Data Sheet

Freescale Semiconductor
Technical Data
Document Number: AFT09S200W02N
Rev. 0, 4/2014
RF Power LDMOS Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
These 56 W RF power LDMOS transistors are designed for cellular base
station applications requiring very wide instantaneous bandwidth capability
covering the frequency range of 716 to 960 MHz.
900 MHz
 Typical Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQ = 1400 mA, Pout = 56 W Avg., Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF.
Frequency
Gps
(dB)
D
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
920 MHz
19.2
34.0
6.9
--35.7
--25
940 MHz
19.3
35.1
7.0
--36.0
--20
960 MHz
19.2
36.5
6.8
--34.8
--13
AFT09S200W02NR3
AFT09S200W02GNR3
716–960 MHz, 56 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTORS
OM--780--2L
PLASTIC
AFT09S200W02NR3
700 MHz
 Typical Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQ = 1400 mA, Pout = 56 W Avg., Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF.
Frequency
Gps
(dB)
D
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
716 MHz
22.7
37.5
6.9
--34.7
--18
722 MHz
22.6
37.2
6.9
--34.6
--19
728 MHz
22.5
36.9
6.9
--34.6
--18
Features
 Designed for Wide Instantaneous Bandwidth Applications
 Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
 Able to Withstand Extremely High Output VSWR and Broadband
Operating Conditions
 Optimized for Doherty Applications
 In Tape and Reel. R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel.
OM--780G--2L
PLASTIC
AFT09S200W02GNR3
RFin/VGS 2
1 RFout/VDS
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistor.
Figure 1. Pin Connections
 Freescale Semiconductor, Inc., 2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFT09S200W02NR3 AFT09S200W02GNR3
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +70
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
--65 to +150
C
Case Operating Temperature Range
TC
--40 to +125
C
Operating Junction Temperature Range (1,2)
TJ
--40 to +225
C
Symbol
Value (2,3)
Unit
RJC
0.35
C/W
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80C, 56 W CW, 28 Vdc, IDQ = 1400 mA, 940 MHz
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2
Machine Model (per EIA/JESD22--A115)
B
Charge Device Model (per JESD22--C101)
IV
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 70 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
5
Adc
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 729 Adc)
VGS(th)
1.0
1.5
2.0
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, ID = 1400 mA)
VGS(Q)
—
2.15
—
Vdc
Fixture Gate Quiescent Voltage (4)
(VDD = 28 Vdc, ID = 1400 mA, Measured in Functional Test)
VGG(Q)
3.2
4.3
5.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 4.1 Adc)
VDS(on)
0.1
0.2
0.3
Vdc
Characteristic
Off Characteristics
On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select
Documentation/Application Notes -- AN1955.
4. VGG = 2.0  VGS(Q). Parameter measured on Freescale Test Fixture, due to resistor divider network on the board. Refer to Test Fixture Layout.
(continued)
AFT09S200W02NR3 AFT09S200W02GNR3
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (1,2) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, Pout = 56 W Avg., f = 960 MHz,
Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz
Channel Bandwidth @ 5 MHz Offset.
Power Gain
Gps
18.5
19.2
21.5
dB
Drain Efficiency
D
32.5
36.5
—
%
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
PAR
6.5
6.8
—
dB
ACPR
—
--34.8
--33.5
dBc
IRL
—
--13
--9
dB
Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQ = 1400 mA, f = 940 MHz
VSWR 10:1 at 32 Vdc, 260 W CW Output Power
(3 dB Input Overdrive from 180 W CW Rated Power)
No Device Degradation
Typical Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1400 mA, 920–960 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
200
—
W

—
--11.5
—

VBWres
—
140
—
MHz
Gain Flatness in 40 MHz Bandwidth @ Pout = 56 W Avg.
GF
—
0.1
—
dB
Gain Variation over Temperature
(--30C to +85C)
G
—
0.018
—
dB/C
P1dB
—
0.004
—
dB/C
AM/PM
(Maximum value measured at the P3dB compression point across
the 920--960 MHz frequency range)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(--30C to +85C)
1. Part internally matched both on input and output.
2. Measurement made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull
wing (GN) parts.
AFT09S200W02NR3 AFT09S200W02GNR3
RF Device Data
Freescale Semiconductor, Inc.
3
C25
VGG
C2
R1
C10
VDD
C11
R2
C3
C14
C8
R3
C19*
C6*
C17
C7*
R4
CUT OUT AREA
C1*
C16
C20
C23
C21
C22
C24*
C18*
C9
C15
C4
C12
VGG
C13
VDD
C5
AFT09S200W02N/--14N
Rev. 0
D49362
*C1, C6, C7, C18, C19 and C24 are mounted vertically.
