Data Sheet

Freescale Semiconductor
Technical Data
Document Number: AFT09S220--02N
Rev. 0, 9/2015
RF Power LDMOS Transistor
N--Channel Enhancement--Mode Lateral MOSFET
This 54 W RF power LDMOS transistor is designed for cellular base station
applications covering the frequency range of 850 to 960 MHz.
AFT09S220--02NR3
900 MHz
 Typical Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQ = 1400 mA, Pout = 54 W Avg., Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF.
Frequency
Gps
(dB)
D
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
920 MHz
19.5
35.8
7.0
–36.7
–13
940 MHz
19.3
35.4
7.0
–36.8
–12
960 MHz
19.0
35.3
7.0
–36.9
–12
850–960 MHz, 54 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTOR
880 MHz
OM--780--2L
PLASTIC
 Typical Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQ = 1400 mA, Pout = 54 W Avg., Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF.
Frequency
Gps
(dB)
D
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
865 MHz
20.3
35.8
7.0
–36.2
–14
880 MHz
20.1
35.8
7.0
–36.5
–14
895 MHz
19.7
35.5
7.0
–36.0
–11
1 RFout/VDS
RFin/VGS 2
Features
 Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
 Designed for Digital Predistortion Error Correction Systems
 Optimized for Doherty Applications
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistor.
Figure 1. Pin Connections
This document contains information on a preproduction product. Specifications and information herein are subject to change without notice.
 Freescale Semiconductor, Inc., 2015. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFT09S220--02NR3
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +70
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
Operating Junction Temperature Range (1,2)
TJ
–40 to +225
C
Symbol
Value (2,3)
Unit
RJC
0.30
C/W
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 74C, 54 W CW, 28 Vdc, IDQ = 1400 mA, 940 MHz
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1C
Machine Model (per EIA/JESD22--A115)
B
Charge Device Model (per JESD22--C101)
IV
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 70 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 135 Adc)
VGS(th)
0.8
1.3
1.8
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 1400 mA)
VGS(Q)
—
2.2
—
Vdc
Fixture Gate Quiescent Voltage (4)
(VDD = 28 Vdc, ID = 1400 mA, Measured in Functional Test)
VGG(Q)
4.0
4.4
4.8
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 1.35 Adc)
VDS(on)
0.05
0.2
0.3
Vdc
Characteristic
Off Characteristics
On Characteristics
1.
2.
3.
4.
Continuous use at maximum temperature will affect MTTF.
MTTF calculator available at http://www.freescale.com/rf/calculators.
Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.
VGG = 2  VGS(Q). Parameter measured on Freescale test fixture, due to resistor divider network on the board. Refer to test circuit schematic.
(continued)
AFT09S220--02NR3
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, Pout = 54 W Avg., f = 920 MHz,
Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz
Channel Bandwidth @ 5 MHz Offset.
Power Gain
Gps
18.0
19.5
21.0
dB
Drain Efficiency
D
34.4
35.8
—
%
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
PAR
6.5
7.0
—
dB
ACPR
—
–36.7
–34.2
dBc
IRL
—
–13
–9
dB
Input Return Loss
Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQ = 1400 mA, f = 940 MHz, 100 sec(on), 10% Duty Cycle
VSWR 10:1 at 30 Vdc, 240 W Pulsed CW Output Power
(3 dB Input Overdrive from 220 W Pulsed CW Rated Power)
No Device Degradation
Typical Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, 920–960 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
220
—
W

—
–10.6
—

VBWres
—
70
—
MHz
Gain Flatness in 40 MHz Bandwidth @ Pout = 54 W Avg.
GF
—
0.5
—
dB
Gain Variation over Temperature
(–30C to +85C)
G
—
0.013
—
dB/C
P1dB
—
0.002
—
dB/C
AM/PM
(Maximum value measured at the P3dB compression point across
the 920–960 MHz frequency range)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(–30C to +85C)
Table 6. Ordering Information
Device
AFT09S220--02NR3
Tape and Reel Information
R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel
Package
OM--780--2L
1. Part internally matched both on input and output.
AFT09S220--02NR3
RF Device Data
Freescale Semiconductor, Inc.
3
VGG
VDD
C22
R2
R3
C3
R1
C1
C7 C8
C6
C11*
C21*
C15*
CUT OUT AREA
C13*
C2*
C14*
C18*
C19* C20*
C5*
C16* C17*
C12*
C9 C10
C4
C23
AFT09S220--02N
Rev. 0
D52403
*C2, C5, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20 and C21 are mounted vertically.
