LatticeXP2 Advanced Evaluation Board User’s Guide March 2011 Revision: EB30_01.5 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Introduction The LatticeXP2™ Advanced Evaluation Board provides a convenient platform to evaluate, test and debug user designs and IP cores targeted for the LatticeXP2-17 FPGA. The board features of a LatticeXP2-17 FPGA in a 484 fpBGA package. The LatticeXP2 I/Os are connected to a rich variety of both generic and application-specific interfaces described later in this document. Important: This document (including the schematics in the appendix) describes LatticeXP2 Advanced Evaluation Boards marked as Rev B. This marking can be seen on the silkscreen of the printed circuit board, under the Lattice Semiconductor logo. The LatticeXP2 is a second-generation non-volatile FPGA device. It combines a Look-up Table (LUT) based FPGA fabric with Flash non-volatile cells in a flexiFLASH™ architecture. The flexiFLASH approach provides benefits such as instant-on, small footprint, on chip storage with FlashBAK™ embedded block memories and Serial TAG memory and design security. The LatticeXP2 also support live updates with TransFR™, 128-bit AES encryption and dualboot technologies. The LatticeXP2 devices include LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O and enhanced sysDSP™ blocks. For a full description of the LatticeXP2 FPGA, see the Lattice website for data sheets, technical notes, technology summaries and more: www.latticesemi.com. Some common uses for the LatticeXP2 Advanced Evaluation Board include: • Video and other DSP processing • An analog-to-digital, and digital-to-analog mixed signal source/sink • A single-board computer system • A platform for evaluating the Input/Output (I/O) characteristics of the FPGA • A platform for evaluation and development with Lattice IP cores Features Key features of the LatticeXP2 Advanced Evaluation Board include: • SPI Serial Flash device included for low-cost, non-volatile configuration storage • One 32-bit DDR2 SO-DIMM module connector • 32-bit PCI connector • Both a Tri-speed (10/100/1000 Mbit) Ethernet PHY that includes RJ-45, magnetics and spark gap, as well as a directly wired RJ-45 connector • RS-232 interface chip and 9-pin D-sub connector • PS/2 Mouse connector • USB 1.1 transceiver and USB type-A and type-B connectors • USB download of LatticeXP2 and power manager bitstreams • Video TX and RX MDR connectors • Quad 12-bit ADC and Quad 12-bit DAC • Two 8-pin DIP switches • Discrete LEDs and 7-segment LED • CompactFlash connector for type I and type II CompactFlash cards • LCD module connector 2 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor • Prototyping areas with access to 14 I/O pins • Selectable I/O bank voltages • Four pairs of SMA connectors for high speed differential signals • Oscillator socket for both half-size and full-size oscillators • 3.3V, 2.5V, 1.8V, 1.2V and ADJ (adjustable voltage) powers generated from a single 5V to 28V power source • ispPAC®-POWR1220AT8 Power Manager II device for monitoring the 3.3V, 2.5V, 1.8V, 1.2V, ADJ voltages and DDR Vref, Vtt voltages • ispVM® System programming support General Description The heart of the board is the LatticeXP2 non-volatile FPGA. The board also provides several different interconnections and support devices that permit it to be used for a variety of purposes. The PCI connector, DDR2 socket, and Tri-speed Ethernet PHY are useful for applications using Lattice IP cores. A number of connectors are useful for general purpose of the LatticeXP2 I/O capability. These include the SMA connectors, RS-232, Video Tx/Rx MDR connectors, and the various generic prototype access points. The CompactFlash connector is also useful for expansion purposes. It provides the ability to add storage, or communication capabilities to the board. Other features on the board help in evaluating the capabilities and performance of the LatticeXP2. The A/D, D/A, and digital potentiometer are helpful for some basic mixed signal applications. The SMA connectors permit the evaluation of high-speed differential signals, and protocols. The SPI memory showcases the failsafe capabilities of the LatticeXP2. The board also acts as a showcase for the ispPAC-POWR1220 power manager. The ispPAC-POWR1220 is a programmable device useful for safely managing the power supply system on the board. While the LatticeXP2 device has no specific power-sequencing requirements, the ispPAC-POWR1220 device can be used to sequence and monitor voltages. Additional Resources Additional resources for the LatticeXP2 Advanced Evaluation Board, such as updates to this document, sample programs and links to demos can be found on the Lattice web site. Go to www.latticesemi.com/boards, and navigate to the appropriate page for this board. Initial Setup and Handling The following is recommended reading prior to removing the evaluation board from the static shielding bag and may or may not apply to your particular use of the board. CAUTION: The devices on the board can be damaged by improper handling. The devices on the evaluation board contain fairly robust ESD (Electro Static Discharge) protection structures within them, able to withstand typical static discharges (see the “Human Body Model” specification for an example of ESD characterization requirements). Even so, the devices are static sensitive to conditions that exceed their designed in protection. For example: higher static voltages, as well as lower voltages with lower series resistance or larger capacitance than the respective ESD specifications require can potentially damage or degrade the devices on the evaluation board. As such, it is recommended that you wear an approved and functioning grounded wrist strap at all times while handling the evaluation board when it is removed from the static shielding bag. If you will not be using the board for a 3 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor while, it’s best to put it back in the static shielding bag. Please save the static shielding bag and packing box for future storage of the board when it is not in use. When reaching for the board, it is recommended that you first touch the outside threaded portion of one of the gold SMA connectors. This will neutralize any static voltage difference between your body and the board prior to any contact with signal I/O. CAUTION: to minimize the possibility of ESD damage, the first and last electrical connection to the board, should always be from test equipment chassis ground to GND on the board (black banana jack). Before connecting signals or power to the board, attach a cable from chassis ground on grounded test equipment to the GND on the board. Connecting the board ground to test equipment chassis ground will decrease the risk of ESD damage to the I/O on the board as the initial connections to the board are made. Likewise, when unplugging cables from the evaluation board, the last connection unplugged, should be the chassis GND connection to eval board GND. If you have signal sources that are floating with respect to chassis GND, attempt to neutralize any static charge on that signal source prior to attaching it to the evaluation board. If you are holding or carrying the board while it’s not in a static shielding bag, please keep one finger on the threaded portion of one of the gold SMA connectors. This will keep the board at the same voltage potential as your body until you can pick up the static shielding bag and put the board back in it. Electrical, Mechanical, and Environmental Specifications The nominal board dimensions are 12 inches by 6 inches. The environmental specifications are as follows: • Operating temperature: 0°C to 55°C • Storage temperature: -40°C to 75°C • Humidity: <95% without condensation • 5V to 28V DC (20 watts max.) Functional Description USB Programming 9-Pin D-Sub RS-232 USB Device/ Host Generic RJ-45 PS/2 Mouse Figure 1. LatticeXP2 Advanced Evaluation Board CompactFlash 8-Position Switch ispPAC-POWR 1220AT8 On/Off Switch 8-Position Switch MachXO2280 Video MDR Tx/Rx LatticeXP2 FPGA DDR2 SO-DIMM 32-Bit PCI Edge 4 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor LatticeXP2 Device This board features a LatticeXP2 FPGA with a 1.2V DC core in a 484-ball fpBGA package. The default device is the LatticeXP2-17. Any other LatticeXP2 density in this package can be accommodated. A complete description of this device can be found on the Lattice web site at www.latticesemi.com. Power Setup The board is supplied by a single 5.0V to 28.0V DC power supply. On-board regulators will provide the necessary supply voltages. The on-board regulators supply 3.3V, 2.5V, 1.8V, 1.2V, and an adjustable voltage (VCC_ADJ). The adjustable voltage is set by the potentiometer VR1 and can be set to a value between 1.22V and 3.25V. The DC power may be applied through the power jack at J54 using an AC adapter with a 5.0V to 28.0V DC output range. Requirements for the power jack are listed in Table 1. The on/off switch (SW9) can be used as a convenience to disable power jack J54. Be sure that SW9 is in the “on” position for normal operation. The DC power may also be applied using a workbench power supply through the banana jacks at J53 (VCC_IN) and J51 (GND). The workbench power supply voltage has to be between 5.0V and 28.0V. Table 1. Power Jack J54 Specifications Polarity Positive Center Inside Diameter 0.1” (2.5mm) Outside Diameter 0.218” (5.5mm) Current Capacity Up to 4A Power may also be supplied directly for each individual supply rail using banana jack connectors. To enable this mode of operation, the appropriate fuses must be removed. All power sources must be regulated to the specifications in Table 2. No special power sequencing is required for the evaluation board. Table 2. Individual Control of Supplies Supply Jack Fuse Requirement 3.3V J50 F5 (3.0A) +/- 5% 2.5V J41 F1 (3.0A) +/- 5% 1.8V J47 F3 (10.0A) +/- 