Figure 2. AFT09S200W02NR3 Test Circuit Component Layout — 920–960 MHz
Table 6. AFT09S200W02NR3 Test Circuit Component Designations and Values — 920–960 MHz
Part
Description
Part Number
Manufacturer
C1, C3, C4, C14, C15, C24
47 pF Chip Capacitors
ATC100B470JT500XT
ATC
C2, C5, C8, C9, C10, C11,
C12, C13
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C6, C7
2.7 pF Chip Capacitors
ATC100B2R7BT500XT
ATC
C16, C17
5.6 pF Chip Capacitors
ATC100B5R6CT500XT
ATC
C18, C19
2.0 pF Chip Capacitors
ATC100B2R0BT500XT
ATC
C20, C21
1.0 pF Chip Capacitors
ATC100B1R0BT500XT
ATC
C22, C23
0.3 pF Chip Capacitors
ATC100B0R3BT500XT
ATC
C25
220 F, 100 V Electrolytic Capacitor
EEV-FK2A221M
Panasonic-ECG
R1, R2
1000 , 1/4 W Chip Resistors
CRCW12061K00FKEA
Vishay
R3, R4
10 , 1/8 W Chip Resistors
RK73H2ATTD10R0F
KOA Speer
PCB
Rogers RO4350B, 0.020, r = 3.66
D49362
MTL
AFT09S200W02NR3 AFT09S200W02GNR3
4
RF Device Data
Freescale Semiconductor, Inc.
30
Gps, POWER GAIN (dB)
19
18
17
20
VDD = 28 Vdc, Pout = 56 W (Avg.)
IDQ = 1400 mA, Single--Carrier W--CDMA 10
3.84 MHz Channel Bandwidth
--22
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
--26
Gps
16
15
ACPR
14
PARC
--30
13
--34
12
--38
11
820
IRL
840
860
880
900
920
940
--3
--8
--13
--18
--23
--42
960
--28
980
--2
--2.8
--3.6
--4.4
--5.2
PARC (dB)
40
IRL, INPUT RETURN LOSS (dB)
50
D
20
ACPR (dBc)
21
D, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS — 920–960 MHz
--6
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 56 Watts Avg.
0
VDD = 28 Vdc, Pout = 186 W (PEP), IDQ = 1400 mA
Two--Tone Measurements, (f1 + f2)/2 = Center
--15 Frequency of 940 MHz
IM3--U
--30
IM3--L
IM5--U
--45
IM7--U
IM5--L
IM7--L
--60
--75
1
10
200
100
TWO--TONE SPACING (MHz)
20
0
19
18
17
16
15
VDD = 28 Vdc, IDQ = 1400 mA, f = 940 MHz
Single--Carrier W--CDMA, 3.84 MHz Channel
Bandwidth, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
--1
50
--10
D
Gps
--1 dB = 28 W
30
--3
20
--3 dB = 56 W
--4
--5
0
40
--2 dB = 41 W
--2
60
ACPR
15
PARC
30
45
60
75
--20
--30
ACPR (dBc)
1
D DRAIN EFFICIENCY (%)
21
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 4. Intermodulation Distortion Products
versus Two--Tone Spacing
--40
10
--50
0
--60
90
Pout, OUTPUT POWER (WATTS)
Figure 5. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
AFT09S200W02NR3 AFT09S200W02GNR3
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS — 920–960 MHz
960 MHz
940 MHz 920 MHz
19
VDD = 28 Vdc, IDQ = 1400 mA
Single--Carrier W--CDMA, 3.84 MHz
Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01%
Probability on CCDF
18
17
960 MHz
D
50
--10
30
ACPR
960 MHz
920 MHz
940 MHz
1
0
40
Gps
16
15
60
10
100
20
10
0
200
--20
--30
--40
ACPR (dBc)
Gps, POWER GAIN (dB)
20
920 MHz
940 MHz
D, DRAIN EFFICIENCY (%)
21
--50
--60
Pout, OUTPUT POWER (WATTS) AVG.
Figure 6. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
24
25
20
15
Gain
5
12
--5
IRL
--15
8
4
0
IRL (dB)
GAIN (dB)
16
VDD = 28 Vdc
Pin = 0 dBm
IDQ = 1400 mA
800
850
900
--25
950
1000
1050
1100
1150
--35
1200
f, FREQUENCY (MHz)
Figure 7. Broadband Frequency Response
AFT09S200W02NR3 AFT09S200W02GNR3
6
RF Device Data
Freescale Semiconductor, Inc.