Figure 2. AFT09S220--02NR3 Test Circuit Component Layout
Table 7. AFT09S220--02NR3 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5
47 pF Chip Capacitors
ATC100B470JT500XT
ATC
C6, C7, C8, C9, C10
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C11, C12
6.2 pF Chip Capacitors
ATC100B6R2BT500XT
ATC
C13, C14, C15, C16
1.7 pF Chip Capacitors
ATC100B1R7BT500XT
ATC
C17
2.2 pF Chip Capacitor
ATC100B2R2JT500XT
ATC
C18
2.0 pF Chip Capacitor
ATC100B2R0BT500XT
ATC
C19
1.1 pF Chip Capacitor
ATC100B1R1BT500XT
ATC
C20
0.2 pF Chip Capacitor
ATC100B0R2BT500XT
ATC
C21
6.8 pF Chip Capacitor
ATC100B6R8CT500XT
ATC
C22, C23
470 F, 63 V Electrolytic Capacitors
477CKS050M
Illinois Capacitor
R1
10 , 1/4 W Chip Resistor
CRCW120610R0FKEA
Vishay
R2, R3
10 k, 1/4 W Chip Resistors
CRCW120610K0FKEA
Vishay
PCB
Rogers RO4350B, 0.020, r = 3.66
D52403
MTL
AFT09S220--02NR3
4
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
32
Gps
19.4
30
Single--Carrier W--CDMA, 3.84 MHz
Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF
19.2
19
ACPR
18.8
840
860
–36
–6
–38
IRL
PARC
18.2
820
–4
–37
18.6
18.4
–35
880
900
920
f, FREQUENCY (MHz)
940
–39
960
–8
–10
–12
–14
–40
980
–2
–2.2
–2.4
–2.6
–2.8
PARC (dB)
19.6
34
IRL, INPUT RETURN LOSS (dB)
36
D
19.8
D, DRAIN
EFFICIENCY (%)
20
Gps, POWER GAIN (dB)
38
VDD = 28 Vdc, Pout = 54 W (Avg.), IDQ = 1400 mA
ACPR (dBc)
20.2
–3
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 54 Watts Avg.
0
VDD = 28 Vdc, Pout = 93 W (PEP)
IDQ = 1400 mA, Two--Tone Measurements
(f1 + f2)/2 = Center Frequency of 940 MHz
–15
IM3--U
–30
IM3--L
IM5--U
–45
IM7--L
IM7--U
–60
–75
IM5--L
1
10
100
200
TWO--TONE SPACING (MHz)
19.5
0
19.4
19.3
19.2
19.1
19
VDD = 28 Vdc, IDQ = 1400 mA, f = 940 MHz
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth
Gps
–1
–2
ACPR
PARC
–1 dB = 28 W
–3
40
–33
35
25
–3 dB = 55 W
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
30
–30
30
–2 dB = 40.2 W
–4
–5
20
D
45
40
50
Pout, OUTPUT POWER (WATTS)
60
–36
–39
ACPR (dBc)
1
D DRAIN EFFICIENCY (%)
19.6
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 4. Intermodulation Distortion Products
versus Two--Tone Spacing
–42
20
–45
15
70
–48
Figure 5. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
AFT09S220--02NR3
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
20
920 MHz
19
940 MHz
18
Gps
ACPR
920 MHz
940 MHz
960 MHz
0
50
–10
30
20
940 MHz
10
960 MHz
920 MHz
1
60
40
960 MHz
17
16
D
0
300
100
10
Pout, OUTPUT POWER (WATTS) AVG.
–20
–30
–40
ACPR (dBc)
21
VDD = 28 Vdc, IDQ = 1400 mA
Single--Carrier W--CDMA, 3.84 MHz Channel
Bandwidth, Input Signal PAR = 9.9 dB @
0.01% Probability on CCDF
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
22
–50
–60
Figure 6. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
15
24
10
Gain
18
5
15
0
12
–5
9
6
500
–10
IRL
600
700
800
900
1000
f, FREQUENCY (MHz)
IRL (dB)
GAIN (dB)
21
VDD = 28 Vdc
Pin = 0 dBm
IDQ = 1400 mA
1100
1200
–15
1300
Figure 7. Broadband Frequency Response
AFT09S220--02NR3
6
RF Device Data
Freescale Semiconductor, Inc.