5% 1.2V J48 F4 (3.0A) +/- 5% VCC_ADJ J46 F2 (1.5A) User-defined Power Voltage Monitoring A Lattice’s ispPAC Power Manager II device, ispPAC-POWR1220AT8, is used for monitoring various voltages on the board. There are six LEDs used to indicate the status of the monitoring voltages. If the monitoring voltage is not in the +/- 5% voltage window, the corresponding LED will be flashing, otherwise the LED will stay ON. Table 3 shows these six voltages and the corresponding LEDs. Table 3. Individual Monitoring of Six Power Voltages Voltage LED Monitoring Voltage Range 3.3V D5 3.3V +/- 5% 2.5V D6 2.5V +/- 5% 1.8V D7 1.8V +/- 5% 1.2V D8 1.2V +/- 5% Vref D9 0.9V +/- 5% Vtt D10 0.9V +/- 5% 5 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor For the VCC_ADJ adjustable voltage, the ispPAC-POWR1220AT8 will detect the voltage rail and show the status using five LEDs. Each of these five LEDs indicates a particular voltage range. If the VCC_ADJ is in one of the voltage ranges, the corresponding LED will be turned ON and the other LEDs will be turned OFF, otherwise these five LEDs will be turned ON and then OFF sequentially so that you will see a light keep moving between the LEDs. The five LEDs and corresponding voltages are listed in Table 4. Table 4. Monitoring of VCC_ADJ Power Voltages LED Indicating Voltage Range D11 3.3V +/- 5% D12 2.5V +/- 5% D13 1.8V +/- 5% D14 1.5V +/- 5% D15 1.2V +/- 5% LatticeXP2 I/O Bank Voltage Setting The jumpers listed in Table 5 allow the user to select the voltage (VCCIO) applied to each of the eight I/O banks of the LatticeXP2 device. Certain restrictions apply depending on which features of the board are being used. Table 5. VCCIO Selection Jumper sysIO™ Bank Jumper Jumper on Pins 0 J34 6 J37 1-3 -> VCC_3.3V 2-4 -> VCC_2.5V 3-5 -> VCC_1.8V 4-6 -> VCC_ADJ 1 VCC_2.5V 2 VCC_1.8V 3 VCC_1.8V 4 VCC_3.3V 5 VCC_3.3V 7 VCC_3.3V Depending on the optional devices installed, some sysIO banks may have restrictions. For each of J34 and J37 only select one bank voltage position at that jumper. For example, attaching more than one jumper to J34’s 6 square pins will short supplies. Table 6. sysIO Bank Considerations Bank Setting 0 Selectable. CompactFlash requires 3.3V. 1 Cannot be changed 2 3 4 5 6 Selectable. Video TX/RX requires 2.5V. 7 Cannot be changed The following tables detail the various I/O standards supported by the LatticeXP2 sysIO structures. More information can be found in technical note TN1136, LatticeXP2 sysIO Usage Guide. 6 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 7. Mixed Voltage I/O Support Input sysIO Standards VCCIO 1.2V 1.2V Yes 1.5V Yes 1.8V Yes 2.5V 3.3V 1.5V 1.8V Output sysIO Standards 2.5V 3.3V 1.2V Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 1.5V 1.8V 2.5V 3.3V Yes Yes Yes Yes For example, if VCCIO is 3.3V then signals from devices powered by 1.2V, 2.5V, or 3.3V can be input and the thresholds will be correct, assuming the user has selected the desired input level using ispLEVER® software. Output levels are tied directly to VCCIO. Table 8. sysIO Standards Supported per Bank Description Top Side, Banks 0-1 Right Side, Banks 2-3 Bottom Side, Banks 4-5 Left Side, Banks 6-7 Types of I/O Buffers Single-ended Single-ended and Differential Single-ended Single-ended and Differential Output standards supported LVTTL LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 LVTTL LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 LVTTL LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 LVTTL LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL18 Class I, II SSTL25 Class I, II SSTL33 Class I, II SSTL18 Class I, II SSTL25 Class I, II SSTL33 Class I, II SSTL18 Class I SSTL2 Class I, II SSTL3 Class I, II SSTL18 Class I SSTL2 Class I, II SSTL3 Class I, II HSTL15 Class I HSTL18_I, II HSTL15 Class I HSTL18 Class I, II HSTL15 Class I HSTL18 Class I, II HSTL15 Class I, III HSTL18 Class I, II, III SSTL18D Class I, II SSTL25D Class I, II SSTL33D Class I, II SSTL18D Class I, II SSTL25D Class I, II SSTL33D Class I, II SSTL18D Class I, II SSTL25D Class I, II, SSTL33D Class I, II SSTL18D Class I, SSTL25D Class I, II, SSTL33D_I, II HSTL15D Class I HSTL18D Class I, II HSTL15D Class I, II HSTL18D Class I, II HSTL15D Class I HSTL18D Class I, II HSTL15D Class I HSTL18D Class I, II PCI33 LVDS25E1 LVPECL1 BLVDS1 RSDS1 PCI33 LVDS LVDS25E1 LVPECL1 BLVDS1 RSDS1 PCI33 LVDS25E1 LVPECL1 BLVDS1 RSDS1 PCI33 LVDS LVDS25E1 LVPECL1 BLVDS1 RSDS1 Inputs All Single-ended, Differential All Single-ended, Differential All Single-ended, Differential All Single-ended, Differential Clock Inputs All Single-ended, Differential All Single-ended, Differential All Single-ended, Differential All Single-ended, Differential PCI Support PCI33 no clamp PCI33 no clamp PCI33 with clamp PCI33 no clamp LVDS Output Buffers LVDS (3.5mA) Buffers2 1. These differential standards are implemented by using complementary LVCMOS drivers and external resistors. 2. Available on 50% of the I/Os in the bank. 7 LVDS (3.5mA) Buffers2 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Prototype Areas For general purpose I/O testing or monitoring, numerous test points are provided for direct access. Some test points are grouped together and arranged in a grid pattern according to their associated I/O bank and are labeled with the pin locations on the silkscreen of the board. Other test point I/Os are brought out to IDC connectors J1 and J10 with both source and end termination resistors available for high speed parallel signal transmission over ribbon cable. Differential Signal Connections There are four pairs of SMA connectors and one RJ-45 connector connected directly to the LatticeXP2 differential I/O pairs. The eight SMA connectors are provided for clocks or general purpose, user-definable signals. The center pin is wired to an I/O pin and the outer case is soldered to ground. Table 9 details to which I/O pin each SMA connector is wired. Table 9. SMA Connectors Location LatticeXP2 I/O Polarity sysIO Bank Description J121 A2* Pair#0 P 0 PT4A/ULC_GPLLT_IN_A J6 B3 Pair#0 N 0 PT4B/ULC_GPLLC_IN_A J13 F7 Pair#1 P 0 PT5A/ULC_GPLLT_FB_A J7 G7 Pair#1 N 0 PT5B/ULC_GPLLC_FB_A J14 P4 Pair#2 P 6 PL37A J8 P5 Pair#2 N 6 PL37B J15 Y1 Pair#3 P 6 PL35A J9 AA1 Pair#3 N 6 PL35B 1. The SMA connector on J12 is shared with the on-board oscillator. When this SMA connector is used, the jumper on J17 needs to be removed. RJ-45 Connectors There are two RJ-45 connectors, J5 and J43, on the evaluation board. J5 is a simple RJ-45 female connector provided for general-purpose differential interfacing to the LatticeXP2 device, while J43 is a full featured Ethernet PHY connection with internal magnetics and spark gap. The connections for J5 are listed in Table 10. J43 is described in more detail in the Ethernet section later in this user guide. Table 10. J5 RJ-45 Connections J1 Pin LatticeXP2 I/O Polarity SysIO Bank Description 1 2 P2 Pair#0 P 6 PL32A P3 Pair#0 N 6 PL32B 3 T1 Pair#1 P 6 PL30A/LDQS30 6 U1 Pair#1 N 6 PL30B 4 M4 Pair#2 P 6 PL28A 5 M5 Pair#2 N 6 PL28B 7 R5 Pair#3 P 6 PL40A 8 P6 Pair#3 N 6 PL40B Oscillator The 3.3V oscillator socket (Y1) accepts both full-size and half-size oscillators and can route to different clock inputs, depending on its position within the socket (see Figure 2). The board is shipped with an EPSON programmable oscillator programmed to 33.33MHz. 8 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor The 16-pin socket will allow connection to PLL clock pin A2 when the top of the oscillator is aligned to socket pins 1 and 16. Note that the SMA connector J12 is shared with the on-board oscillator. When installing the oscillator to connect the clock to PLL clock pin A2, the SMA connector J12 cannot be used and the jumper on J17 needs to be installed. When the bottom of the oscillator is aligned to socket pins 8 and 9, the clock is provided to primary clock pin L4. Figure 2. On-board Oscillator SPI Serial Flash SPI Serial Flash are available in three package styles. The device used this board is an 8-pin, 16-Mbit, sufficient to store two bitstreams simultaneously in order to support SPIm mode. Configuration/Programming Headers Four programming headers are provided on the evaluation board, providing access to the LatticeXP2, MachXO™, and ispPAC-POWR1220AT8 and LatticeXP2 SPI Slave JTAG ports. The JTAG connectors J25, J32, J39 and J40 are 1x10 headers. The JTAG ports for the LatticeXP2 and ispPAC-POWR1220AT8 devices can be configured as loop-through connectors to allow for easy daisy chaining of multiple boards. With proper jumper selection (see the next section) standard IDC ribbon cable can be used without the need to swap any wires on the cable. The pinouts for these headers are provided in the following tables. A USB ispDOWNLOAD® cable is included with each LatticeXP2 Advanced Evaluation Board. When using the 1x8 cable adapter, connect pin 1 of the cable to pin 1 of the 1x10 JTAG header. Important Note: The board must be un-powered when connecting, disconnecting, or reconnecting the ispDOWNLOAD Cable or USB cable. Always connect an ispDOWNLOAD Cable’s GND pin (black wire), before connecting any other JTAG pins. Failure to follow these procedures can in result in damage to the LatticeXP2 FPGA and render the board inoperable. LatticeXP2 Configuration Two programming headers, J39 and J40, are provided on the evaluation board, providing access to the LatticeXP2 JTAG port and the ispPAC-POWR1220AT8 JTAG port. The pinouts for the headers are provided in Table 11. 