Freescale Semiconductor Technical Data Document Number: MMRF1318N Rev. 0, 12/2014 RF Power LDMOS Transistor Enhancement--Mode Lateral MOSFET Designed primarily for CW large--signal output and driver applications with frequencies up to 600 MHz. Devices are unmatched and are suitable for use in military and c ommerc ial CW and puls e applic ations , s uc h as radio communications and radar. Typical Performance: VDD = 50 Vdc, TA = 25C Frequency (MHz) 450 Signal Type Pout (W) Gps (dB) D (%) CW 300 22 60 MMRF1318NR1 10–600 MHz, 300 W, 50 V BROADBAND RF POWER LDMOS TRANSISTOR Capable of Handling 10:1 VSWR @ 50 Vdc, 450 MHz, 300 W CW Output Power Features Characterized with series equivalent large--signal impedance parameters Qualified for operation at 50 Vdc Integrated ESD protection Greater negative gate--source voltage range for improved Class C operation In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13--inch Reel. TO--270WB--4 PLASTIC Gate A 3 2 Drain A Gate B 4 1 Drain B (Top View) Note: Exposed backside of the package is the source terminal for the transistor. Figure 1. Pin Connections Freescale Semiconductor, Inc., 2014. All rights reserved. RF Device Data Freescale Semiconductor, Inc. MMRF1318NR1 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +110 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C Operating Junction Temperature Range (1,2) TJ –40 to +225 C Symbol Value (2,3) Unit RJC 0.24 C/W Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 83C, 300 W CW, 50 Vdc, IDQ = 900 mA, 450 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 1C, passes 1950 V Machine Model (per EIA/JESD22--A115) A, passes 150 V Charge Device Model (per JESD22--C101) IV, passes 2000 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS — — 10 Adc 120 — — Vdc Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 150 mAdc) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 50 Adc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 800 Adc) VGS(th) 0.9 1.65 2.4 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 900 mAdc, Measured in Functional Test) VGS(Q) 1.9 2.7 3.4 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 2 Adc) VDS(on) — 0.25 — Vdc On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. (Calculator available when part is in production.) 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. (continued) MMRF1318NR1 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 2.8 — pF Output Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 105 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc 30 mV(rms)ac @ 1 MHz) Ciss — 304 — pF Dynamic Characteristics Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW, f = 450 MHz, CW Power Gain Gps 20.0 22.0 24.0 dB Drain Efficiency D 58.0 60.0 — % Input Return Loss IRL — –16 –9 dB MMRF1318NR1 RF Device Data Freescale Semiconductor, Inc. 3 B3 VSUPPLY B1 VBIAS L2 C9 C1 C7 C4 C8 C2 R1 C13 L4 C12 RF INPUT C5 + Z1 Z2 Z3 L1 Z4 Z5 Z7 C17 Z9 C20 Z10 C22 Z11 C25 C26 Z12 C19 C23 C24 C27 C28 DUT C18 Z13 RF OUTPUT C15 Z6 C11 C16 Z8 C21 L5 C14 L3 C10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 0.900 x 0.082 Microstrip 0.115 x 0.170 Microstrip 0.260 x 0.170 Microstrip 0.380 x 0.170 Microstrip 0.220 x 0.220 Microstrip 0.290 x 0.630 Microstrip 0.220 x 0.630 Microstrip Z8 Z9 Z10 Z11 Z12 Z13 PCB C6 B2 C3 VSUPPLY 0.380 x 0.220 Microstrip 0.040 x 0.170 Microstrip 0.315 x 0.170 Microstrip 0.230 x 0.170 Microstrip 0.390 x 0.170 Microstrip 0.680 x 0.082 Microstrip Arlon CuClad 250GX--0300--55--22, 0.030, r = 2.55 Figure 2. MMRF1318NR1 Test Circuit Schematic Table 6. MMRF1318NR1 Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1 Short Ferrite Bead 2743019447 Fair--Rite B2, B3 Long Ferrite Beads 2743021447 Fair--Rite C1 47 F, 25 V, Tantalum Capacitor T491B476M025AT Kemet C2, C3 22 F, 50 V, Chip Capacitors C5750JF1H226ZT TDK C4, C5, C6, C7 1 F, 100 V, Chip Capacitors C3225JB2A105KT TDK C8, C9, C10 15 nF, 100 V, Chip Capacitors C3225CH2A153JT TDK C11, C12, C13, C14, C15 240 pF, Chip Capacitors ATC100B241JT500XT ATC C16 9.1 pF, Chip Capacitor ATC100B9R1JT500XT ATC C17 15 pF, Chip Capacitor ATC100B150JT500XT ATC C18 51 pF, Chip Capacitor ATC100B510JT500XT ATC C19, C20 5.6 pF, Chip Capacitors ATC100B5R6JT500XT ATC C21, C22, C23, C24 4.3 