Products
versus Two--Tone Spacing
–45
20
–55
10
210
–65
PARC
170
Figure 5. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
A2T09D400--23NR6
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
16 776 MHz
10
776 MHz
836 MHz
ACPR
806 MHz
12
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
1
50
–10
30
D
14
0
806 MHz
776 MHz
40
836 MHz
806 MHz
60
100
10
Pout, OUTPUT POWER (WATTS) AVG.
20
10
0
200
–20
–30
–40
ACPR (dBc)
VDD = 28 Vdc, IDQA = 1200 mA, VGSB = 1.12 Vdc
Single--Carrier W--CDMA, 3.84 MHz Channel
20 Bandwidth
836 MHz
Gps
18
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
22
–50
–60
Figure 6. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
18
17.5
Gain
GAIN (dB)
17
16.5
16
VDD = 28 Vdc
Pin = 0 dBm
IDQA = 1200 mA
VGSB = 1.12 Vdc
15.5
15
600
650
700
750
800
850
f, FREQUENCY (MHz)
900
950
1000
Figure 7. Broadband Frequency Response
A2T09D400--23NR6
6
RF Device Data
Freescale Semiconductor, Inc.
Table 8. Carrier Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ = 1442 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
0.63 – j0.95
16.2
54.6
289
48.9
–4
0.69 – j0.80
16.5
54.6
286
52.4
–6
1.44 + j2.82
0.79 – j0.87
16.4
53.7
233
46.8
–4
1.61 – j3.18
1.61 + j3.02
0.69 – j0.95
16.2
54.5
283
51.4
–4
806
1.71 – j3.34
1.71 + j3.19
0.70 – j0.95
16.3
54.5
281
52.6
–4
822
1.76 – j3.51
1.82 + j3.36
0.71 – j0.99
16.3
54.5
279
53.1
–4
f
(MHz)
Zsource
()
Zin
()
728
1.29 – j2.52
1.33 + j2.52
748
1.36 – j2.68
1.38 + j2.62
768
1.53 – j2.97
790
Zload
()
(1)
Max Output Power
P3dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
0.60 – j1.03
14.0
55.7
368
53.3
–8
1.28 + j2.74
0.64 – j1.03
14.0
55.4
347
53.1
–9
1.34 + j2.94
0.79 – j1.04
14.3
54.9
310
52.3
–7
1.61 – j3.18
1.49 + j3.14
0.71 – j1.05
14.1
55.3
342
54.4
–9
806
1.71 – j3.34
1.59 + j3.33
0.70 – j1.07
14.1
55.3
342
54.5
–8
822
1.76 – j3.51
1.72 + j3.52
0.55 – j1.18
13.0
55.3
337
48.9
–7
f
(MHz)
Zsource
()
Zin
()
728
1.29 – j2.52
1.21 + j2.63
748
1.36 – j2.68
768
1.53 – j2.97
790
Zload
()
(2)
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
A2T09D400--23NR6
RF Device Data
Freescale Semiconductor, Inc.
7
Table 9. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning
VDD = 28 Vdc, IDQ = 1442 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2.14 – j0.27
20.3
52.1
164
67.8
–12
1.85 – j0.46
19.7
52.3
169
63.8
–13
1.35 + j2.86
2.11 – j0.11
20.2
51.4
138
60.4
–5
1.61 – j3.18
1.43 + j3.08
2.25 + j0.30
20.7
51.1
129
67.7
–12
806
1.71 – j3.34
1.50 + j3.24
1.92 + j0.22
20.4
51.4
138
68.1
–14
822
1.76 – j3.51
1.62 + j3.39
1.76 + j0.02
20.1
51.7
147
67.8
–13
f
(MHz)
Zsource
()
Zin
()
728
1.29 – j2.52
1.19 + j2.57
748
1.36 – j2.68
1.29 + j2.66
768
1.53 – j2.97
790
Zload
()
(1)
Max Drain Efficiency
P3dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2.52 – j0.44
18.6
52.4
173
69.5
–19
1.20 + j2.75
1.78 – j0.52
17.6
53.2
210
66.0
–19
1.30 + j3.03
3.21 – j0.14
19.3
51.3
134
66.5
–13
1.61 – j3.18
1.39 + j3.19
2.35 – j0.16
18.6
52.2
168
70.2
–16
806
1.71 – j3.34
1.46 + j3.36
2.14 – j0.09
18.4
52.2
168
69.6
–19
822
1.76 – j3.51
1.54 + j3.53
2.00 – j0.02
18.3
52.1
164
69.4
–20
f
(MHz)
Zsource
()
Zin
()
728
1.29 – j2.52
1.11 + j2.65
748
1.36 – j2.68
768
1.53 – j2.97
790
Zload
()
(2)
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
A2T09D400--23NR6
8
RF Device Data
Freescale Semiconductor, Inc.