9 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 11. JTAG Programming Headers Separate Programming Chained Programming Jumper on J49 (None on J45) Pin J39 Function Jumper on J45 (None on J49) J40 Function J39 Function J40 Function 1 Vcc (3.3V) Vcc (3.3V) Vcc (3.3V) Not used 2 TDO of ispPAC-POWR1220AT8 TDO of LatticeXP2 TDO of ispPAC-POWR1220AT8 Not used 3 TDI of ispPAC-POWR1220AT8 TDI of LatticeXP2 TDI of LatticeXP2 Not used 4 NC NC NC Not used 5 NC NC NC Not used 6 TMS of both chips TMS of both chips TMS of both chips Not used 7 GND GND GND Not used 8 TCK of ispPAC-POWR1220AT8 TCK of LatticeXP2 TCK of both chips Not used 9 NC DONE of LatticeXP2 NC Not used 10 NC INITN of LatticeXP2 NC Not used J49 and J45 control the functions of the two programming headers. When a jumper is installed on J49, the programming header J39 is connected to the JTAG port of ispPAC-POWR1220AT8 and is used for programming the ispPAC-POWR1220AT8 only; the programming header J40 is connected to the JTAG port of LatticeXP2 and is used for programming the LatticeXP2 only. When the jumper is moved from J49 to J45, the JTAG ports of the LatticeXP2 and ispPAC-POWR1220AT8 are chained together. In this case, the programming header J40 is connected to the JTAG port of the LatticeXP2 first and then chained with the JTAG port of ispPAC-POWR1220AT8. The programming header J39 should not be used when the JTAG ports are chained together. During chained programming, the ispPAC-POWR1220AT8 device will set the HVOUT1 signal (pin 86 of U17) tri-state until programming completes, so the enable for the 3.3V power for the LatticeXP2 device will be interrupted during programming unless a jumper is installed at J52. After chained programming of the ispPAC-POWR1220AT8, the jumper at J52 can be removed. Additional instructions and recommendations for programming this board are provided in the Configuring/Programming the Board section of this document. Switches There are two 8-position switches and six push-button switches for implementing basic static input functions. Switches SW3, SW4, SW5, SW6, SW7 and SW10 are momentary switches. The pull-up resistors associated with these switches are wired to 3.3V. Pushing the switches down produces a low (0), otherwise it produces a high (1). The signals controlled by SW4, SW5, SW6, SW7 and SW10 are debounced by an MC14490 (U15) before connecting to an LatticeXP2 I/O pin. Table 12 shows the control relationship between the switches, LatticeXP2 and ispPACPOWR1220AT8 I/O pins. Table 12. Momentary Switches Switch Connection User-Definable 1 Debounced SW3 Pin 97 of ispPAC-POWR1220AT8* Yes No SW4 J6 of LatticeXP2 (PROGRAMN) No Yes SW5 E12 of LatticeXP2 (GSRN) Yes Yes SW6 W18 of LatticeXP2 Yes Yes SW7 W17 of LatticeXP2 Yes Yes SW10 U7 of LatticeXP2 Yes Yes 1. SW3 signal is also connected (wire-AND) to position#1 of SW2. Therefore, when position#1 of SW2 is in the down position, SW3 signal (POWR1220AT8 pin 97) will be low even when SW3 is not being pushed. 10 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor SW2 and SW8 on the right side and the upper side of the board are 8-pin DIP switches. The pull-up resistors associated with these switches are wired to 3.3V. A switch in the down position produces a low (0), the up position produces a high (1). All signals of SW8 are debounced before connecting to LatticeXP2 I/O pins. Table 13 shows the SW8 connections to the LatticeXP2 and Table 14 shows the SW2 connections to ispPAC-POWR1220AT8 I/O pins. Table 13. 8-Position Switch SW8 Switch (Position#) LatticeXP2 I/O sysIO Bank SW8 (position #1) W15 4 SW8 (position #2) U16 4 SW8 (position #3) T16 4 SW8 (position #4) Y15 4 SW8 (position #5) Y16 4 SW8 (position #6) Y18 4 SW8 (position #7) Y17 4 SW8 (position #8) W18 4 Switch (Position#) POWR1220AT8 I/O Pin Pin Name SW2 (position #1) 97 IN1 SW2 (position #2) 1 IN2 SW2 (position #3) 2 IN3 SW2 (position #4) 4 IN4 SW2 (position #5) 6 IN5 SW2 (position #6) 7 IN6 SW2 (position #7) 89 VPS0 SW2 (position #8) 90 VPS1 Table 14. 8-Position Switch SW2 LEDs The eight user-definable LEDs are provided on the lower right side of the board. These LEDs are each wired to a separate general purpose I/O as defined in the Table 15. The current limiting resistors associated with these LEDs are wired to 3.3V but it is safe to use any FPGA I/O voltage. The LED will light when its associated I/O pin is driven low. Table 15. Connection between LEDs and LatticeXP2 LED LatticeXP2 I/O Bank LED LatticeXP2 I/O Bank D17 AB18 4 D21 Y14 4 D18 AB19 4 D22 AA13 4 D19 V12 4 D24 AB16 4 D20 U12 4 D25 AB17 4 Table 16 describes the three LEDs associated with the dedicated programming pins. Table 16. Programming LEDs LED Pin Color Function D27 PROGRAMN Yellow On when signal is low D29 INIT Red On when initializing D28 DONE Green On when config is complete 11 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Seven Segment Display The 7-segment LED located near the eight LEDs is controlled by LatticeXP2 Bank 4 I/O pins. The connections of the segments are shown in Figure 3. Figure 3. 7-Segment Display LCD The LCD module connector (J55) is a 2x9 header. This 18-pin header is compatible with quite a few character LCD modules. Table 17 shows the pin function of the header and the connections to the bank 0 of the LatticeXP2 FPGA. Table 17. LCD Header Connection Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O 1 Anode — 2 Cathode (GND) — 3 VSS(GND) — 4 VDD (5V) — 5 VO — 6 RS U14 7 R/W AA20 8 E AA21 9 DB0 AB20 10 DB1 AA22 11 DB2 V14 12 DB3 Y21 13 DB4 W14 14 DB5 Y22 15 DB6 U15 16 DB7 V15 17 Anode — 18 Cathode (GND) — The VR4 potentiometer is used to limit the current that flows through the backlight LED on the LCD module. The VR5 potentiometer is used to adjust the VO voltage that controls the LCD contrast. When the following LCD modules are used, connect pin 1 to 16 to the backlight LCD module or connect pin 1 to 14 to the non-backlight LCD module: Optrex: • C-51505 Series: 20 characters x 2 lines When the following LCD modules are used, connect pin 3 to 18 to the backlight LCD module or connect pin 3 to 16 to the non-backlight LCD module. 12 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Lumex: • LCM-S01601 Series: 16 characters x 1 line • LCM-S00802 Series: 8 characters x 2 lines • LCM-S01602 Series: 16 characters x 2 lines • LCM-S02002 Series: 20 characters x 2 lines • LCM-S02402 Series: 24 characters x 2 lines • LCM-S04002 Series: 40 characters x 2 lines • LCM-S02004 Series: 20 characters x 4 lines • LCM-S02404 Series: 24 characters x 4 lines Varitronix: • MDLS-20189 Series: 20 characters x 1 line • MDLS-20265 Series: 20 characters x 2 lines • MDLS-24265 Series: 24 characters x 2 lines • MDLS-40266 Series: 40 characters x 2 lines Video TX and RX MDR Connectors The video TX (J2) and RX (J3) MDR connectors accept 7:1 LVDS 2.5v differential video signals. The connections between the connector pins and LatticeXP2 I/O are shown in Tables 18 and 19. All the pins are connected to Bank 6 I/Os. The Bank 6 supply voltage (VCCIO_6) must be set to select 2.5V for proper LVDS 2.5V signal levels. Table 18. Video TX MDR Connections Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O 1 — — 14 TX_OUT0_N Y4 2 GND — 15 TX_OUT0_P AA3 3 — — 16 — — 4 TX_OUT1_N U5 17 GND — 5 TX_OUT1_P U4 18 — — 6 TX_OUT2_N V3 19 GND — 7 TX_OUT2_P U2 20 — — 8 — — 21 — — 9 — — 22 TX_CLKOUT_N T2 10 GND — 23 TX_CLKOUT_P R2 11 — — 24 — — 12 TX_OUT3_N R4 25 GND — 13 TX_OUT3_P R3 26 — — 13 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 19. Video RX MDR Connections Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O 1 — — 14 RX_IN3_P Y3 2 GND — 15 RX_IN3_N W3 3 — — 16 — — 4 RX_CLKIN_P P1 17 GND — 5 RX_CLKIN_N R1 18 — — 6 — — 19 — — 7 — — 20 RX_IN2_P R7 8 GND — 21 RX_IN2_N R6 9 — — 22 RX_IN1_P T3 10 GND — 23 RX_IN1_N U3 11 — — 24 — — 12 RX_IN0_P T6 25 GND — 13 RX_IN0_N T7 26 — — CompactFlash The CompactFlash connector (J38) on the board accepts both type-I and type-II CompactFlash cards. The connections between the connector pins and LatticeXP2 balls are shown in Table 20. All the pins are connected to Bank 1 I/Os. Table 20. CompactFlash Connection Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O 1 2 GND — 26 CD1 A8 D3 A14 27 D11 B8 3 D4 B13 28 D12 A7 4 D5 F12 29 D13 F9 5 D6 F11 30 D14 E9 6 D7 C12 31 D15 C8 7 CE1/CS0 E11 32 CE2/CS1 D8 8 A10 A13 33 VS1 B7 9 OE/ATASEL B12 34 IORD B6 10 A9 A12 35 IOWR A6 11 A8 B11 36 WE A5 12 A7 G9 37 READY/IREQ/INTRQ J7 13 VCC — 38 VCC — 14 A6 G8 39 CSEL H7 15 A5 C11 40 VS2 C7 16 A4 D11 41 RESET C6 17 A3 A11 42 WAIT/IORDY A4 18 A2 A10 43 INPACK/DMARQ A3 19 A1 B10 44 REG/DMACK C4 20 A0 B9 45 BVD2/SPKR/DASP C5 21 D0 E10 46 BVD1/STSCHG/PDIAG E8 22 D1 F10 47 D8 F8 23 D2 C9 48 D9 D5 14 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 20. CompactFlash Connection (Continued) Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O 24 WP/IOIS16/IOCS16 D9 49 D10 D6 25 CD2 A9 50 GND — USB 1.1 For implementing the USB interface, the LatticeXP2 board contains a USB 1.1 transceiver MAX3454EETE (or NCN2500MNR2 from On Semiconductor), a type-A connector and a type-B USB connector. Note there is a third USB connector, which is used for the built-in USB download cable, described later in this document. Table 21. Header Settings for Configuring USB Interface as USB Host Header/Connector Jumper Position Description J21 Pin 1 and 2 Drive USB transceiver ENUM pin to GND to disconnect the internal 1.5K resistor between Vtrm and D+ or D-. J22 (D+) Pin 1 and 2 Pull D+ signal low through an external 15K resistor. J23 (D-) Pin 1 and 2 Pull D- signal low through an external 15K resistor. J24 Pin 1 and 2 Provide 5V power to the external USB device. J16 (USB type A) — Type A is used while implementing USB host. J20 (USB type B) — This connector is not used in this configuration. Table 22. Header Settings for Configuring USB Interface as USB Device Header/Connector Jumper Position Description J21 Pin 2 and 3 Drive USB transceiver ENUM pin to 3.3V to connect the internal 1.5K resistor between Vtrm and D+ or D-. J22 (D+) Pin 2 and 3 Disconnect D+ signal from the external 15K pull-down. J23 (D-) Pin 2 and 3 Disconnect D- signal from the external 15K pull-down. J24 Pin 2 and 3 No 5V power is provided when implementing USB device. J16 (USB type A) — This connector is not used in this