Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MMRF1013H
Rev. 0, 7/2014
RF Power LDMOS Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
RF power transistors designed for aerospace and defense S--band radar
pulse applications operating at frequencies between 2700 and 3200 MHz.
MMRF1013HR5
MMRF1013HSR5
 Typical Pulse Performance: VDD = 30 Vdc, IDQ = 100 mA
Pout
(W)
f
(MHz)
Gps
(dB)
D
(%)
IRL
(dB)
320 Peak
2900
13.3
50.5
--17
Signal Type
Pulse (100 sec,
10% Duty Cycle)
2700--2900 MHz, 320 W, 30 V
PULSE S--BAND
RF POWER MOSFETs
 Capable of Handling 10:1 VSWR @ 32 Vdc, 2900 MHz, 320 W Peak Power,
300 sec, 10% Duty Cycle (3 dB Input Overdrive from Rated Pout)
Features
 Characterized with Series Equivalent Large--Signal Impedance Parameters
Internally Matched for Ease of Use
Qualified Up to a Maximum of 32 VDD Operation
Integrated ESD Protection
Designed for Push--Pull Operation
Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
 In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel.





NI--1230H--4S
MMRF1013HR5
NI--1230S--4S
MMRF1013HSR5
PARTS ARE PUSH--PULL
Gate A 3
1 Drain A
Gate B 4
2 Drain B
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +65
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
C
Case Operating Temperature
TC
150
C
Note: The backside of the package is the
source terminal for the transistors.
Operating Junction Temperature (1,2)
TJ
225
C
Figure 1. Pin Connections
(Top View)
Table 2. Thermal Characteristics
Characteristic
Symbol
Thermal Resistance, Junction to Case
Case Temperature 61C, 320 W Peak, 300 sec Pulse Width, 10% Duty Cycle, 100 mA, 2900 MHz
Case Temperature 69C, 320 W Peak, 500 sec Pulse Width, 20% Duty Cycle, 100 mA, 2900 MHz
ZJC
Value (2,3)
0.06
0.10
Unit
C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
 Freescale Semiconductor, Inc., 2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MMRF1013HR5 MMRF1013HSR5
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2
Machine Model (per EIA/JESD22--A115)
A
Charge Device Model (per JESD22--C101)
IV
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 30 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 345 Adc)
VGS(th)
1.0
1.9
2.5
Vdc
Gate Quiescent Voltage (2)
(VDD = 30 Vdc, ID = 100 mAdc, Measured in Functional Test)
VGS(Q)
1.5
2.3
3.0
Vdc
Drain--Source On--Voltage (1)
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
0.1
0.18
0.3
Vdc
Reverse Transfer Capacitance
(VDS = 30 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
2.53
—
pF
Output Capacitance
(VDS = 30 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
470
—
pF
Input Capacitance
(VDS = 30 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
264
—
pF
Characteristic
Off Characteristics
(1)
On Characteristics
Dynamic Characteristics (1)
Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 100 mA, Pout = 320 W Peak (32 W Avg.),
f = 2900 MHz, 100 sec Pulse Width, 10% Duty Cycle
Power Gain
Gps
12.0
13.3
15.0
dB
Drain Efficiency
D
47.0
50.5
—
%
Input Return Loss
IRL
—
--17
--9
dB
Typical Pulse RF Performance (In Freescale 2x3 Compact Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 100 mA, Pout = 320 W
Peak (32 W Avg.), 300 sec Pulse Width, 10% Duty Cycle
Frequency
Gps
(dB)
D
(%)
IRL
(dB)
2700 MHz
13.9
49.3
--11
2800 MHz
14.0
49.8
--18
2900 MHz
13.0
49.6
--15
1. Each side of device measured separately.
2. Measurement made with device in push--pull configuration.
MMRF1013HR5 MMRF1013HSR5
2
RF Device Data
Freescale Semiconductor, Inc.