pF, Chip Capacitors ATC100B4R3JT500XT ATC C25, C26, C27, C28 4.7 pF, Chip Capacitors ATC100B4R7JT500XT ATC L1 27 nH Inductor 1812SMS--27NJLC Coilcraft L2, L3 47 nH Inductors 1812SMS--47NJLC Coilcraft L4, L5 5 Turn, #18 AWG Inductors, Hand Wound Copper Wire R1 10 , 1/4 W, Chip Resistor CRCW120610R1FKEA Vishay MMRF1318NR1 4 RF Device Data Freescale Semiconductor, Inc. C1 B1 C7 B3 C4 C8 C2 C9 C5 L2 R1 ATC C12 L1 C11 C16 C17 C18 CUT OUT AREA L4 C13 C20 C21 C22 C25 C26 C19 C23 C24 C27 C28 C15 L5 C14 L3 C10 C6 B2 C3 Figure 3. MMRF1318NR1 Test Circuit Component Layout MMRF1318NR1 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS 100 1000 ID, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) Ciss Coss 100 Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc Crss 10 10 0 10 20 30 Figure 4. Capacitance versus Drain--Source Voltage Figure 5. DC Safe Operating Area 23 VGS = 3 V 22 8 Gps, POWER GAIN (dB) ID, DRAIN CURRENT (AMPS) 100 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) 9 7 6 2.75 V 5 2.63 V 4 2.5 V 3 2 IDQ = 1350 mA 21 1125 mA 900 mA 20 450 mA 19 1 650 mA VDD = 50 Vdc f = 450 MHz 2.25 V 20 0 40 60 80 100 18 10 120 600 100 DRAIN VOLTAGE (VOLTS) Pout, OUTPUT POWER (WATTS) CW Figure 6. DC Drain Current versus Drain Voltage Figure 7. CW Power Gain versus Output Power 0 --5 60 VDD = 50 Vdc, f1 = 450 MHz, f2 = 450.1 MHz Two--Tone Measurements, 100 kHz Tone Spacing --10 --15 --20 --25 --30 IDQ = 450 mA --35 650 mA --40 900 mA --45 --50 --55 --60 1350 mA 10 58 P1dB = 55.15 dBm (327 W) 57 56 Actual 55 54 53 52 VDD = 50 Vdc, IDQ = 900 mA f = 450 MHz 51 1125 mA 100 600 Ideal P3dB = 56.06 dBm (403 W) 59 Pout, OUTPUT POWER (dBm) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) 10 1 50 40 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) 10 0 TC = 25C 1 1 50 28 29 30 31 32 33 34 35 36 37 38 Pout, OUTPUT POWER (WATTS) PEP Pin, INPUT POWER (dBm) Figure 8. Third Order Intermodulation Distortion versus Output Power Figure 9. CW Output Power versus Input Power MMRF1318NR1 6 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS 60 23 20 19 18 25 V 35 V IDQ = 900 mA f = 450 MHz VDD = 20 V 0 50 100 150 200 250 300 350 50 45 VDD = 50 Vdc IDQ = 900 mA f = 450 MHz 40 20 30 25 40 35 Figure 10. Power Gain versus Output Power Figure 11. Power Output versus Power Input 108 80 25_C 23 Gps 85_C 25_C 50 --30_C 85_C 40 30 VDD = 50 Vdc IDQ = 900 mA f = 450 MHz D 18 10 70 60 TC = --30_C 21 19 85_C Pin, INPUT POWER (dBm) 24 20 TC = --30_C Pout, OUTPUT POWER (WATTS) CW 25 22 25_C 55 35 15 400 100 Pout, OUTPUT POWER (WATTS) CW Figure 12. Power Gain and Drain Efficiency versus CW Output Power MTTF (HOURS) 16 30 V 50 V 45 V 40 V 17 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) 21 D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 22 107 106 20 10 500 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 300 W, and D = 60%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 13. MTTF versus Junction Temperature MMRF1318NR1 RF Device Data Freescale Semiconductor, Inc. 7 Zo = 2 f = 450 MHz Zsource f = 450 MHz Zload VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW f MHz Zsource Zload 450 0.39 + j1.26 1.27 + j0.96 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 14. Series Equivalent Source and Load Impedance MMRF1318NR1 8 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS MMRF1318NR1 RF Device Data Freescale Semiconductor, Inc. 9 MMRF1318NR1 10 RF Device Data Freescale Semiconductor, Inc. MMRF1318NR1 RF Device Data Freescale Semiconductor, Inc. 11 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following resources to aid your design process. Application Notes AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages AN1955: Thermal Measurement Methodology of RF Power Amplifiers AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to Software & Tools on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Dec. 2014 Description Initial Release of Data Sheet MMRF1318NR1 12 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Home Page: freescale.com Web Support: freescale.com/support Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. E 2014 Freescale Semiconductor, Inc. MMRF1318NR1 Document Number: RF Device DataMMRF1318N Rev. 0, 12/2014 Freescale Semiconductor, Inc. 13