Table 8. Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ = 1400 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
()
Zin
()
920
2.43 – j5.36
2.30 + j5.40
940
2.73 – j5.85
2.65 + j5.83
960
3.29 – j6.47
3.10 + j6.30
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
3.95 – j2.04
17.4
54.9
306
55.7
–4.5
4.58 – j1.60
17.2
54.8
303
55.2
–4.2
5.04 – j1.02
17.0
54.9
311
56.5
–4.7
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
920
2.43 – j5.36
2.38 + j5.49
4.63 – j1.21
15.1
55.9
387
59.5
–7.3
940
2.73 – j5.85
2.74 + j5.91
4.95 – j0.67
15.0
55.8
384
59.2
–7.0
960
3.29 – j6.47
3.23 + j6.37
5.12 + j0.16
14.7
55.9
392
60.3
–7.4
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 9. Load Pull Performance — Maximum Drain Efficiency Tuning
VDD = 28 Vdc, IDQ = 1400 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload (1)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
920
2.43 – j5.36
2.29 + j5.33
1.15 – j1.10
20.7
52.1
164
70.0
–13
940
2.73 – j5.85
2.67 + j5.75
1.18 – j1.16
20.7
51.8
151
69.5
–13
960
3.29 – j6.47
3.17 + j6.24
1.45 – j1.23
20.2
52.3
169
71.1
–12
Max Drain Efficiency
P3dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
1.50 – j1.06
18.2
53.7
232
73.1
–16
2.75 + j5.86
1.55 – j1.09
18.2
53.4
221
73.0
–16
3.30 + j6.34
1.40 – j1.20
18.3
52.9
193
74.5
–19
f
(MHz)
Zsource
()
Zin
()
920
2.43 – j5.36
2.36 + j5.44
940
2.73 – j5.85
960
3.29 – j6.47
Zload
()
(2)
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT09S220--02NR3
RF Device Data
Freescale Semiconductor, Inc.
7
P1dB – TYPICAL LOAD PULL CONTOURS — 940 MHz
3
3
53
53.5
52
1
2
53.5
1
52.5
IMAGINARY ()
IMAGINARY ()
2
54
0
–1 E
51.5
3
4
5
REAL ()
6
7
–4
8
3
3
2
2
1
1
0
20.5
–2
20
19.5
19
18
18.5
17.5
–3
–4
P
2
3
17
4
5
REAL ()
56
7
8
Figure 10. P1dB Load Pull Gain Contours (dB)
NOTE:
P
54
3
4
5
REAL ()
6
7
8
–2
–4
0
–6
–1 E
–4
P
–8
–10
–12
–3
6
2
1
–2
16.5
1
62 60
Figure 9. P1dB Load Pull Efficiency Contours (%)
IMAGINARY ()
IMAGINARY ()
Figure 8. P1dB Load Pull Output Power Contours (dBm)
–1 E
68
–3
54
2
1
58
66 64
–1 E
–2
51
–3
–4
54.5
P
–2
0
–14
1
2
3
4
5
REAL ()
6
7
8
Figure 11. P1dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT09S220--02NR3
8
RF Device Data
Freescale Semiconductor, Inc.
3
3
2
2
1
1
IMAGINARY ()
IMAGINARY ()
P3dB – TYPICAL LOAD PULL CONTOURS — 940 MHz
0
–1
P
E
55.5
–2
–3
–4
52.5
53.5
54.5
52
53
54
1
2
3
55
4
5
REAL ()
6
7
–4
8
3
2
2
1
1
0
P
E
17
17.5
–2
16
16.5
15.5
–3
–4
2
3
66 64
68
P
60 58
1
2
3
4
5
REAL ()
–2
4
5
REAL ()
7
8
Figure 14. P3dB Load Pull Gain Contours (dB)
NOTE:
7
8
–6
0
–1
P
E
–3
6
6
–4
–2
15
14.5
1
72 70
Figure 13. P3dB Load Pull Efficiency Contours (%)
3
18
E
–3
IMAGINARY ()
IMAGINARY ()
–1
–2
Figure 12. P3dB Load Pull Output Power Contours (dBm)
–1
62
0
–4
1
–16
–12
–18
–14
2
3
–10
4
5
REAL ()
–8
6
7
8
Figure 15. P3dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT09S220--02NR3
RF Device Data
Freescale Semiconductor, Inc.
