Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MMRF1318N
Rev. 0, 12/2014
RF Power LDMOS Transistor
Enhancement--Mode Lateral MOSFET
Designed primarily for CW large--signal output and driver applications with
frequencies up to 600 MHz. Devices are unmatched and are suitable for use
in military and c ommerc ial CW and puls e applic ations , s uc h as radio
communications and radar.
Typical Performance: VDD = 50 Vdc, TA = 25C
Frequency
(MHz)
450
Signal Type
Pout
(W)
Gps
(dB)
D
(%)
CW
300
22
60
MMRF1318NR1
10–600 MHz, 300 W, 50 V
BROADBAND
RF POWER LDMOS TRANSISTOR
 Capable of Handling 10:1 VSWR @ 50 Vdc, 450 MHz, 300 W CW Output
Power
Features
 Characterized with series equivalent large--signal impedance parameters
 Qualified for operation at 50 Vdc
 Integrated ESD protection
 Greater negative gate--source voltage range for improved Class C
operation
 In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13--inch Reel.
TO--270WB--4
PLASTIC
Gate A 3
2 Drain A
Gate B 4
1 Drain B
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistor.
Figure 1. Pin Connections
 Freescale Semiconductor, Inc., 2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MMRF1318NR1
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +110
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
Operating Junction Temperature Range (1,2)
TJ
–40 to +225
C
Symbol
Value (2,3)
Unit
RJC
0.24
C/W
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 83C, 300 W CW, 50 Vdc, IDQ = 900 mA, 450 MHz
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1C, passes 1950 V
Machine Model (per EIA/JESD22--A115)
A, passes 150 V
Charge Device Model (per JESD22--C101)
IV, passes 2000 V
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IGSS
—
—
10
Adc
120
—
—
Vdc
Off Characteristics
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 150 mAdc)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
50
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 800 Adc)
VGS(th)
0.9
1.65
2.4
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 900 mAdc, Measured in Functional Test)
VGS(Q)
1.9
2.7
3.4
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
—
0.25
—
Vdc
On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product. (Calculator available when part is in production.)
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
(continued)
MMRF1318NR1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Reverse Transfer Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
2.8
—
pF
Output Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
105
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
304
—
pF
Dynamic Characteristics
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW, f = 450 MHz, CW
Power Gain
Gps
20.0
22.0
24.0
dB
Drain Efficiency
D
58.0
60.0
—
%
Input Return Loss
IRL
—
–16
–9
dB
MMRF1318NR1
RF Device Data
Freescale Semiconductor, Inc.
3
B3
VSUPPLY
B1
VBIAS
L2
C9
C1
C7
C4
C8
C2
R1
C13
L4
C12
RF
INPUT
C5
+
Z1
Z2
Z3
L1
Z4
Z5
Z7
C17
Z9
C20 Z10
C22 Z11
C25
C26 Z12
C19
C23
C24
C27
C28
DUT
C18
Z13
RF
OUTPUT
C15
Z6
C11
C16
Z8
C21
L5
C14
L3
C10
Z1
Z2
Z3
Z4
Z5
Z6
Z7
0.900 x 0.082 Microstrip
0.115 x 0.170 Microstrip
0.260 x 0.170 Microstrip
0.380 x 0.170 Microstrip
0.220 x 0.220 Microstrip
0.290 x 0.630 Microstrip
0.220 x 0.630 Microstrip
Z8
Z9
Z10
Z11
Z12
Z13
PCB
C6
B2
C3
VSUPPLY
0.380 x 0.220 Microstrip
0.040 x 0.170 Microstrip
0.315 x 0.170 Microstrip
0.230 x 0.170 Microstrip
0.390 x 0.170 Microstrip
0.680 x 0.082 Microstrip
Arlon CuClad 250GX--0300--55--22, 0.030, r = 2.55
Figure 2. MMRF1318NR1 Test Circuit Schematic
Table 6. MMRF1318NR1 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
Short Ferrite Bead
2743019447
Fair--Rite
B2, B3
Long Ferrite Beads
2743021447
Fair--Rite
C1
47 F, 25 V, Tantalum Capacitor
T491B476M025AT
Kemet
C2, C3
22 F, 50 V, Chip Capacitors
C5750JF1H226ZT
TDK
C4, C5, C6, C7
1 F, 100 V, Chip Capacitors
C3225JB2A105KT
TDK
C8, C9, C10
15 nF, 100 V, Chip Capacitors
C3225CH2A153JT
TDK
C11, C12, C13, C14, C15
240 pF, Chip Capacitors
ATC100B241JT500XT
ATC
C16
9.1 pF, Chip Capacitor
ATC100B9R1JT500XT
ATC
C17
15 pF, Chip Capacitor
ATC100B150JT500XT
ATC
C18
51 pF, Chip Capacitor
ATC100B510JT500XT
ATC
C19, C20
5.6 pF, Chip Capacitors
ATC100B5R6JT500XT
ATC
C21, C22, C23, C24
4.3 pF, Chip Capacitors
ATC100B4R3JT500XT
ATC
C25, C26, C27, C28
4.7 pF, Chip Capacitors
ATC100B4R7JT500XT
ATC
L1
27 nH Inductor
1812SMS--27NJLC
Coilcraft
L2, L3
47 nH Inductors
1812SMS--47NJLC
Coilcraft
L4, L5
5 Turn, #18 AWG Inductors, Hand Wound
Copper Wire
R1
10 , 1/4 W, Chip Resistor
CRCW120610R1FKEA
Vishay
MMRF1318NR1
4
RF Device Data
Freescale Semiconductor, Inc.