VBIAS
C20
C18
C14
C10 C3
Z22
C30
R1
Z20 Z17
Z14
Z15 Z16
C1
RF
INPUT Z1
Z3
Z4
Z5
Z6
C31
Z46
Z7
Z19
Z45
Z13
Z2
Z18
Z8
C2
Z9
Z11
DUT
Z12
R2
Z21 Z10
Z23
VBIAS
C19
C15
C11
C7
C4
C29
Z47
Z28
C26
C6
C33
C9
C13 C17
Z29 Z30 Z31 Z32 Z33 Z34 Z35
+
+
+
C27
C34
C35
Z42
VSUPPLY
RF
OUTPUT
Z43 Z44
C23
Z41
Z24
Z25 Z26 Z27 Z36 Z37 Z38 Z39
Z40
C24
Z48
C25
Z1*
Z2
Z3
Z4
Z5
Z6
Z7*
Z8, Z15
Z9, Z16
Z10, Z17
0.865 x 0.065 Microstrip
0.100 x 0.110 Microstrip
0.075 x 0.065 Microstrip
0.146 x 0.111 Microstrip
0.325 x 0.204 Microstrip
0.224 x 0.111 Microstrip
0.121 x 0.065 Microstrip
0.030 x 0.065 Microstrip
0.284 x 0.165 Microstrip
0.105 x 0.620 Microstrip
Z11, Z18
Z12, Z19
Z13*
Z14
Z20, Z21, Z45, Z46
Z22, Z23*
Z24, Z28
Z25, Z29
Z26, Z30
Z27, Z31
Z32, Z36
C5
C32
0.135 x 0.620 Microstrip
0.120 x 0.620 Microstrip
0.957 x 0.065 Microstrip
0.495 x 0.065 Microstrip
0.055 x 0.100 Microstrip
0.554 x 0.060 Microstrip
0.202 x 0.610 Microstrip
0.166 x 0.560 Microstrip
0.200 x 0.622 Microstrip
0.088 x 0.331 Microstrip
0.247 x 0.098 Microstrip
C8
C12 C16
Z33, Z37
Z34, Z38
Z35, Z39
Z40
Z41*
Z42*
Z43
Z44*
Z47, Z48*
+
+
+
C21
C22
C28
VSUPPLY
0.112 x 0.232 Microstrip
0.158 x 0.152 Microstrip
0.058 x 0.065 Microstrip
0.505 x 0.065 Microstrip
0.917 x 0.065 Microstrip
0.092 x 0.065 Microstrip
0.695 x 0.111 Microstrip
0.479 x 0.065 Microstrip
0.409 x 0.100 Microstrip
* Line length includes microstrip bends
Figure 2. MMRF1013HR5(HSR5) Test Circuit Schematic
MMRF1013HR5 MMRF1013HSR5
RF Device Data
Freescale Semiconductor, Inc.
3
C27
C34
C17
C18
C20
C14
C10
C3
C30
C26 C6 C33 C9
R1
C1
C11
C7
R2
C4 C29
CUT OUT AREA
C2
C15
C35
C23
C31
C19
C13
C24
C25 C5 C32 C8
C12
C28
C21
C16
C22
Figure 3. MMRF1013HR5(HSR5) Test Circuit Component Layout
Table 5. MMRF1013HR5(HSR5) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2
3.3 pF Chip Capacitors
ATC600F3R3BT250XT
ATC
C3, C4
18 pF Chip Capacitors
ATC600F180JT250XT
ATC
C5, C6, C25, C26, C29, C30
5.1 pF Chip Capacitors
ATC100B5R1BT250XT
ATC
C7, C8, C9, C10
100 pF Chip Capacitors
ATC100B101JT500XT
ATC
C11, C12, C13, C14
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C15, C16, C17, C18
1 F Chip Capacitors
GRM32ER72A105KA01L
Murata
C19, C20
22 F Chip Capacitors
C5750KF1H226ZT
TDK
C21, C22, C27, C28, C34, C35
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M16X32--RH
Multicomp
C23, C24
5.1 pF Chip Capacitors
ATC600F5R1CT500XT
ATC
C31
0.5 pF Chip Capacitor
ATC100B0R5BT500XT
ATC
C32, C33
1 F Chip Capacitors
C3225JB2A105KT
TDK
R1, R2
5  Chip Resistors
CRCW08055R00JNEA
Vishay
PCB
0.030, r = 3.5
RF35A2
Taconic
MMRF1013HR5 MMRF1013HSR5
4
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
Coss
60
59
100
Pout, OUTPUT POWER (dBm)
C, CAPACITANCE (pF)
Ciss
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
10
Crss
1
0
4
8
16
12
20
24
28
58
P2dB = 54.82 dBm (303 W)
57
56
P1dB = 54.19 dBm (263 W)
32
54
53
52
VDD = 30 Vdc, IDQ = 100 mA, f = 2900 MHz
Pulse Width = 300 sec, Duty Cycle = 10%
50
35
36
37
Note: Each side of device measured separately.