P1dB – TYPICAL CARRIER LOAD PULL CONTOURS — 790 MHz
2
2
1.5
1.5
0.5
E
0
51
–0.5
P
–1
53.5
–1.5
–2
51.5
53
54
52.5
3
4
1.5
1.5
1
1
E
0
21
–0.5
–2
IMAGINARY ()
IMAGINARY ()
2
P
0
21.5
20.5
–1.5
18
19
17.5
18.5
1
2
REAL ()
60
58
P
56
1
0
3
4
Figure 10. P1dB Load Pull Gain Contours (dB)
NOTE:
3
4
–12
–16
0.5
–10
E
0
–0.5
–2
–6
P
–1.5
19.5
2
REAL ()
52
–14
–1
20
54
52
Figure 9. P1dB Load Pull Efficiency Contours (%)
2
–1
62
–0.5
–2
Figure 8. P1dB Load Pull Output Power Contours (dBm)
0.5
E
0
–1.5
2
REAL ()
1
64
0.5
–1
52
0
66
1
50.5
IMAGINARY ()
IMAGINARY ()
1
0
–4
–2
1
0
–8
2
REAL ()
3
4
Figure 11. P1dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2T09D400--23NR6
RF Device Data
Freescale Semiconductor, Inc.
9
2
2
1.5
1.5
1
1
0.5
IMAGINARY ()
IMAGINARY ()
P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 790 MHz
51.5
0
E
–0.5
–1
P
–1.5
–2
2
REAL ()
3
–2
4
1.5
1
1
IMAGINARY ()
IMAGINARY ()
P
64
0.5
0
E
–0.5
19
18.5
P
15.5
15
1
17
16 16.5
2
REAL ()
1
0
3
4
Figure 14. P3dB Load Pull Gain Contours (dB)
NOTE:
3
4
–20
0.5
–18
0
E
–0.5
–12
–2
–16
–14
P
–10
–1.5
17.5
2
REAL ()
58
–22
–1
18
62
60
Figure 13. P3dB Load Pull Efficiency Contours (%)
1.5
0
E 70
–0.5
2
–2
66
0
2
–1.5
68
0.5
–1.5
Figure 12. P3dB Load Pull Output Power Contours (dBm)
–1
54
–1
55
1
0
52
54.5 54 53.5 53 52.5
56
–6
–8
1
0
2
REAL ()
3
4
Figure 15. P3dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2T09D400--23NR6
10
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
A2T09D400--23NR6
RF Device Data
Freescale Semiconductor, Inc.
11
A2T09D400--23NR6
12
RF Device Data
Freescale Semiconductor, Inc.
A2T09D400--23NR6
RF Device Data
Freescale Semiconductor, Inc.
13
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 s2p File
Development Tools
 Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.nxp.com/RF
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Mar. 2016
Description
 Initial release of Data Sheet
A2T09D400--23NR6
14
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2016 Freescale Semiconductor, Inc.
A2T09D400--23NR6
Document
Number:
RF
Device
Data A2T09D400--23N
Rev. 0, 3/2016Semiconductor, Inc.
Freescale
15