configuration. J20 (USB type B) — Type A is used while implementing USB host. The connections between the USB 1.1 transceiver MAX3454EETE (or NCN2500MNR2 from On Semiconductor) and the LatticeXP2 FPGA are shown in Table . Table 23. Connections Between USB 1.1 Transceiver and LatticeXP2 Pin # MAX3454EETE NCN2500MNR2 1 SPD DSPD LatticeXP2 I/O D4 Description Connect to LatticeXP2 bank 7 I/O 2 RCV RCV E3 Connect to LatticeXP2 bank 7 I/O 3 VP VP C1 Connect to LatticeXP2 bank 7 I/O 4 VM VM D1 Connect to LatticeXP2 bank 7 I/O 5 NC EN_Vobus# — Connect to 3.3V 6 GND GND — Connect to GND 7 SUS SPND E1 Connect to LatticeXP2 bank 7 I/O 8 NC NC — No connect 9 OE# OE# D3 Connect to LatticeXP2 bank 7 I/O 10 D- D- — Connect to USB connectors through 33 Ohm resistor 11 D+ D+ — Connect to USB connectors through 33 Ohm resistor 12 Vtrm Vreg — Connect to GND though a capacitor 15 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 23. Connections Between USB 1.1 Transceiver and LatticeXP2 (Continued) Pin # MAX3454EETE NCN2500MNR2 LatticeXP2 I/O Description 13 ENUM Vobus — Connect to J21 pin 2 14 Vbus Vusb — Connect to USB connectors 15 VL Vcc — Connect to 3.3V 16 NC EN_RPU — Connect to J21 pin 2 PS/2 Mouse The PS/2 mouse connector (JP1) on this board connects the clock and data through the PCA9306 level translator to the LatticeXP2. The clock and data are connected as described in Table 24. Table 24. Connections Between PS/2 Mouse Connector and LatticeXP2 JP1 Pin # Signal LatticeXP2 I/O 1 DATA V5 PS/2 data signal, open drain Description 5 CLOCK V4 PS/2 clock signal, open drain RS-232 The RS-232 interface on this board includes a RS-232 interface chip (MAX3232), a 9-pin D-sub female connector and four headers. This RS-232 interface can be configured to DCE or DTE by changing the jumper settings of J27, J28, J29 and J30 headers. These headers are used to connect the MAX3232 to the D-sub connector. Installing jumpers on Pin 1 and Pin 2 of these headers configures the RS-232 to DCE. Installing jumpers on Pin 2 and Pin 3 of these headers configures the RS-232 to DTE. The connections and functions of the signals between MAX3232 and LatticeXP2 stay the same for DCE and DTE configurations. These are listed in Table 25. Table 25. Connections Between MAX3232 and LatticeXP2 Signal Name MAX3232 Pin LatticeXP2 I/O LatticeXP2 Bank LatticeXP2 I/O Type /CTS 9 (R2OUT) C3 7 Input RXD 12 (R1OUT) B2 7 Input TXD 11 (T1IN) B1 7 Output /RTS 10 (T2IN) C2 7 Output DDR2 The 200-pin SODIMM socket provides a built-in 32-bit interface to standard 1.8V DDR2 SDRAM memory modules (PC2-5300). Lattice recommends the Kingston KVR533D284/512. However, other memories conforming to this standard will also work. The required VREF and VTT voltages, as well as termination of each signal to VTT are provided. Performance has been verified at above the 533Mbps data rate. Write mode dynamic ODT at the memory modules is fully supported, while read mode ODT at the controller (FPGA) is approximated with external terminations optimized for best performance. The connections between the connector pins and LatticeXP2 balls are shown in Table 26. Table 26. DDR2 Interface to SODIMM Socket Description LatticeXP2 I/O sysIO Bank J36 DDR2_DQ0 R21 3 5 DDR2_DQ1 R20 3 7 DDR2_DQ2 N17 3 17 DDR2_DQ3 N16 3 19 DDR2_DQ4 P19 3 4 DDR2_DQ5 R19 3 6 16 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 26. DDR2 Interface to SODIMM Socket (Continued) Description LatticeXP2 I/O sysIO Bank J36 DDR2_DQ6 T21 3 14 DDR2_DQ7 T20 3 16 DDR2_DM0 P16 3 10 DDR2_DQS0_P T22 3 13 DDR2_DQS0_N U22 3 11 DDR2_DQ8 K21 3 23 DDR2_DQ9 L21 3 25 DDR2_DQ10 M19 3 35 DDR2_DQ11 M20 3 37 DDR2_DQ12 M17 3 20 DDR2_DQ13 M16 3 22 DDR2_DQ14 M21 3 36 DDR2_DQ15 N21 3 38 DDR2_DM1 P21 3 26 DDR2_DQS1_P M22 3 31 DDR2_DQS1_N N22 3 29 DDR2_DQ16 G21 2 43 DDR2_DQ17 F22 2 45 DDR2_DQ18 J17 2 55 DDR2_DQ19 K17 2 57 DDR2_DQ20 K18 2 44 DDR2_DQ21 L17 2 46 DDR2_DQ22 H22 2 56 DDR2_DQ23 G22 2 58 DDR2_DM2 J16 2 52 DDR2_DQS2_P H21 2 51 DDR2_DQS2_N J21 2 49 DDR2_DQ24 H20 2 61 DDR2_DQ25 G20 2 63 DDR2_DQ26 E19 2 73 DDR2_DQ27 F19 2 75 DDR2_DQ28 J20 2 62 DDR2_DQ29 H19 2 64 DDR2_DQ30 C22 2 74 DDR2_DQ31 B22 2 76 DDR2_DM3 H17 2 67 DDR2_DQS3_P D22 2 70 DDR2_DQS3_N E22 2 68 DDR2_A0 R18 3 102 DDR2_A1 R17 3 101 DDR2_A2 U21 3 100 DDR2_A3 V22 3 99 DDR2_A4 U20 3 98 DDR2_A5 V20 3 97 17 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 26. DDR2 Interface to SODIMM Socket (Continued) Description LatticeXP2 I/O sysIO Bank J36 DDR2_A6 R16 3 94 DDR2_A7 T17 3 92 DDR2_A8 Y20 3 93 DDR2_A9 Y19 3 91 DDR2_A10 W22 3 105 DDR2_A11 G15 2 90 DDR2_A12 G16 2 89 DDR2_A13 F17 2 116 DDR_BA0 P20 3 107 DDR_BA1 P22 3 106 DDR_BA2 F18 2 85 DDR2_CK0_P G17 2 30 DDR2_CK0_N H18 2 32 DDR2_CK1_P B21 2 164 DDR2_CK1_N C21 2 166 DDR2_CKE0 J19 2 79 DDR2_CKE1 C20 2 80 DDR2_S0_N J18 2 110 DDR2_S1_N H16 2 115 DDR2_RAS_N K16 2 108 DDR2_CAS_N L18 2 113 DDR2_WE_N L19 2 109 DDR2_ODT0 P18 3 114 DDR2_ODT1 N18 3 119 DDR2_SDA AA2 0 195 DDR2_SCL Y2 0 197 Ethernet PHY In the upper middle portion of the board is U11, a National Semiconductor Gigabit Ethernet PHY (DP83865). The LatticeXP2 FPGA interacts with the PHY over a Media Independent Interface (MII). The PHY is connected to an RJ45 connector J43 on the Media Dependent Interface (MDI). The RJ45 connector J43 has built in magnetics and spark-gap capacitor. The PHY is available on the board in order to demonstrate the Lattice Ethernet Media Access (MAC) IP core. However, it is also possible to use the PHY to evaluate a custom MAC solution. Refer to the schematic and the National Semiconductor DP83865 Data Sheet for detailed information about the operation of the Ethernet PHY interface on this device. Refer to Table 27 for a description of the Ethernet PHY connections. 18 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 27. 10/100/1000 Ethernet PHY Connection Summary Description LatticeXP2 I/O sysIO Bank ETH_CLK_TO_MAC G11 1 ETH_COL A17 1 ETH_CRS B16 1 ETH_EGP0 (low, install R91 to pull high) -- ETH_EGP2 G13 1 ETH_EGP4 G14 1 ETH_EGP5 D12 1 ETH_EGP6 B14 1 ETH_EGP7 A15 1 ETH_GTX_CLK D15 1 ETH_MAC_CLK_EN G10 1 ETH_MDC E15 1 ETH_MDIO E14 1 ETH_RESET_N A16 1 ETH_RX_CLK B15 1 ETH_RX_D0 F14 1 ETH_RX_D1 D14 1 ETH_RX_D2 C16 1 ETH_RX_D3 C17 1 ETH_RX_D4 B17 1 ETH_RX_D5 A18 1 ETH_RX_D6 F13 1 ETH_RX_D7 G12 1 ETH_RX_DV C14 1 ETH_RX_ER E13 1 ETH_TX_CLK C15 1 ETH_TX_D0 D17 1 ETH_TX_D1 E18 1 ETH_TX_D2 C18 1 ETH_TX_D3 C19 1 ETH_TX_D4 A20 1 ETH_TX_D5 D19 1 ETH_TX_D6 D17 1 ETH_TX_D7 D18 1 ETH_TX_EN A19 1 ETH_TX_ER A21 1 PCI Connection The 124-pin PCI connector installed at the bottom-left corner of the board is used for 32-bit PCI. With this PCI connector, PCI IP and proper LatticeXP2 FPGA design, the LatticeXP2 Advanced Evaluation board can be used in a PCI slot on a PC motherboard. There are two sides to the PCI connector, component side (J11) and solder side (J56). Refer to Tables 28 and 29 for a description of the PCI connections where the I/O direction is referenced to the LatticeXP2 Advanced Evaluation Board. 19 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 28. PCI Connector Component Side J11 Pin# Signal I/O Description 1 12V Vcc 12V voltage supply pin 2 TCK - PCI JTAG TCK signal 3 GND Vss 4 TDO - JTAG TDO signal — 5 5V Vcc 5V voltage supply pin — 6 5V Vcc 5V voltage supply pin — 7 INTB# O PCI INTB# signal — 8 INTD# O PCI INTD# signal — System ground LatticeXP2 Connection — — GND 9 PRSNT1# O PCI PRSNT1# signal — 10 Reserved - Reserved — 11 PRSNT2# O PCI PRSNT2# signal — 14 Reserved - Reserved — 15 GND Vss 16 CLK I 17 GND Vss 18 REQ# O 19 +VIO 20 AD[31] 21 22 System ground GND PCI system clock AB14 System ground GND PCI arbitration request signal W5 Vio VIO voltage supply pin — I/O PCI address and bit 31 Y5 AD[29] I/O PCI address and data bit 29 GND Vss System ground GND 23 AD[27] I/O PCI address and data bit 27 AB6 24 AD[25] I/O PCI address and data bit 25 25 +3.3V Vcc 3.3V voltage supply pin 26 C/BE#[3] I/O PCI bus command, byte enable, bit 3 27 AD[23] I/O PCI address and data bit 23 28 GND Vss System ground 29 AD[21] I/O PCI address and data bit 21 30 AD[19] I/O PCI address and data bit 19 31 +3.3V Vcc 3.3V voltage supply pin 32 AD[17] I/O PCI address and data bit 17 33 C/BE#[2] I/O PCI bus command, byte enable, bit 2 34 GND Vss System ground 35 IRDY# I/O PCI initiator ready signal T10 36 +3.3V Vcc 3.3V voltage supply pin +3.3V 37 DEVSEL# I/O PCI device select 38 GND Vss System ground 39 LOCK# I/O PCI lock signal 40 PERR# I/O PCI parity error signal 41 +3.3V Vcc 3.3V voltage supply pin +3.3V 42 SERR# I/O PCI system error signal V11 43 +3.3V Vcc 3.3V voltage supply pin +3.3V 44 C/BE#[1] I/O PCI bus command, byte enable, bit 1 T12 45 AD[14] I/O PCI address and data bit 14 T13 46 GND Vss System ground GND 20 Y6 AA7 +3.3V Y8 W4 GND W6 U8 +3.3V W8 V9 GND T9 GND V10 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 28. PCI Connector Component Side (Continued) J11 Pin# Signal I/O Description LatticeXP2 Connection 47 AD[12] I/O PCI address and data bit 12 AA9 48 AD[10] I/O PCI address and data bit 10 Y9 49 M66EN O PCI 66 MHz enable — 52 AD[8] I/O PCI address and data bit 8 53 AD[7] I/O PCI address and data bit 7 AA11 54 +3.3V Vcc 3.3V voltage supply pin +3.3V 55 AD[5] I/O PCI address and data bit 5 AB12 56 AD[3] I/O PCI address and data bit 3 AB13 57 GND Vss System ground GND 58 AD[1] I/O PCI address and data bit 1 Y12 59 +VIO Vio VIO voltage supply pin — 60 ACK64# I/O PCI 64-bit acknowledge pin — 61 +5V Vcc 5V voltage supply pin — 62 +5V Vcc 5V voltage supply pin — AB11 Table 29. PCI Connector Solder Side J56 Pin# Signal I/O 1 TRST# I 2 +12V 3 4 Description LatticeXP2 Connection PCI JTAG TRST# signal — Vcc 12V voltage supply pin — TMS I PCI JTAG TMS signal — TDI I JTAG TDI signal — 5 +5V Vcc 6 INTA# O PCI INTA# signal AB2 7 INTC# O PCI INTC# signal — 8 +5V Vcc 5V voltage supply pin — 9 Reserved — Reserved — 10 VIO Vio VIO voltage supply pin — Reserved — 11 Reserved — 14 +3.3V AUX Vcca 15 RST# I 16 VIO Vio 17 GNT# I 