VDD = 28 Vdc, IDQ = 1484 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
()
Zin
()
920
1.94 - j4.69
2.09 + j4.54
940
2.29 - j5.04
2.41 + j4.89
960
2.98 - j5.40
2.82 + j5.25
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
0.625 - j0.97
17.7
54.0
253
51.4
-6
0.611 - j1.00
17.4
53.9
245
49.2
-6
0.653 - j1.12
17.2
53.8
239
49.0
-6
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
920
1.94 - j4.69
2.09 + j4.64
940
2.29 - j5.04
2.43 + j4.99
960
2.98 - j5.40
2.83 + j5.37
Zload
()
(2)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
0.566 - j1.00
15.3
55.2
333
53.8
-9
0.564 - j1.06
15.0
55.1
325
52.5
-9
0.578 - j1.11
14.8
55.0
318
52.0
-8
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 8. Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ = 1484 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
1.36 - j0.05
21.1
51.6
144
65.6
-12
2.45 + j4.99
1.33 - j0.14
20.8
51.6
145
63.6
-11
2.87 + j5.33
1.30 - j0.35
20.2
51.9
154
62.5
-10
f
(MHz)
Zsource
()
Zin
()
920
1.94 - j4.69
2.10 + j4.65
940
2.29 - j5.04
960
2.98 - j5.40
Zload
()
(1)
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
920
1.94 - j4.69
2.12 + j4.72
1.34 - j0.18
18.9
52.8
191
68.6
-17
940
2.29 - j5.04
2.47 + j5.10
1.30 - j0.13
18.8
52.5
179
67.1
-17
960
2.98 - j5.40
2.89 + j5.44
1.27 - j0.35
18.2
52.8
191
65.6
-15
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 9. Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
AFT09S200W02NR3 AFT09S200W02GNR3
RF Device Data
Freescale Semiconductor, Inc.
7
1
1
0.5
0.5
0
E
50
--0.5
--1
51.5
51
50.5
0
E
60
62
58
--0.5
56
--1
54
52
P
--1.5
--2
0.5
48
50
53
53.5
--1.5
52
52.5
P
IMAGINARY ()
IMAGINARY ()
P1dB -- TYPICAL LOAD PULL CONTOURS — 940 MHz
1
1.5
2
2.5
48
--2
0.5
3
1
1.5
2
2.5
3
REAL ()
Figure 10. P1dB Load Pull Output Power Contours (dBm)
Figure 11. P1dB Load Pull Efficiency Contours (%)
1
1
0.5
0.5
21.5
0
E
21
--0.5
--1
20
P
17.5
--1.5
--2
0.5
18.5
18
IMAGINARY ()
IMAGINARY ()
REAL ()
20.5
19.5
19
--16
--14 --12
--18
0
E
--10
--0.5
--8
--1
P
--6
--1.5
1
1.5
2
2.5
3
--2
0.5
--4
1
1.5
2
2.5
REAL ()
REAL ()
Figure 12. P1dB Load Pull Gain Contours (dB)
Figure 13. P1dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
3
Gain
Drain Efficiency
Linearity
Output Power
AFT09S200W02NR3 AFT09S200W02GNR3
8
RF Device Data
Freescale Semiconductor, Inc.
P3dB -- TYPICAL LOAD PULL CONTOURS — 940 MHz
1
1
0.5
0.5
51
0
E
52
--0.5
--1 P
--1.5
55
51.5
52.5
53
53.5
IMAGINARY ()
IMAGINARY ()
56
54
54.5
0
E
66
64
--0.5
62
60
58
--1 P
56
54
--1.5
52
--2
0.5
1
1.5
2
2.5
--2
0.5
3
1
1.5
2
2.5
3
REAL ()
Figure 14. P3dB Load Pull Output Power Contours (dBm)
Figure 15. P3dB Load Pull Efficiency Contours (%)
1
1
0.5
0.5
19.5
0
E
18.5
--0.5
IMAGINARY ()
IMAGINARY ()
REAL ()
19
18
17.5
--1 P
17
16.5
--1.5
--2
0.5
15.5
--22 --20
--18
0
E
--14
--12
--0.5
--10
--1 P
--8
--1.5
--6
16
1
1.5
2
2.5
3
--16
--2
0.5
1
1.5
2
2.5
REAL ()
REAL ()
Figure 16. P3dB Load Pull Gain Contours (dB)
Figure 17. P3dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
3
Gain
Drain Efficiency
Linearity
Output Power
AFT09S200W02NR3 AFT09S200W02GNR3
RF Device Data
Freescale Semiconductor, Inc.
9
ALTERNATIVE CHARACTERIZATION — 716--728 MHz
C28
C14
VGG
C3
C12
R1
VDD
R2
C4
C13
C15
C11
R3
C2
C9*
C10*
C1*
C8
R4
C21
CUT OUT AREA
C7
C22
C23
C25
C24
C26
C27*
C16
C18
C20
C6
VDD
C17
VGG
C5
C19
AFT09S200W02N/--14N
Rev. 0
D49362
*C1, C9, C10, and C27 are mounted vertically.