14.5
50
14
45
13.5
40
35
VDD = 30 Vdc
IDQ = 100 mA
f = 2900 MHz
Pulse Width = 300 sec
Duty Cycle = 10%
12.5
12
11.5
30
100
30
16
42
44
43
32 V
28 V
20
10
500
30 V
12
26 V
VDD = 24 V
200
100
0
300
400
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 6. Power Gain and Drain Efficiency
versus Output Power
Figure 7. Power Gain versus Output Power
17
--30_C
16
Gps, POWER GAIN (dB)
15
500 mA
14
200 mA
VDD = 30 Vdc
f = 2900 MHz
Pulse Width = 300 sec
Duty Cycle = 10%
13
IDQ = 100 mA
100
200
300
400
Gps
15
TC = --30_C
55
25_C 50
85_C
45
14
40
25_C
13
12
35
30
85_C
11
10
12
45
13
25
1000 mA
Gps, POWER GAIN (dB)
41
14
11
16
0
40
IDQ = 100 mA, f = 2900 MHz
Pulse Width = 300 sec
Duty Cycle = 10%
15
Gps, POWER GAIN (dB)
55
D
39
Figure 5. Output Power versus Input Power
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
15
13
38
Pin, INPUT POWER (dBm) PEAK
Figure 4. Capacitance versus Drain--Source Voltage
Gps
Actual
55
51
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Ideal
P3dB = 55.16 dBm (328 W)
9
20
25
D
VDD = 30 Vdc, IDQ = 100 mA, f = 2900 MHz
Pulse Width = 300 sec, Duty Cycle = 10%
100
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 8. Power Gain versus Output Power
Figure 9. Power Gain and Drain Efficiency
versus Output Power
D, DRAIN EFFICIENCY (%)
1000
20
15
500
MMRF1013HR5 MMRF1013HSR5
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
Pout, OUTPUT POWER (WATTS) PULSED
400
TC = --30_C
25_C
85_C
300
200
100
VDD = 30 Vdc, IDQ = 100 mA, f = 2900 MHz
Pulse Width = 300 sec, Duty Cycle = 10%
0
0
4
8
12
16
20
24
Pin, INPUT POWER (WATTS) PEAK
Gps
Gps, POWER GAIN (dB)
14.5
53
--8
52
--10
IRL
51
14
D
50
13.5
13
49
VDD = 30 Vdc
IDQ = 100 mA
Pulse Width = 300 sec
Duty Cycle = 10%
12.5
12
2700
2750
2800
2850
D DRAIN EFFICIENCY (%)
15
--12
--14
--16
48
--18
47
2900
--20
IRL, INPUT RETURN LOSS (dB)
Figure 10. Output Power versus Input Power
f, FREQUENCY (MHz)
Figure 11. Power Gain, Drain Efficiency and Input
Return Loss versus Frequency
MMRF1013HR5 MMRF1013HSR5
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
109
MTTF (HOURS)
108
107
106
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 30 Vdc, Pout = 320 W Peak, Pulse Width = 300 sec,
Duty Cycle = 10%, and D = 45%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 12. MTTF versus Junction Temperature
MMRF1013HR5 MMRF1013HSR5
RF Device Data
Freescale Semiconductor, Inc.