18 GND Vss 5V voltage supply pin 3.3V auxiliary voltage supply PCI system reset VIO voltage supply pin — — AB3 — PCI arbitration grant AB4 System ground GND AB5 19 PME# — 20 AD[30] I/O PCI address and data bit 30 — 21 +3.3V Vcc 3.3V voltage supply 22 AD[28] I/O PCI address and data bit 28 23 AD[26] I/O PCI address and data bit 26 24 GND Vss System ground GND 25 AD[24] I/O PCI address and data bit 24 AB7 26 IDSEL I PCI interface control, ID select AA8 27 +3.3V Vcc 3.3V voltage supply pin 28 AD[22] I/O PCI address and data bit 22 V6 29 AD[20] I/O PCI address and data bit 20 U6 21 +3.3V AA6 Y7 +3.3V LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 29. PCI Connector Solder Side (Continued) J56 Pin# Signal I/O Description LatticeXP2 Connection 30 GND Vss System ground 31 AD[18] I/O PCI address and data bit 18 V8 32 AD[16] I/O PCI address and data bit 16 U9 33 +3.3V Vcc 3.3V voltage supply pin 34 FRAME# I/O PCI interface control FRAME# signal 35 GND Vss System ground 36 TRDY# I/O PCI interface control TRDY# signal 37 GND Vss System ground GND 38 STOP# I/O PCI interface control STOP# signal T11 39 +3.3V Vcc 3.3V voltage supply pin 40 Reserved — Reserved — 41 Reserved — Reserved — 42 GND Vss System ground GND 43 PAR I/O PCI address and data PAR signal U10 44 AD[15] I/O PCI address and data bit 15 U11 45 +3.3V Vcc 3.3V voltage supply pin 46 AD[13] I/O PCI address and data bit 13 AB8 47 AD[11] I/O PCI address and data bit 11 AB9 48 GND Vss System ground GND 49 AD[9] I/O PCI address and data bit 9 AB10 52 C/BE#[0] I/O PCI bus command, byte enable, bit 0 AA10 53 +3.3V Vcc 3.3V voltage supply pin +3.3V 54 AD[6] I/O PCI address and data bit 6 Y11 55 AD[4] I/O PCI address and data bit 4 W11 56 GND Vss System ground GND 57 AD[2] I/O PCI address and data bit 2 AB15 58 AD[0] I/O PCI address and data bit 0 AA12 59 +VIO Vio VIO voltage supply pin — 60 REQ64# I/O PCI 64-bit request transfer pin — 61 +5V Vcc 5V voltage supply pin — 62 +5V Vcc 5V voltage supply pin — GND +3.3V W9 GND T8 +3.3V +3.3V 4-Input ADC U3 is the quad ADC (Analog to Digital Converter) ADS7842 IC. The four analog inputs AIN0 to AIN3 are RC filtered versions of the external analog signals applied at J10. The full scale values for the ADC inputs will match that of the AREF signal described below. AIN3 is also tied to VR1 to allow user adjustment of a set DC value based on the AREF signal described below. The connections between the ADC pins and LatticeXP2 balls are shown in Table 30. 22 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Table 30. ADC Connections Description LatticeXP2 I/O sysIO Bank D0 H3 7 D1 H4 7 D2 G3 7 D3 G2 7 D4 H1 7 D5 H2 7 D6 G6 7 D7 H6 7 D8 H5 7 D9 J5 7 D10 J1 7 D11 J2 7 A0 F3 7 A1 E5 7 CLK F2 7 BUSYN F1 7 WRN G1 7 CSN F5 7 RDN F4 7 4-Output DAC U5 is the quad DAC (Digital to Analog Converter) DAC7617 IC. The four analog outputs, AOUT0 to AOUT3, are available at connector J10. The full scale values for the DAC outputs will match that of the AREF signal described below. The connections between the DAC pins and LatticeXP2 balls are shown in Table 31. Table 31. DAC Connections Description LatticeXP2 I/O sysIO Bank RSTN K1 7 LOADREGN K2 7 LDACN J4 7 CSN M1 7 CLK M2 7 SDI L3 7 The AREF signal is used by both the ADC and DAC as the full scale voltage reference. The AREF signal can be selected from three different sources: a low drift band gap voltage provided at U2, the power supply voltage VCC_3.3v, or an externally applied voltage at jumper J4 pin 2. J4 allows selection of which voltage will be the source of the AREF signal as shown in Table 32. Table 32. DAC and ADC Full Scale Reference Selection (AREF) J4 Jumper Position AREF Source ADC and DAC Usage 1-2 VCC_3.3v 2-3 Band gap reference Full scale values track 3.3v power open J4 pin 2 Full scale values track low drift reference Full scale values track external voltage 23 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor USB Download The evaluation board has a USB download cable built in. The built-in cable consists of a USB Type-B connector (J33), a USB microcontroller, and a MachXO device. To use the built-in download cable, simply connect a standard USB cable from J33 to your PC (with ispVM System software installed). The USB hub on the PC will detect the addition of the USB function making the built-in cable available for use with Lattice’s ispVM System software. J35 must have a jumper shunted from pins 2-3 to enable the built-in download cable. The built-in USB cable is connected in parallel to J39 and J40. J39 and J40 are 1x10 100mil headers that are provided for use with an external Lattice download cable. A Lattice parallel port or USB download cable can be attached to the board using J39 or J40. Use of the built-in cable must be mutually exclusive to the use of an external download cable. When using an external download cable, the jumper on J35 must be moved to shunt pins 1 and 2. This tri-states the MachXO device, preventing it from interfering with the external download cable. Important Note: The board must be un-powered when connecting, disconnecting, or reconnecting the ispDOWNLOAD Cable or USB cable. Always connect an ispDOWNLOAD Cable’s GND pin (black wire), before connecting any other JTAG pins. Failure to follow these procedures can in result in damage to the LatticeXP2 FPGA and render the board inoperable. Default Jumper Settings The evaluation board is shipped with default jumper positions as shown in Figure 4. Some jumper settings are required for bitstream downloading and display functionality. Figure 4. Default Jumper Settings Configuring/Programming the Board Requirements: • PC with Lattice’s ispVM System version 17.0 (or later) programming software, installed with appropriate drivers (USB driver for USB Cable, Windows NT/2000/XP parallel port driver for ispDOWNLOAD Cable). Note: An option to install these drivers is included as part of the ispVM System setup. • Standard USB cable, or any ispDOWNLOAD or Lattice USB Cable (pDS4102-DL2x, HW7265-DL3x, HW-USB2x, etc.). 24 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor The following device programming sections provide procedures for programming the on-board SPI Flash using either a standard USB cable, or an ispDOWNLOAD cable (parallel or USB). If you would like to program the LatticeXP2 SRAM or Flash directly instead, then the procedures are slightly different in that you will select those rather than SPI Flash programming at Step 7, Figure 6 in the first procedure below, and much the same for the second configuration procedure. For a complete discussion of the LatticeXP2’s configuration and programming options, refer to technical note TN1141, LatticeXP2 sysCONFIG Usage Guide. LatticeXP2 SRAM Configuration Using SPI Flash and a Standard USB Cable at J33 The LatticeXP2 SRAM can be configured easily via the on-board SPI Flash using the USB Download port at J33 and ispVM. The LatticeXP2 device is SRAM-based, so it must remain powered on to retain its configuration when programming the SRAM. The on-board SPI Flash retains its programmed bitstreams when power is off, and can quickly load programmed bitstreams into the LatticeXP2 device when power is applied. 1. Attach a ground connection from the test equipment chassis ground to the black GND terminal J51. 2. Check that the jumpers are installed as shown in Figure 4. Now move the J35 jumper from the left-side two pins to be on the right-side two pins. 3. Connect the LatticeXP2 Evaluation Board to an external 5V supply. 4. Push the SW1 USB Download reset button located just above the MachXO device (U9). Connect a standard USB cable from your PC’s USB connector to the USB download connector J33 on the LatticeXP2 Advanced Evaluation Board. 5. Start the ispVM System software, then select Options > Cable and I/O Port Setup..., then check that the Cable Type is set to USB. Note: If you receive a Windows notification about installing a USB driver, then in ispVM System select ISPTOOLS and INSTALL/UNINSTALL LSC USB/PARALLEL PORT DRIVER..., then select the LSC WINDOWS USB DRIVER, and push the INSTALL button. Now push the SW1 USB Download reset button located just above the MachXO device (U9). Windows should recognize the USB cable to the LatticeXP2 Advanced Evaluation Board. 6. Press the SCAN button located in the toolbar. The LatticeXP2 device will be automatically detected. The resulting screen will be similar to Figure 5. If offered multiple LatticeXP2 device types, select the LFXP2-17E. Figure 5. ispVM System Interface 7. Left-click on the LFXP2-17E device line and if offered other selections, select the LFXP2-17E, and leave that line selected. Now, in the ispVM main menu select Edit > EDIT_DEVICE and a Device Information window will 25 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor open as shown in Figure 6. Select Device Access Options and SPI Flash Programming as shown in Figure 7. Figure 6. Device Information Dialog Figure 7. SPI Serial Flash Device Dialog 8. Select Browse and point to the location of the bitstream file. Note that if you have a “.JED” file output from ispLEVER, you can convert it to a “.BIT” file using ispVM and selecting the UFW (Universal File Writer) icon with the input file being the “.JED” file from ispLEVER and the output file being a “.BIT” file. 9. Select Flash Device and in the Select Device window, change the selections as shown in Figure 8. Press OK to close the Select Device window. 26 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Figure 8. Select Device Dialog 10. Check that the SPI Serial Flash Device window now appears as shown in Figure 9, then press OK to close the SPI Serial Flash Device window. Figure 9. SPI Serial Flash Device Dialog 11. Check that the Device Information window appears as shown in Figure 10, then press OK to close the Device Information window. 