Figure 18. AFT09S200W02NR3 Test Circuit Component Layout — 716–728 MHz
Table 7. AFT09S200W02NR3 Test Circuit Component Designations and Values — 716–728 MHz
Part
Description
Part Number
Manufacturer
C1, C4, C6, C12, C13, C17,
C18, C27
68 pF Chip Capacitors
ATC100B680JT500XT
ATC
C2
1.1 pF Chip Capacitor
ATC100B1R1BT500XT
ATC
C3, C5, C11, C14, C15, C16, 15 F Chip Capacitors
C19, C20
C5750X7S2A156M250KB
TDK
C7, C8, C21, C22
5.1 pF Chip Capacitors
ATC100B5R1CT500XT
ATC
C9, C10
9.1 pF Chip Capacitors
ATC100B9R1CT500XT
ATC
C23, C24
6.8 pF Chip Capacitors
ATC100B6R8CT500XT
ATC
C25, C26
1.7 pF Chip Capacitors
ATC100B1R7BT500XT
ATC
C28
220 F, 100 V Electrolytic Capacitor
EEV-FK2A221M
Panasonic-ECG
R1, R2
1000 , 1/4 W Chip Resistors
CRCW12061K00FKEA
Vishay
R3, R4
10 , 1/8 W Chip Resistors
RK73H2ATTD10R0F
KOA Speer
PCB
Rogers RO4350B, 0.020, r = 3.66
D49362
MTL
AFT09S200W02NR3 AFT09S200W02GNR3
10
RF Device Data
Freescale Semiconductor, Inc.
Gps, POWER GAIN (dB)
24
22
Gps
20
18
30
VDD = 28 Vdc, Pout = 56 W (Avg.)
IDQ = 1400 mA, Single--Carrier W--CDMA
20
10
PARC
16
14
10
8
710
--26
--5
--34
3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
IRL
725
--0
--30
ACPR
12
--22
740
755
770
785
800
--38
--42
815
--10
--15
--20
--25
830
--2
--3
--4
--5
--6
PARC (dB)
40
D
IRL, INPUT RETURN LOSS (dB)
50
26
ACPR (dBc)
28
D, DRAIN
EFFICIENCY (%)
ALTERNATIVE CHARACTERIZATION—716–728 MHz
--7
f, FREQUENCY (MHz)
Figure 19. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 56 Watts Avg.
23
D
716 MHz
716 MHz 722 MHz
0
50
--10
40
Gps
22
60
30
728 MHz
21
20
ACPR
20
722 MHz
716 MHz
728 MHz
19
1
10
100
10
0
200
--20
--30
--40
ACPR (dBc)
24
Gps, POWER GAIN (dB)
728 MHz
722 MHz
VDD = 28 Vdc, IDQ = 1400 mA
Single--Carrier W--CDMA, 3.84 MHz
Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01%
Probability on CCDF
D, DRAIN EFFICIENCY (%)
25
--50
--60
Pout, OUTPUT POWER (WATTS) AVG.
Figure 20. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
28
35
VDD = 28 Vdc
Pin = 0 dBm
IDQ = 1400 mA
GAIN (dB)
20
25
15
Gain
16
5
IRL (dB)
24
--5
12
IRL
8
--15
4
550
600
650
700
750
800
850
900
--25
950
f, FREQUENCY (MHz)
Figure 21. Broadband Frequency Response
AFT09S200W02NR3 AFT09S200W02GNR3
RF Device Data
Freescale Semiconductor, Inc.
11
PACKAGE DIMENSIONS
AFT09S200W02NR3 AFT09S200W02GNR3
12
RF Device Data
Freescale Semiconductor, Inc.
AFT09S200W02NR3 AFT09S200W02GNR3
RF Device Data
Freescale Semiconductor, Inc.
13
AFT09S200W02NR3 AFT09S200W02GNR3
14
RF Device Data
Freescale Semiconductor, Inc.
AFT09S200W02NR3 AFT09S200W02GNR3
RF Device Data
Freescale Semiconductor, Inc.
15
AFT09S200W02NR3 AFT09S200W02GNR3
16
RF Device Data
Freescale Semiconductor, Inc.
AFT09S200W02NR3 AFT09S200W02GNR3
RF Device Data
Freescale Semiconductor, Inc.
17
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following documents, software and tools to aid your design process.
Application Notes
 AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 .s2p File
Development Tools
 Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Apr. 2014
Description
 Initial Release of Data Sheet
AFT09S200W02NR3 AFT09S200W02GNR3
18
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2014 Freescale Semiconductor, Inc.
AFT09S200W02NR3 AFT09S200W02GNR3
Document
Number:
RF
Device
Data AFT09S200W02N
Rev. 0, 4/2014
Freescale
Semiconductor, Inc.
19