C1
B1
C7
B3
C4
C8
C2
C9 C5
L2
R1
ATC
C12
L1
C11
C16
C17
C18
CUT OUT AREA
L4
C13
C20
C21 C22 C25 C26
C19
C23 C24 C27 C28
C15
L5
C14
L3
C10 C6
B2
C3
Figure 3. MMRF1318NR1 Test Circuit Component Layout
MMRF1318NR1
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
100
1000
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
Ciss
Coss
100
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
Crss
10
10
0
10
20
30
Figure 4. Capacitance versus Drain--Source Voltage
Figure 5. DC Safe Operating Area
23
VGS = 3 V
22
8
Gps, POWER GAIN (dB)
ID, DRAIN CURRENT (AMPS)
100
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
9
7
6
2.75 V
5
2.63 V
4
2.5 V
3
2
IDQ = 1350 mA
21
1125 mA
900 mA
20
450 mA
19
1
650 mA
VDD = 50 Vdc
f = 450 MHz
2.25 V
20
0
40
60
80
100
18
10
120
600
100
DRAIN VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS) CW
Figure 6. DC Drain Current versus Drain Voltage
Figure 7. CW Power Gain versus Output Power
0
--5
60
VDD = 50 Vdc, f1 = 450 MHz, f2 = 450.1 MHz
Two--Tone Measurements, 100 kHz Tone Spacing
--10
--15
--20
--25
--30
IDQ = 450 mA
--35
650 mA
--40
900 mA
--45
--50
--55
--60
1350 mA
10
58
P1dB = 55.15 dBm (327 W)
57
56
Actual
55
54
53
52
VDD = 50 Vdc, IDQ = 900 mA
f = 450 MHz
51
1125 mA
100
600
Ideal
P3dB = 56.06 dBm (403 W)
59
Pout, OUTPUT POWER (dBm)
IMD, THIRD ORDER INTERMODULATION
DISTORTION (dBc)
10
1
50
40
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
10
0
TC = 25C
1
1
50
28
29
30
31
32
33
34
35
36
37
38
Pout, OUTPUT POWER (WATTS) PEP
Pin, INPUT POWER (dBm)
Figure 8. Third Order Intermodulation Distortion
versus Output Power
Figure 9. CW Output Power versus Input Power
MMRF1318NR1
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
60
23
20
19
18
25 V
35 V
IDQ = 900 mA
f = 450 MHz
VDD = 20 V
0
50
100
150
200
250
300
350
50
45
VDD = 50 Vdc
IDQ = 900 mA
f = 450 MHz
40
20
30
25
40
35
Figure 10. Power Gain versus Output Power
Figure 11. Power Output versus Power Input
108
80
25_C
23
Gps
85_C
25_C
50
--30_C
85_C
40
30
VDD = 50 Vdc
IDQ = 900 mA
f = 450 MHz
D
18
10
70
60
TC = --30_C
21
19
85_C
Pin, INPUT POWER (dBm)
24
20
TC = --30_C
Pout, OUTPUT POWER (WATTS) CW
25
22
25_C
55
35
15
400
100
Pout, OUTPUT POWER (WATTS) CW
Figure 12. Power Gain and Drain Efficiency
versus CW Output Power
MTTF (HOURS)
16
30 V
50 V
45 V
40 V
17
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (dBm)
21
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
22
107
106
20
10
500
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 300 W, and D = 60%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 13. MTTF versus Junction Temperature
MMRF1318NR1
RF Device Data
Freescale Semiconductor, Inc.
7
Zo = 2 
f = 450 MHz
Zsource
f = 450 MHz
Zload
VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW
f
MHz
Zsource

Zload

450
0.39 + j1.26
1.27 + j0.96
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 14. Series Equivalent Source and Load Impedance
MMRF1318NR1
8
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MMRF1318NR1
RF Device Data
Freescale Semiconductor, Inc.
9
MMRF1318NR1
10
RF Device Data
Freescale Semiconductor, Inc.
MMRF1318NR1
RF Device Data
Freescale Semiconductor, Inc.
11
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following resources to aid your design process.
Application Notes
 AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to
Software & Tools on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Dec. 2014
Description
 Initial Release of Data Sheet
MMRF1318NR1
12
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Home Page:
freescale.com
Web Support:
freescale.com/support
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2014 Freescale Semiconductor, Inc.
MMRF1318NR1
Document
Number:
RF Device
DataMMRF1318N
Rev.
0, 12/2014
Freescale
Semiconductor,
Inc.
13