27 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Figure 10. Device Information Dialog 12. Check that the LSC ispVM System window appears as it does in Figure 11. Figure 11. ispVM System Interface 13. To begin the download of the bitstream into the SPI Flash, press the GO menu button. You will see a small counter display window start up and then that window will change to a Processing address window. A blue section of that processing window will start to fill in from the left side until it reaches the right side of the window. When downloading to SPI Flash is complete, ispVM will then begin to verify the downloaded bitstream loaded into the SPI Flash with another small processing window and blue bar moving across it. 14. Upon successful verification of the downloaded bitstream to SPI Flash, the LatticeXP2 device can then be programmed by powering down the evaluation board and re-applying power. 15. You should now see the LatticeXP2 evaluation board’s LED digit display incrementing from 0 to 9 and a to f, the digit decimal point should be blinking, and the LEDs to the left of the digit should show the internal counter state while the digit count is incrementing. 28 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor LatticeXP2 SRAM Configuration Using SPI Flash and a Lattice ispDOWNLOAD Cable at J40 The LatticeXP2 SRAM can be configured easily via the on board SPI Flash using the JTAG port and ispVM. The LatticeXP2 device is SRAM-based, so it must remain powered on to retain its configuration when programming the SRAM. The on-board SPI Flash retains its programmed bitstreams when power is off, and can quickly load programmed bitstreams into the LatticeXP2 device when power is applied. 1. Attach a ground connection from the test equipment chassis ground to the black GND terminal J51. 2. Check that the jumpers are installed as shown in Figure 4. 3. Connect the LatticeXP2 Evaluation Board to an external 5V supply. 4. Connect the Lattice ispDOWNLOAD cable to the header at J40 labeled “XP2”. Note: When using a 1x8 download cable, connect to the 1x10 header by justifying the alignment to pin 1 (VCC). The board must be un-powered when connecting, disconnecting, or reconnecting the ispDOWNLOAD Cable or USB cable. Always connect an ispDOWNLOAD Cable’s GND pin (black wire), before connecting any other JTAG pins. Failure to follow these procedures can in result in damage to the LatticeXP2 FPGA and render the board inoperable. 5. Start the ispVM System software, then select Options > Cable and I/O Port Setup... For the Cable Type, select either Lattice for parallel port or USB for the type of ispDOWNLOAD cable you are using. 6. Press the SCAN button located in the toolbar. The LatticeXP2 device will be automatically detected. The resulting screen will be similar to Figure 5. Figure 12. ispVM System Interface 7. Left-click on the LFXP2-17E device line and if offered other selections, select the LFXP2-17E and leave that line selected. Now in the ispVM main menu select Edit > EDIT_DEVICE and a Device Information window will open as shown in Figure 13. Select Device Access Options and SPI Flash Programming as shown in Figure 14. 29 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Figure 13. Device Information Dialog Figure 14. SPI Serial Flash Device Dialog 8. Select Browse and point to the location of the bitstream file. Note that if you have a “.JED” file output from ispLEVER, you can convert it to a “.BIT” file using ispVM and selecting the UFW (Universal File Writer) icon with the input file being the “.JED” file from ispLEVER and the output file being a “.BIT” file. 9. Select Flash Device and in the Select Device window, change the selections as shown in Figure 15. Press OK to close the Select Device window. 30 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Figure 15. Select Device Dialog 10. Check that the SPI Serial Flash Device window now appears as shown in Figure 16, then press OK to close the SPI Serial Flash Device window. Figure 16. SPI Serial Flash Device Dialog 11. Check that the Device Information window appears as shown in Figure 17, then press OK to close the Device Information window. 31 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Figure 17. Device Information Dialog 12. Check that the LSC ispVM System window appears as it does in Figure 18. Figure 18. ispVM System Interface 13. To begin the download of the bitstream into the SPI Flash, press the GO menu button. You will see a small counter display window start up and then that window will change to a Processing address window. A blue section of that processing window will start to fill in from the left side until it reaches the right side of the window. When downloading to SPI Flash is complete, ispVM will then begin to verify the downloaded bitstream loaded into the SPI Flash with another small processing window and blue bar moving across it. 14. Upon successful verification of the downloaded bitstream to SPI Flash, the LatticeXP2 device can then be programmed by powering down the evaluation board and re-applying power. 15. You should now see the LatticeXP2 evaluation board’s LED digit display incrementing from 0 to 9 and a to f, the digit decimal point should be blinking, and the LEDs to the left of the digit should show the internal counter state while the digit count is incrementing. 32 LatticeXP2 Advanced Evaluation Board User’s Guide Lattice Semiconductor Ordering Information Description Ordering Part Number LatticeXP2 Advanced Evaluation Board (RoHS Compliant) LFXP2-17E-H-EVN LatticeXP2 Advanced Evaluation Board (non-RoHS, Obsolete) LFXP2-17E-H-EV China RoHS Environment-Friendly Use Period (EFUP) 10 Technical Support Assistance Hotline: 1-800-LATTICE (North America) +1-503-268-8001 (Outside North America) e-mail: [email protected] Internet: www.latticesemi.com Revision History Date Version Change Summary June 2007 01.0 Initial release. March 2008 01.1 Updated LatticeXP2 Advanced Evaluation Board User’s Guide photo. Updated Power Setup text section. Updated USB Download text section. May 2008 01.2 Corrected ball assignment for ETH_MDC in 10/100/1000 Ethernet PHY Connection Summary table. January 2009 01.3 Updated ordering information. January 2011 01.4 Updated the DDR2 text section. March 2011 01.5 Added “LatticeXP2 SRAM Configuration Using a Standard USB Cable at J33” and “LatticeXP2 SRAM Configuration Using a Lattice ispDOWNLOAD Cable at J40” text sections. © 2011 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 33 34 A B C D 5 (Sheet 6) ADCs, DACs, USB, RS-232, Clock Osc (Sheets 2, 3) (Sheet 2) 4 1 (Sheet 5) 3 3 (Sheet 8) Bank 8 Bank 3 Bank 2 Bank 1 (Sheets 4, 9) (Sheet 10) 1 Lattice Semiconductor Corporation Switches, LEDs LCD Display Programming, USB DL DDR2 SDRAM 32 BIT 2 Date: Size A 2 Document Number Sheet 1 1 of 14 Lattice XP2 Advanced Engineering Board 484 fpBGA Title (Sheet 7) 22 Ethernet PHY Bank 4 XP2 FPGA Bank 5 Bank 6 Bank 7 Bank 0 PCI 32 BIT AB A Compact Flash, PLL SMA I/O 4 Video I/O, Signal SMA I/O, RJ-45 & PS/2 (Sheet 11) FPGA Power Pins Power (Sheet 12,13) 5 B Rev A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Appendix A. Schematic Figure 19. LatticeXP2 Advanced Evaluation Board A B C VR1 AIN0 AIN1 AIN2 AIN3 0.1uF C63 ADJ_REF IDC12 IDC13 IDC14 IDC15 VCC_3.3V C7 0.1uF 5 XP2_INITN XP2_PROGRAMN XP2_DONE VCC_3.3V R132 10K C60 0.01uF 0402 0.01uF C8 ADS7842 AIN0 AIN1 AIN2 AIN3 VREF AGND DB11 DB10 DB9 DB8 DB7 DB6 DB5 DGND U3 0.01uF C10 28 27 26 25 24 23 22 21 20 19 18 17 16 15 L1 BEAD / 0805 VANA VDIG A1 A0 CLK BUSYN WRN CSN RDN DB0 DB1 DB2 DB3 DB4 0.001uF 0.001uF 0.001uF 0.001uF C67 C66 C65 C64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 [4] R128 10K CFG1 10uF X7R C5 A_3.3V F5 F4 H3 H4 A/D_CSn A/D_RDn A/D_D0 A/D_D1 H5 J5 J1 J2 K1 K2 A/D_D8 A/D_D9 A/D_D10 A/D_D11 D/A_RSTn D/A_LOADREGn 0.1uF C3 VCCIO7 VCCIO7 VCCIO7 VCCIO7 C111 0.01uF 0402 C73 0.001uF 0402 LFXP217-fpBGA484 1 2 C11 10uF Ceramic X5R 0805 VCC_3.3V E2 G5 J8 K4 PL24A/PCLKT7_0 PL24B/PCLKC7_0 PL23A*/SI PL23B*/INITN PL22A/CCLK PL22B/SO PL21A*/LDQS21 PL21B* PL20A/CSSPISN PL20B/CSSPIN PL19A*/CFG1 PL19B* PL18A/PROGRAMN PL18B/DONE PL17A* PL17B* PL16A PL16B PL15A* PL15B* PL14A PL14B PL13A*/LDQS13 PL13B* PL12A PL12B PL11A* PL11B* PL10A PL10B PL9A* PL9B* PL8A PL8B PL7A* PL7B* PL6A PL6B PL5A* PL5B* PL4A PL4B C85 0.1uF 0402 BANK 7 TX_OUT1_P TX_OUT1_N RX_IN2_P RX_IN2_N TX_OUT2_P TX_OUT2_N RX_IN3_P RX_IN3_N TX_OUT3_P TX_OUT3_N U4 U5 R7 R6 U2 V3 Y3 W3 R3 R4 N4 P8 T5 V2 P1 R1 M6 M7 M4 M5 M3 N2 T1 U1 N5 N6 P2 P3 V1 W1 Y1 AA1 N7 P7 P4 P5 AA2 Y2 R2 T2 C81 0.001uF 0402 [11] VCCIO_6 RX_CLKIN_P RX_CLKIN_N XP2_M6 XP2_M7 XP2_M3 XP2_N2 XP2_N5 XP2_N6 XP2_V1 XP2_W1 XP2_N7 XP2_P7 I2C_SDA I2C_SCL 4 0.01uF C4 [3] IDC[16..19] AOUT1 AOUT0 AOUT3 AOUT2 IDC18 IDC19 IDC16 IDC17 1K 1K 1K 1K 1 2 3 4 JP1 PS2 6 4 2 PCA9306 GND REF1 SCL1 SDA1 U1 EN REF2 SCL2 SDA2 DNL R61 R63 R64 IDC9 IDC10 IDC7 IDC8 IDC5 IDC6 IDC3 IDC4 IDC1 IDC2 IDC[1..10] DNL DNL DNL DNL DNL RJ45_P1 RJ45_P3 RJ45_P6 RJ45_P7 0 AREF R14 R15 DNL RJ45_P7 RJ45_P8 PS2_DIN_D R5 2.7K VCC_5.0V RJ45_P2 RJ45_P5 RJ45_P4 RJ45_P8 3 1 2 3 4 5 6 7 8 DAC7617 16 15 14 13 12 11 10 9 D/A_RSTn D/A_LOADREGn D/A_LDACn D/A_CSn D/A_CLK D/A_SDI measurement across CAT-5 cable (Not an Ethernet Port) VDD RESETSEL VOUTD RSTn VOUTC LOADREGn LDACn VREFL VREFH CSn VOUTB CLK SDI VOUTA AGND GND U5 RJ45_P5 RJ45_P6 RJ45_P3 RJ45_P4 RJ45_P1 RJ45_P2 Pair#0_N(P3) Pair#2_P(M4) Pair#1_N(U1) Pair#3_N(P6) DNL DNL DNL DNL DNL 2 1 1 S J8 S J14 GND GND GND GND GND GND GND GND 2 P(P4) 2 3 4 5 N(P5) 2 3 4 5 TX_OUT3_P TX_OUT3_N TX_CLKOUT_P TX_CLKOUT_N TX_OUT2_P TX_OUT2_N TX_OUT1_P TX_OUT1_N TX_OUT0_P TX_OUT0_N 27 28 1 14 2 15 3 16 4 17 5 18 6 19 7 20 8 21 9 22 10 23 11 24 12 25 13 26 1 1 S J9 S J15 GND GND GND GND GND GND GND GND 26 27 28 26 13 25 12 24 11 23 10 22 9 21 8 20 7 19 6 18 5 17 4 16 3 15 2 14 1 3M_Rx_10226-1210VE Mounting_R Mounting_L DDC_Gnd_26 RxIn0RxIn0Gnd RxIn0+ Sense USB/DDC_Gnd RxIn1RxIn1Gnd RxIn1+ DDC/SDA RxIn2RxIn2Gnd RxIn2+ USB+ USB_Shield USBDDC/SCL RxClkInRxClkInGnd