9
VGG
VDD
C17
R2
R3
C3
R1
C1
C7
C6
C19*
C11*
CUT OUT AREA
C16*
C2*
C13*
C9*
C14*
C10*
C5*
C15*
C12*
C8
C4
C18
AFT09S220--02N
Rev. 0
D52403
*C2, C5, C9, C10, C11, C12, C13, C14, C15, C16 and C19 are mounted vertically.
Figure 16. AFT09S220--02NR3 Test Circuit Component Layout — 865–895 MHz
Table 10. AFT09S220--02NR3 Test Circuit Component Designations and Values — 865–895 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5
56 pF Chip Capacitors
ATC100B560CT500XT
ATC
C6, C7, C8
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C9
1.1 pF Chip Capacitor
ATC100B1R1BT500XT
ATC
C10
1.5 pF Chip Capacitor
ATC100B1R5BT500XT
ATC
C11, C12
3.9 pF Chip Capacitors
ATC100B3R9CT500XT
ATC
C13, C14
5.1 pF Chip Capacitors
ATC100B5R1CT500XT
ATC
C15
5.6 pF Chip Capacitor
ATC100B5R6CT500XT
ATC
C16
10 pF Chip Capacitor
ATC100B100JT500XT
ATC
C17, C18
470 F, 63 V Electrolytic Capacitors
477CKS050M
Illinois Capacitor
C19
3.6 pF Chip Capacitor
ATC100B3R6CT500XT
ATC
R1
10 , 1/4 W Chip Resistor
CRCW120610R0FKEA
Vishay
R2, R3
10 k, 1/4 W Chip Resistors
CRCW120610K0FKEA
Vishay
PCB
Rogers RO4350B, 0.020, r = 3.66
D52403
MTL
AFT09S220--02NR3
10
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 865–895 MHz
Gps
D
19
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
18
17
ACPR
16
30
25
–34
0
–36
–4
–38
15
–40
PARC
14
13
760
780
800
–42
820
840
860
f, FREQUENCY (MHz)
880
–8
–12
–16
–20
–44
920
900
–1
–1.5
–2
–2.5
–3
PARC (dB)
35
IRL, INPUT RETURN LOSS (dB)
20
40
ACPR (dBc)
Gps, POWER GAIN (dB)
VDD = 28 Vdc, Pout = 54 W (Avg.), IDQ = 1400 mA
22 Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth
21
D, DRAIN
EFFICIENCY (%)
45
23
–3.5
Figure 17. Single--Carrier Output Peak--to--Average Ratio
Compression (PARC) Broadband Performance @ Pout = 54 Watts Avg.
Gps, POWER GAIN (dB)
24
22
Gps
865 MHz 880 MHz
20
895 MHz
880 MHz
865 MHz
D
0
50
–10
40
30
895 MHz
18
20
16
895 MHz
ACPR
865 MHz
14
60
1
10
880 MHz
100
10
Pout, OUTPUT POWER (WATTS) AVG.
0
–20
–30
–40
ACPR (dBc)
VDD = 28 Vdc, IDQ = 1400 mA
Single--Carrier W--CDMA, 3.84 MHz Channel
Bandwidth, Input Signal PAR = 9.9 dB @
0.01% Probability on CCDF
D, DRAIN EFFICIENCY (%)
26
–50
–60
Figure 18. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
10
22
GAIN (dB)
20
5
Gain
0
19
–5
18
–10
17
16
700
–15
IRL
750
800
850
900
950
f, FREQUENCY (MHz)
IRL (dB)
21
VDD = 28 Vdc
Pin = 0 dBm
IDQ = 1400 mA
1000
1050
–20
1100
Figure 19. Broadband Frequency Response
AFT09S220--02NR3
RF Device Data
Freescale Semiconductor, Inc.