7
Zo = 10 
f = 2900 MHz
f = 2700 MHz
f = 2900 MHz
Zsource
Zload
f = 2700 MHz
VDD = 30 Vdc, IDQ = 100 mA, Pout = 320 W Peak
f
MHz
Zsource

Zload

2700
4.7 -- j2.0
7.8 -- j1.0
2800
4.7 -- j1.7
8.7 -- j0.2
2900
4.7 -- j1.5
9.4 -- j0.7
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured from
drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
+
Z
load
Figure 13. Series Equivalent Source and Load Impedance
MMRF1013HR5 MMRF1013HSR5
8
RF Device Data
Freescale Semiconductor, Inc.
C11
C13
R1
C3
C1
VGS
C5
C7
R3
C4
C9
CUT OUT AREA
VGS
C8
C6
VDS
C2
R4
VDS
C10
R2
C14
C12
Figure 14. MMRF1013HR5(HSR5) 2 3 Compact Test Circuit Component Layout
Table 6. MMRF1013HR5(HSR5) 2 3 Compact Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2
4.7 pF Chip Capacitors
ATC100A4R7BT150XT
ATC
C3, C4
47 F, 16 V Tantalum Capacitors
T491D476K016AT
Kemet
C5, C6, C11, C12
100 pF Chip Capacitors
ATC100B101JT500XT
ATC
C7, C8, C9, C10
15 pF Chip Capacitors
ATC100A150JT150XT
ATC
C13, C14
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
R1, R2, R3, R4
10  Chip Resistors
CRCW120610R0JNEA
Vishay
PCB
0.050, r = 10.2
RO3010
Rogers
MMRF1013HR5 MMRF1013HSR5
RF Device Data
Freescale Semiconductor, Inc.
9
TYPICAL CHARACTERISTICS — 2  3 COMPACT TEST FIXTURE
59
P3dB = 55.4 dBm (347 W)
Pout, OUTPUT POWER (dBm)
58
57
Ideal
P2dB = 55 dBm (316 W)
56
Actual
P1dB = 54.3 dBm (269 W)
55
54
53
52
51
VDD = 30 Vdc, IDQ = 100 mA, f = 2900 MHz
Pulse Width = 300 sec, Duty Cycle = 10%
50
49
34
36
35
37
38
39
40
41
42
44
43
Pin, INPUT POWER (dBm) PEAK
Figure 15. Output Power versus Input Power
55
VDD = 30 Vdc, IDQ = 100 mA, f = 2900 MHz
15 Pulse Width = 300 sec, Duty Cycle = 10%
50
Gps
45
14.5
14
40
35
13.5
D
13
30
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
15.5
25
12.5
20
12
30
500
100
Pout, OUTPUT POWER (WATTS) PEAK
VDD = 30 Vdc, IDQ = 100 mA, Pout = 320 W
Pulse Width = 300 sec, Duty Cycle = 10%
Gps, POWER GAIN (dB)
14.5
Gps
IRL
53
--5
52
--10
14
51
13.5
50
13
49
D
2750
2800
2850
--15
--20
--25
48
--30
47
2900
--35
12.5
12
2700
D DRAIN EFFICIENCY (%)
15
IRL, INPUT RETURN LOSS (dB)
Figure 16. Power Gain and Drain Efficiency
versus Output Power
f, FREQUENCY (MHz)
Figure 17. Power Gain, Drain Efficiency and Input
Return Loss versus Frequency
MMRF1013HR5 MMRF1013HSR5
10
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MMRF1013HR5 MMRF1013HSR5
RF Device Data
Freescale Semiconductor, Inc.
11
MMRF1013HR5 MMRF1013HSR5
12
RF Device Data
Freescale Semiconductor, Inc.
MMRF1013HR5 MMRF1013HSR5
RF Device Data
Freescale Semiconductor, Inc.
13
MMRF1013HR5 MMRF1013HSR5
14
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software
& Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
July 2014
Description
 Initial Release of Data Sheet
MMRF1013HR5 MMRF1013HSR5
RF Device Data
Freescale Semiconductor, Inc.
15
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2014 Freescale Semiconductor, Inc.
MMRF1013HR5 MMRF1013HSR5
Document Number: MMRF1013H
Rev.
16 0, 7/2014
RF Device Data
Freescale Semiconductor, Inc.