RxClkIn+ USB_+5VDC DDC_+5VDC RxIn3RxIn3Gnd RxIn3+ DDC_Gnd_1 R65 100 0603 R66 100 0603 R67 100 0603 R48 100 0603 RX_CLKIN_N RX_CLKIN_P RX_IN3_N RX_IN3_P RX_IN2_N RX_IN2_P RX_IN1_N RX_IN1_P Date: Size C Video I/O Document Number 1 Sheet 2 of 14 Lattice Semiconductor Corporation Title R46 100 0603 RX_IN0_N RX_IN0_P LVDS pairs 25 13 24 12 23 22 21 20 19 18 17 16 15 14 N(AA1) 2 3 4 5 11 9 8 7 6 5 4 3 2 1 P(Y1) 2 3 4 5 10 Place resistors next to FPGA 3M_Tx_10226-1210VE Mounting_R Mounting_L DDC_Gnd_1 TxOut0TxOut0Gnd TxOut0+ Sense USB/DDC_Gnd TxOut1TxOut1Gnd TxOut1+ DDC/SDA TxOut2TxOut2Gnd TxOut2+ USB+ USB_Shield USBDDC/SCL TxClkOutTxClkOutGnd TxClkOut+ USB_+5VDC DDC_+5VDC TxOut3TxOut3Gnd TxOut3+ DDC_Gnd_26 J2 Video TX Video RX J3 1 SMA Connector AEP 9650-1113-005 High Speed Signal I/O Diff pair 50 ohm traces RJ-45 Connector RJ-45 Connector for signal quality 2 4 6 8 0 IDC[1..10][3] R49 R37 0 R50 R53 0 R29 R31 R45 R30 R40 0 0 R32 0 0 0 4 Output DAC RJ-45 1 3 5 7 J5 0 R43 R41 R58 R42 R33 R47 R34 R59 R62 R60 Differential Pair Traces A_3.3V R12 R13 0 R44 0 R1 2.7K PS2_DIN_C 0.1uF C1 Connector side view 5 3 1 8 7 6 5 PS/2 Mouse C62 0.1uF VCC_5.0V VCC_3.3V R2 100K Place resistors next to FPGA I2C_SDA [10,12] arrange them to fit on 4 pads I2C_SCL [10,12] Category-5 Cable Pairing Information: (1,2), (3,6), (4,5), (7,8) Pair#0_P(P2) Pair#1_P(T1) Pair#2_N(M5) Pair#3_P(R5) R3 5K TX_CLKOUT_P TX_CLKOUT_N RX_IN1_P RX_IN1_N R5 P6 TX_OUT0_P TX_OUT0_N AA3 Y4 T3 U3 PS2_CLK PS2_DATA RX_IN0_P RX_IN0_N V4 V5 3 T6 T7 2 C72 10uF Ceramic X5R 0805 C82 0.01uF 0402 1 VCCIO6 VCCIO6 VCCIO6 VCCIO6 PL26A*/PCLKT6_0 PL26B*/PCLKC6_0 PL27A PL27B PL28A* PL28B* PL29A PL29B PL30A*/LDQS30 PL30B* PL31A PL31B PL32A* PL32B* PL33A PL33B PL35A* PL35B* PL36A PL36B PL37A* PL37B* PL38A PL38B PL39A*/LDQS39 PL39B* PL40A PL40B PL41A* PL41B* PL42A PL42B PL43A* PL43B* PL44A PL44B PL45A* PL45B* PL46A PL46B PL47A* PL47B* PL48A PL48B PL49A/VREF1_6 PL49B/VREF2_6 R4 5K Place smaller value caps directly under FPGA C80 0.1uF 0402 [12] VCC_3.3V L3 L4 L5 L6 SI D/A_SDI OSC_PCLK K6 K7 XP2_CCLK SO M1 M2 L1 L2 CSSPISN CSSPIN D/A_CSn D/A_CLK J3 J4 CFG1 D/A_LDACn J6 K5 H1 H2 G6 H6 A/D_D4 A/D_D5 A/D_D6 A/D_D7 G3 G2 F1 G1 A/D_BUSYn A/D_WRn A/D_D2 A/D_D3 F3 F2 XP2_E4 E4 E5 D4 D3 E3 E1 C1 D1 PL3A* PL3B* PL2A/VREF1_7 PL2B/VREF2_7 U8A VCC_3.3V SMA Connector SMA Connector C3 B2 B1 C2 A/D_A0 A/D_CLK IDC0 A/D_A1 ADC and DAC have an analog voltage range of 0 to AREF OSC_PCLK XP2_SI A_3.3V VCC_3.3V A/D_A1 A/D_A0 A/D_CLK A/D_BUSYn A/D_WRn A/D_CSn A/D_RDn A/D_D0 A/D_D1 A/D_D2 A/D_D3 A/D_D4 [3] [4] [4] XP2_CCLK [4] XP2_SO IDC0 USB_SPD USB_OE_N USB4 USB5 [3] USB_VP USB_VM USB_RCV USB_SUS USB0 USB1 RS232_TXD RS232_RTS_N RS232_2 RS232_3 USB2 USB3 RS232_CTS_N RS232_RXD RS232_0 RS232_1 [4] XP2_CSSPISN [4] XP2_CSSPIN R129 10K USB[0..5] 4 Input ADC 0.1uF A/D_D11 A/D_D10 A/D_D9 A/D_D8 A/D_D7 A/D_D6 A/D_D5 AREF R7 R8 R9 R10 C9 [3] 100 100 100 100 XP2_INITN XP2_PROGRAMN XP2_DONE [4,7] [4,7] [4,7] C61 0.1uF 0402 AREF 47uF Ceramic X5R 1206 C2 [3] D1 B320A Diodes Inc. ADJ_REF range is 1.24v to 3.15v PV37W VR2 R6 32.4K 1% 33 SMA_PKG R146 50K POT Murata PV36Y503C01 2 U2 LM385/SO R147 10K IDC[12..15] 2 1 2 3 HEADER 3 50K POT Murata PV36Y503C01 PV37W AREF VCC_5.0V VCC_5.0V VCC_3.3V 1 2 [13] 3 1 1 2 J4 1 2 RS232_[0..3] 1 2 7 8 9 [3] 1 2 BANK 6 1 2 SMA Connector SMA Connector 4 1 2 D 3 1 1 2 5 11 12 35 11 12 B Rev A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 20. Video I/O 36 A B C D IDC[0..10] XP2_E4 XP2_N7 XP2_P7 XP2_V1 XP2_W1 XP2_N5 XP2_N6 XP2_M3 XP2_N2 XP2_M6 XP2_M7 XP2_F6 R73 R74 R76 R75 0 0 0 0 IDC0 R174 IDC1 R175 IDC2 R177 IDC3 R179 IDC4 R172 IDC5 R171 IDC6 R170 IDC7 R169 IDC8 R178 IDC9 R168 IDC10 R176 IDC11 R167 VCC_3.3V 5 16 15 14 13 12 11 10 9 VCC_3.3V DIPSOC-8x2 Y1 DNL R70 DNL DNL DNL DNL DNL R20 DNL R26 DNL R28 DNL R24 1 3 5 7 9 11 13 15 17 19 21 23 IDC24 J10 Place these resistors near the IDC connector A_IN0 A_IN1 A_IN2 A_IN3 A_OUT0 A_OUT1 A_OUT2 A_OUT3 TP_XO_K5 0 TP_XO_K4 0 TP_XO_M5 0 TP_XO_M4 0 DNL R23 DNL R22 DNL R21 DNL R27 DNL DNL DNL DNL DNL DNL DNL DNL DNL R18 DNL R25 DNL R17 DNL OSC_PCLK OSC1(L4) OSC_PLLCLK OSC2(A2) RS232_RTS_N RS232_3 OSC_PCLK [2] 4 RS232_TXD RS232_2 [6] RS232_RXD RS232_1 OSC_PLLCLK RS232_CTS_N RS232_0 R79 R78 R80 R72 C100 0.1uF 0402 0 0 0 0 C98 0.1uF 0402 RX - series resistors remain 0 ohm. Resistors tied to VCC_3.3v and GND should be 240 ohms each. 0 0 0 0 0 0 0 0 0 0 0 0 1 3 5 7 9 11 13 15 17 19 21 23 USB[0..5] TP_XP2_E4 TP_XP2_N7 TP_XP2_P7 TP_XP2_V1 TP_XP2_W1 TP_XP2_N5 TP_XP2_N6 TP_XP2_M3 TP_XP2_N2 TP_XP2_M6 TP_XP2_M7 TP_XP2_F6 [2] IDC24 J1 C99 0.1uF 0402 LV_RTS_N LV_TXD LV_RXD LV_CTS_N C97 0.1uF 0402 Place these resistors near the IDC connector R145 R144 R143 R142 R141 R140 R139 R138 R137 R136 R135 R134 TX - install series resistors of 33 ohms near the FPGA and 70 ohms near the IDC connector. Do not install resistors tied to VCC_3.3v or GND. DNL [8] DNL For high speed signals over ribbon cable: Place these resistors near the FPGA DNL 2 4 6 8 10 12 14 16 18 20 22 24 XP2 Test Points R154 R155 R161 R163 R159 R158 R157 R156 R162 R153 R160 R152 DNL R19 [2] RS232_[0..3] 0 0 0 0 0 0 0 0 0 0 0 0 (33.33 MHz OSC Installed) 1 2 3 4 5 6 7 8 DNL R71 R180 R181 R183 R182 DNL R69 IDC12 IDC13 IDC14 IDC15 IDC16 IDC17 IDC18 IDC19 R148 R149 R150 R151 Place these resistors near the FPGA IDC20 IDC21 IDC22 IDC23 DNL R68 VCC_3.3V Oscillator Socket [8] XP2_F6 [2] IDC[0..10] XO_K5 XO_K4 XO_M5 XO_M4 IDC[12..23] VCC_3.3V 2 4 6 8 10 12 14 16 18 20 22 24 USB0 USB1 USB2 USB3 USB4 USB5 3 C101 0.1uF 0402 USB_VP USB_VM USB_RCV USB_SUS USB_SPD USB_OE_N 16 1 3 4 5 2 6 11 10 13 8 3 4 2 7 1 9 16 13 MAX3232 TSSOP16 VCC C1+ C1C2+ C2V+ V- T1IN T2IN R1IN R2IN U7 GND T1OUT T2OUT R1OUT R2OUT MAX3454EETE VP VM RCV SUS (SPND) SPD (DSPD) OE# QFN16 NC (EN_Vobus#) NC VTRM (Vreg) VCC_3.3V 14 11 10 6 5 8 12 R164 R165 15 14 7 12 9 6 5 4 3 2 1 1 2 3 1 2 3 HV_TXD HV_CTS_N 1 2 3 1 2 3 HEADER 3 HEADER 3 J24 1 2 3 J23 R36 15K 2 1 VCC_5.0V J20 D- VBUS 1 2 3 1 2 3 HV_RXD HV_RTS_N RXD Selection HEADER 3 J27 HEADER 3 J29 3 4 (Female) RS-232 CONNECTOR DB9 Norcomp 182-009-212-161 11 [13] 1 Sheet OSC, USB & RS-232 Document Number 3 of 14 B Rev Lattice Semiconductor Corporation Date: Size C Title 1 6 2 7 3 8 4 9 5 J26 Used when the FPGA is configured as USB device. 10 USB(Type B) USB Series-B Receptacle Molex 67068-8000 D+ GND /RTS Selection C68 4.7uF Ceramic X5R 0603 2 1 Wired as USB Host -> installed Jumpers on pin 1-2 of all headers Wired as USB Device -> installed Jumpers on pin 2-3 of all headers HEADER 3 J22 R35 15K Wired as DCE (default) -> installed Jumpers on pin 1-2 of all headers Wired as DTE -> installed Jumpers on pin 2-3 of all headers TXD Selection HEADER 3 J28 HEADER 3 J30 /CTS Selection Used when the FPGA is configured as USB host. USB Series-A Receptacle Molex 67643-2910 MH2 MH1 GND D+ DVBUS J16 33 33 1 2 3 HEADER 3 J21 C70 1uF Ceramic X5R 0402 C69 1uF Ceramic X5R 0402 USB(Type A) VBUS (Vusb) D+ DGND MAX3454EETE (or NCN2500MNR2) NC (EN_RPU) ENUM (VObus) U4 [12] VCC_3.3V 1 2 ADCs, DACs, XO Test Points 15 VL (Vcc) IDC[12..23] 1 2 [2] 4 3 2 1 1 2 2 1 2 4 3 3 5 MH1 4 6 MH2 5 A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 21. OSC, LSB and RS-232 37 A B C D 4 1 2 3 4 VCC /HOLD C D 5 J40: JTAG header for XP2 J39: JTAG header for ispPAC TDI TCK TMS TDO TDI TCK TMS TDO J52 TDI TCK TDO TMS XP2 FPGA VCC TDI J45 ATDI TCK ispPAC HVOUT TMS TDO TDISEL VCC 4 XP2_CSSPIN XP2_SO XP2_SI R166 4.7K TP4 TP6 TP3 VCC_3.3V XP2_CCLK C71 0.1uF 0402 VCC_3.3V CON10 CON10 C185 0.1uF 0402 J40 JTAG header for XP2 3 CON10 J25 [2] [2] [2] [2] C184 0.1uF 0402 J39 XP2_CSSPIN XP2_SO XP2_SI XP2_CCLK [12] JTAG header for ispPAC CSSPISN is the slave chip select For chaining XP2 and ispPAC together: (1) Remove the jumper on J49 and install it on J45. (2) Connect the download cable to J39. J49 VCC_3.3V R173 10K 3 CSSPIN is the master chip select When TDISEL=0 (J49 short), ATDI is selected. When TDISEL=1 (J49 open), TDI is selected. CONFIGURATION (2): J49 open, with J45 and J52 short J39 => for programming both XP2 and ispPAC (JTAG chained together) J40 => not used Power Supplies 8 7 6 5 (16Mbit) SST25VF016B-50-4C-S2AF /S Q /W VSS U6 SPI Serial Flash CONFIGURATION (1): J49 short and J45 open (default setting) J39 => for ispPAC programming only J40 => for XP2 programming only 5 1 2 3 [12] CFG1 R227 10K CFG1 [2] 1 2 3 2 CFG0 R233 10K [2,7] [2,7] HEADER 3 J44 XP2_DONE XP2_INITN XP2_TCK [9] XP2_TMS [9] XP2_TCK XP2_TMS [12] [12] [12] XP2_TDO [9] XP2_TDI [9] PWR_TDI PWR_TCK PWR_TMS CFG0 R243 10K TDISEL [11] [12] [12] [12] [2] [2] PWR_TDO PWR_ATDI XP2_DONE XP2_INITN XP2_CSSPISN [2] [2] XP2_PROGRAMN XP2_TDO XP2_TDI XP2_DONE XP2_INITN VCC_3.3V PWR_TCK PWR_TMS PWR_TDO PWR_ATDI PWR_3.3V_10A XP2_CCLK XP2_DONE XP2_INITN VCC_3.3V XP2_SO XP2_SI XP2_CSSPISN XP2_PROGRAMN (nc) HEADER 3 J42 VCC_3.3V 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 XP2 SPI Slave header 2 R242 10K R272 4.7K 1 2 1 2 HEADER 2 J45 HEADER 2 J49 1 Programming Document Number Sheet 4 of 14 B Rev Lattice Semiconductor Corporation Date: Size C Title 1 A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 22. Programming A B C PCI_3.3V PCI_3.3V R11 0 J18 HEADER 2 PCI_RST_N J19 HEADER 2 J56 PCI EDGE CONN Solder Side PCI_AD30 PCI_AD31 PCI_AD29 PCI_REQ_N PCI_CLK 1 2 PCI_GNT_N J11 PCI EDGE CONN Component Side 5 Maximum trace length for PCI_CLK signal is 2.5" Maximum trace length for 32 bit interface signals is 1.5" [12] 2 1 PCI_IDSEL TP43 PCI_AD15 PCI_CBE1_N PCI_SERR_N PCI_PERR_N PCI_DEVSEL_N PCI_IRDY_N PCI_AD18 PCI_AD16 PCI_AD17 PCI_CBE2_N PCI_AD22 PCI_AD20 PCI_AD21 PCI_AD19 PCI_AD23 PCI_AD28 PCI_AD26 PCI_AD27 PCI_AD25 PCI_CBE3_N PCI_INTA_N PCI_INTC_N PCI_INTB_N PCI_INTD_N PCI_PRSNT1_N 4 J31 CON3 [12] PCI_VIO C159 0.01u R82 5K PCI_GND PCI_PAR PCI_FRAME_N PCI_STOP_N PCI_TRDY_N PCI_AD24 4 J34 should be placed next to C37 [12] [12] VCC_3.3V VCC_3.3V C37 must be placed within 0.25" of the PCI connector 3 3 C144 0.001uF 0402 VCC_3.3V