11
Table 11. Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ = 1400 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
()
Zin
()
865
1.59 – j4.58
1.62 + j4.38
880
1.76 – j4.85
1.77 + j4.63
895
1.91 – j5.04
1.95 + j4.91
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2.93 – j2.36
17.6
54.7
293
52.6
–4.2
3.10 – j2.26
17.6
54.8
303
55.2
–4.8
3.45 – j2.18
17.6
54.9
310
56.3
–4.3
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
865
1.59 – j4.58
1.65 + j4.47
3.54 – j2.02
15.5
55.7
374
57.7
–7.5
880
1.76 – j4.85
1.82 + j4.73
3.77 – j1.91
15.4
55.8
384
59.2
–8.0
895
1.91 – j5.04
2.01 + j5.00
4.09 – j1.75
15.3
56.0
394
60.8
–7.4
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 12. Load Pull Performance — Maximum Drain Efficiency Tuning
VDD = 28 Vdc, IDQ = 1400 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload (1)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
865
1.59 – j4.58
1.56 + j4.30
1.20 – j0.95
20.7
52.8
189
68.2
–10
880
1.76 – j4.85
1.73 + j4.56
1.17 – j1.06
20.6
52.7
188
69.7
–11
895
1.91 – j5.04
1.91 + j4.82
1.04 – j1.03
21.0
52.2
167
71.3
–13
Max Drain Efficiency
P3dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
1.21 – j0.82
18.8
53.4
220
71.7
–16
1.77 + j4.66
1.30 – j0.91
18.6
53.6
231
73.1
–16
1.97 + j4.94
1.35 – j0.96
18.5
53.7
235
74.8
–16
f
(MHz)
Zsource
()
Zin
()
865
1.59 – j4.58
1.59 + j4.40
880
1.76 – j4.85
895
1.91 – j5.04
Zload
()
(2)
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT09S220--02NR3
12
RF Device Data
Freescale Semiconductor, Inc.
P1dB – TYPICAL LOAD PULL CONTOURS — 880 MHz
1
1
51.5
–1
53.5
E
–2
P
–3
54.5
52.5
–4
–5
0
IMAGINARY ()
IMAGINARY ()
0
51 52
0
1
2
3
4
REAL ()
5
6
1
18.5
21 20
20.5
–1
18
E
17.5
–2
17
P
–3
1
2
3
4
REAL ()
5
6
7
–2 –4
–14
–1
3
4
REAL ()
5
6
7
Figure 22. P1dB Load Pull Gain Contours (dB)
NOTE:
E
–2
P
–10
–3
–16
–12
–4
–4
0
2
0
19
IMAGINARY ()
IMAGINARY ()
0
1
0
Figure 21. P1dB Load Pull Efficiency Contours (%)
1
19.5
54
P
–3
–5
7
Figure 20. P1dB Load Pull Output Power Contours (dBm)
–5
–2
56
–4
54
53 53.5
62 58
68 66
60
E
64
–1
–5
0
–6
–8
1
2
–4
3
4
REAL ()
5
6
7
Figure 23. P1dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT09S220--02NR3
RF Device Data
Freescale Semiconductor, Inc.
13
P3dB – TYPICAL LOAD PULL CONTOURS — 880 MHz
1
1
0
0
IMAGINARY ()
P
–2
55.5
–3
53
–4
52
1
0
2
3
4
REAL ()
1
5
6
–1
19
66
60 58
P
–2
–3
–5
7
1
15.5
2
15
P
–3
3
4
REAL ()
5
6
7
–4 –6
–2
–8
0
17
–2
1
0
Figure 25. P3dB Load Pull Efficiency Contours (%)
IMAGINARY ()
IMAGINARY ()
16.5 16
18.5
E 18
56
62
54.5
Figure 24. P3dB Load Pull Output Power Contours (dBm)
0
64
–4
54.5
53.5
17.5
70 68
E
–1
55
54
52.5
–5
IMAGINARY ()
E
–1
–10
E
–1
P
–2
–4
–4
–5
–5
–12
–18
–3
–16
–14
0
1
2
3
4
REAL ()
5
6
7
Figure 26. P3dB Load Pull Gain Contours (dB)
NOTE:
0
1
2
3
4
REAL ()
5
6
7
Figure 27. P3dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
AFT09S220--02NR3
14
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
AFT09S220--02NR3
RF Device Data
Freescale Semiconductor, Inc.
15
AFT09S220--02NR3
16
RF Device Data
Freescale Semiconductor, Inc.
AFT09S220--02NR3
RF Device Data
Freescale Semiconductor, Inc.
17
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 s2p File
Development Tools
 Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.freescale.com/rf
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Sept. 2015
Description
 Initial Release of Data Sheet
AFT09S220--02NR3
18
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Home Page:
freescale.com
Web Support:
freescale.com/support
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2015 Freescale Semiconductor, Inc.
AFT09S220--02NR3
Document
Number: Data
AFT09S220--02N
RF Device
Rev. 0,
9/2015
Freescale
Semiconductor,
Inc.
19