C88 0.001uF 0402 VCC_3.3V PCI_VIO C118 0.001uF 0402 C117 0.001uF 0402 C75 0.01uF 0402 C94 0.01uF 0402 C95 0.01uF 0402 PCI_CLK PCI_AD2 PCI_AD1 C84 0.01uF 0402 TP52 PCI_AD3 PCI_AD5 C147 0.1uF 0402 C74 0.1uF 0402 AA5 R9 V7 W10 AB14 AB15 Y12 W12 AB13 AB12 AB11 AB10 AB8 AB9 PCI_AD13 PCI_AD11 PCI_AD8 PCI_AD9 T12 T13 PCI_CBE1_N PCI_AD14 AA12 Y11 AB6 AB7 PCI_AD0 PCI_AD6 AB4 AB5 PCI_AD27 PCI_AD24 AA11 AA10 PCI_AD7 PCI_CBE0_N PCI_GNT_N PCI_AD30 AB2 AB3 PCI_INTA_N PCI_RST_N T11 U11 AA8 AA9 PCI_IDSEL PCI_AD12 PCI_STOP_N PCI_AD15 V11 W11 PCI_SERR_N PCI_AD4 PCI_AD10 PCI_CBE3_N T10 V10 Y9 Y8 PCI_AD29 PCI_AD26 PCI_IRDY_N PCI_PERR_N Y6 Y7 PCI_REQ_N PCI_AD21 AA6 AA7 W5 W6 PCI_TRDY_N PCI_DEVSEL_N PCI_AD28 PCI_AD25 T8 T9 PCI_AD18 PCI_AD17 V9 W9 V8 W8 PCI_AD22 PCI_AD20 U9 U10 V6 U6 PCI_AD23 PCI_AD31 PCI_CBE2_N PCI_FRAME_N W4 Y5 PCI_AD19 PCI_AD16 PCI_PAR U7 U8 U8B C6 10uF Ceramic X5R 0805 VCCIO4 VCCIO4 VCCIO4 VCCIO4 PB29A/PCLKT4_0 PB29B/PCLKC4_0 PB30A PB30B PB31A PB31B PB32A PB32B PB33A/BDQS33 PB33B PB34A PB34B PB35A PB35B PB36A PB36B PB37A PB37B PB38A PB38B PB39A PB39B PB40A PB40B PB41A PB41B PB42A/BDQS42 PB42B PB43A PB43B PB44A/LRC_GPLLT_IN_A PB44B/LRC_GPLLC_IN_A C146 0.1uF 0402 2 PB46A/VREF1_4 PB46B/VREF2_4 PB45A/LRC_GPLLT_FB_A PB45B/LRC_GPLLC_FB_A C77 10uF Ceramic X5R 0805 BANK 5 C76 0.1uF 0402 LFXP217-fpBGA484 VCCIO5 VCCIO5 VCCIO5 VCCIO5 PB28A/PCLKT5_0 PB28B/PCLKC5_0 PB27A PB27B PB26A PB26B PB25A PB25B PB24A/BDQS24 PB24B PB23A PB23B PB22A PB22B PB21A PB21B PB20A PB20B PB19A PB19B PB18A PB18B PB17A PB17B PB16A PB16B PB15A/BDQS15 PB15B PB14A PB14B PB13A PB13B PB12A PB12B PB11A PB11B PB10A PB10B PB9A PB9B PB8A PB8B PB7A PB7B PB6A/BDQS6 PB6B PB5A/LLC_GPLLT_FB_A PB5B/LLC_GPLLC_FB_A PB4A/LLC_GPLLT_IN_A PB4B/LLC_GPLLC_IN_A PB3A/VREF1_5 PB3B/VREF2_5 2 BANK 4 D 5 PCI_AD14 1 2 3 4 5 6 7 8 9 10 11 PCI_PRSNT2_N PCI_AD13 PCI_AD11 PCI_AD12 PCI_AD10 TRST# +12V TMS TDI +5V_5 INTA# INTC# +5V_8 Reserved_9 +VIO_10 Reserved_11 1 2 3 4 5 6 7 8 9 10 11 -12V TCK Ground_3 TDO +5V_5 +5V_7 INTB# INTD# PRSNT1# Reserved_10 PRSNT2# PCI_AD9 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 3.3VAUX RST# +VIO_16 GNT# Ground_18 PME# AD[30] +3.3V_21 AD[28] AD[26] Ground_24 AD[24] IDSEL +3.3V_27 AD[22] AD[20] Ground_30 AD[18] AD[16] +3.3V_33 FRAME# Ground_35 TRDY# Ground_37 STOP# +3.3V_39 Reserved_40 Reserved_41 Ground_42 PAR AD[15] +3.3V_45 AD[13] AD[11] Ground_48 AD[09] PCI_CBE0_N PCI_AD8 PCI_AD7 1 2 3 PCI_REQ64_N 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 PCI_AD1 Reserved_14 Ground_15 CLK Ground_17 REQ# +VIO_19 AD[31] AD[29] Ground_22 AD[27] AD[25] +3.3V_25 C/BE#[3] AD[23] Ground_28 AD[21] AD[19] +3.3V_31 AD[17] C/BE#[2] Ground_34 IRDY# +3.3V_36 DEVSEL# Ground_38 LOCK# PERR# +3.3V_41 SERR# +3.3V_43 C/BE#[1] AD[14] Ground_46 AD[12] AD[10] M66EN PCI_M66EN PCI_AD6 PCI_AD4 PCI_AD5 PCI_AD3 1 2 PCI_AD2 PCI_AD0 52 53 54 55 56 57 58 59 60 61 62 C/BE#[0] +3.3V_53 AD[06] AD[04] Ground_56 AD[02] AD[00] +VIO_59 REQ64# +5V_61 +5V_62 PCI_ACK64_N 52 53 54 55 56 57 58 59 60 61 62 AD[08] AD[07] +3.3V_54 AD[05] AD[03] Ground_57 AD[01] +VIO_59 ACK64# +5V_61 +5V_62 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 38 2 AA18 R14 V16 W13 AB16 AB17 Y14 AA13 V12 U12 AB18 AB19 AA14 AA15 T14 T15 V13 U13 LED6 LED7 LED4 LED5 LED2 LED3 LED0 LED1 LCD[0..10] [7] LED[0..7] [7] [7] SEVEN_SEG[0..7] LCD[0..10] SWITCH[0..9] [7] PCI Document Number 1 Sheet 5 of 14 B Rev Lattice Semiconductor Corporation Date: Size C Title SEVEN_SEG6 SEVEN_SEG1 SEVEN_SEG7 SEVEN_SEG2 SEVEN_SEG4 SEVEN_SEG3 SEVEN_SEG0 SEVEN_SEG5 LCD1 LCD0 AA16 AA17 LCD3 LCD2 AB20 AA20 LCD9 LCD8 Y22 Y21 W14 V14 SWITCH0 LCD10 W15 V15 LCD7 LCD6 SWITCH2 SWITCH1 T16 U16 LCD5 LCD4 SWITCH4 SWITCH3 Y16 Y15 AA22 AA21 SWITCH6 SWITCH5 Y17 Y18 U14 U15 PB3 PB2 PB1 SWITCH9 SWITCH8 SWITCH7 W17 W18 1 A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 23. PCI A B C [12] CF_D03 CF_D04 CF_D05 CF_D06 CF_D07 CF_CE1 CF_A10 CF_OE CF_A09 CF_A08 CF_A07 CF_A06 CF_A05 CF_A04 CF_A03 CF_A02 CF_A01 CF_A00 CF_D00 CF_D01 CF_D02 CF_WP CF_CD2 CF0 CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10 CF11 CF12 CF13 CF14 CF15 CF16 CF17 CF18 CF19 CF20 CF21 CF22 CF[0..45] 5 VCC_3.3V Hirose MI20-50PD-SF GND CD1 D03 D11 D04 D12 D05 D13 D06 D14 D07 D15 CE1/CE1/CS0 CE2/CE2/CS1 A10 VS1 OE/OE/ATASEL IORD A09 IOWR A08 WE A07 READY/IREQ/INTRQ VCC VCC A06 CSEL A05 VS2 A04 RESET WAIT/WAIT/IORDY A03 A02 INPACK/INPACK/DMARQ A01 REG/REG/DMACK A00 BVD2/SPKR/DASP D00 BVD1/STSCHG/PDIAG D01 D08 D02 D09 WP/IOIS16/IOCS16 D10 CD2 GND PC Card Memory Mode/ PC Card I/O Mode/ True IDE Mode CF[0..45] C183 0.1uF 0402 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Compact Flash Connector 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 J38 C180 0.1uF 0402 CF23 CF24 CF25 CF26 CF27 CF28 CF29 CF30 CF31 CF32 CF33 CF34 R215 100K R213 47K R209 47K R216 47K R214 47K CF_CSEL CF_VS2 CF_RESET CF_WAIT CF_INPACK CF_REG CF_BVD2 CF_BVD1 CF_D08 CF_D09 CF_D10 CF35 CF36 CF37 CF38 CF39 CF40 CF41 CF42 CF43 CF44 CF45 4 CF_BVD1 CF42 Ultra DMA is not supported Traces from the ECP2 to the CF connector must be less than 6 inches Compact Flash Connector CF_BVD2 CF41 CF_CD1 CF_D11 CF_D12 CF_D13 CF_D14 CF_D15 CF_CE2 CF_VS1 CF_IORD CF_IOWR CF_WE CF_READY CF_VS1 CF30 R210 100K CF_VS2 CF36 R218 100K CF_INPACK CF39 R217 100K CF_WP CF21 R211 100K CF_READY CF34 R212 100K CF_WAIT CF38 VCC_3.3V CF_CD1 CF23 D 4 CF_CD2 CF22 5 CF[0..45] [8] [3]OSC_PLLCLK PLL_FB_P PLL_FB_N [8] [8] DNL DNL R39 0 R57 0 R56 R55 0 R52 0 R38 R54 R51 1 2 DNL DNL 3 2 2 1 1 S J6 S J12 GND GND GND GND GND GND GND GND 2 3 4 5 N(B3) 2 3 4 5 P(A2) 1 1 S J7 S J13 SMA Connector 1 GND GND GND GND GND GND GND GND P(F7) 2 3 4 5 N(G7) 2 3 4 5 Date: Size C Title Document Number 1 Sheet 6 of Compact Flash, PLL SMA I/O 14 Lattice Semiconductor Corporation SMA Connector AEP 9650-1113-005 The pad of Pin 2 is directly put on the trace of the differential pair to minimize the trace stub. No extra trace stub is created on the differential pair trace. Diff pair 50 ohm traces HEADER 2 J17 Place resistors next to FPGA arrange them to fit on 4 pads PLL_IN_P PLL_IN_N [8] [8] Installing jumper on pin 1 and 2 will connect the on-board oscillator clock output to the PLL clock input on the XP2 ball A2. CF[0..45] 3 SMA Connector SMA Connector 39 SMA Connector B Rev A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 24. CompactFlash, PLL, SMA I/O A B C D [12] VCC_3.3V (V13) (AA17) 220 220 220 220 220 220 220 5 R285 220 LED(AB17) R284 LED(AB16) R283 LED(AA13) R282 LED(Y14) R278 LED(U12) R277 LED(V12) R276 LED(AB19) R275 LED(AB18) (U13) D(Pin 8) (AA14) G(Pin 11) (AA16) A(Pin 1) B(Pin 13) C(Pin 10) F(Pin 2) E(Pin 7) SSEG_B R294 LED 0603 Green D25 LED 0603 Green D24 LED 0603 Green D22 LED 0603 Green D21 LED 0603 Green D20 LED 0603 Green ON VCC_3.3V PROGRAMN (E12) (W18) PB1 (W17) PB2 GSRN 4 [5] (U7) PB3 0402 0402 0402 0402 0402 0402 0402 0402 D19 LED0 LED1 LED2 LED3 LED4 LED5 LED6 LED7 LED[0..7] 470 470 470 470 470 470 SSEG_E SSEG_D SSEG_DP SSEG_C SSEG_G R289 R298 R297 R296 R295 470 470 SSEG_A R287 SSEG_F R288 VCC_3.3V LED 0603 Green D18 LED 0603 Green D17 (T14) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Seven Segment Display Fairchild MAN4710A 738milX386mil cathode A cathode F annode1 NC1 NC2 NC3 cathode E cathode D cathode DP cathode C cathode G NC4 cathode B annode2 DP(Pin 9) (T15) (AA15) U20 7 Segment Display VCC_3.3V VCC_3.3V [5] SW DIP-8 CTS 194-8MST SW8 VCC_5.0V R247 10K R245 10K C219 0.01uF 0402 C214 0.01uF 0402 VCC_5.0V 7 9 1 14 3 12 5 10 7 9 1 14 3 12 5 10 VDD GND Aout Bout Cout Dout Eout Fout MC14490 GND Aout Bout Cout Dout Eout Fout Debouncer OSCin OSCout Ain Bin Cin Din Ein Fin U18 MC14490 OSCin OSCout Ain Bin Cin Din Ein Fin 8 15 2 13 4 11 6 16 8 15 2 13 4 11 6 16 VCC_3.3V VDD Debouncer U15 Contrast Adjustment VR4 100 POT Murata PV36Y101C01 PV37W ANODE 2 VCC_3.3V PB1 GSRN PB3 PB2 SWITCH0 SWITCH1 SWITCH2 SWITCH3 SWITCH4 SWITCH5 SWITCH6 SWITCH7 SWITCH9 SWITCH8 VR5 20K POT Murata PV36Y203C01 PV37W 2 LCD0 LCD_R/W LCD1 LCD_DB0 LCD2 LCD_DB2 LCD3 LCD_DB4 LCD4 LCD_DB6 3 2 1 3 5 7 9 11 13 15 17 [8] Gate SOT-23 XP2_PROGRAMN GSRN VCC_3.3V Source Drain VCC_3.3V VCC_3.3V R293 470 470 470 2 4 6 8 10 12 14 16 18 Gate R292 R286 CATHODE VDD RS E DB1 DB3 DB5 DB7 CATHODE LCD_Connector ANODE VSS VO R/W DB0 DB2 DB4 DB6 ANODE J55 SWITCH[0..9] [5] LUMEX or Equiv. use pins 3-18 OPTREX 51505 or Equiv. use pins 1-16 LCD Connector 2 1 2 3 4 5 6 7 8 (W15) (U16) (T16) (Y15) (Y16) (Y18) (Y17) (W18) R248 10K R246 10K Backlight Adjustment [13] DIP_SWITCH0 DIP_SWITCH1 DIP_SWITCH2 DIP_SWITCH3 DIP_SWITCH4 DIP_SWITCH5 DIP_SWITCH6 DIP_SWITCH7 R299 R300 R301 R302 R303 R304 R305 R306 10K 10K 10K 10K 10K 10K 10K 10K SW4 SW PUSHBUTTON Panasonic EVQP2H02B SW5 SW PUSHBUTTON Panasonic EVQP2H02B SW6 SW PUSHBUTTON Panasonic EVQP2H02B SW7 SW PUSHBUTTON Panasonic EVQP2H02B SW10 SW PUSHBUTTON Panasonic EVQP2H02B SEVEN_SEG1 SEVEN_SEG4 SEVEN_SEG3 SEVEN_SEG7 SEVEN_SEG2 SEVEN_SEG6 SEVEN_SEG0 SEVEN_SEG5 SEVEN_SEG[0..7] 3 1 3 4 1 3 5 16 15 14 13 12 11 10 9 40 1 2 3 4 5 6 7 8 [4] LCD[0..10] TP108 XP2_INITN XP2_INITN XP2_DONE [2] [2] [2] XP2_PROGRAMN LCD[0..10] [5] 1 Sheet 7 of 14 Switches, LEDs, LCD Display Document Number B Rev Lattice Semiconductor Corporation Date: Size C TP109 XP2_DONE On when INITN low D29 LED 0603 Red INIT Source Q10 BSS138LT1 SOT-23 Drain On when DONE high TP107 XP2_PROGRAMN D28 LED 0603 Green DONE Title LCD5 LCD6 LCD7 LCD8 LCD9 LCD10 C57 0.1uF 0402 On when PROGRAMN low D27 LED 0603 Yellow PROGRAM LCD_RS LCD_E LCD_DB1 LCD_DB3 LCD_DB5 LCD_DB7 1 A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 25. Switches, LEDs, LCD Display A B C D E14 E15 ETH_MDIO ETH_MDC VCC_2.5V [13] [7] GSRN TP89 VCCIO1 VCCIO1 VCCIO1 VCCIO1 0.01uF 0402 C155 B18 D13 E16 H14 0.001uF 0402 C109 LFXP217-fpBGA484 PT29A/PCLKT1_0 PT29B/PCLKC1_0 PT30A PT30B PT31A PT31B PT32A PT32B PT33A/TDQS33 PT33B PT34A PT34B PT35A PT35B PT36A PT36B PT37A PT37B PT38A PT38B PT39A PT39B PT40A PT40B PT41A PT41B PT42A/TDQS42 PT42B PT43A PT43B 0.01uF 0402 C189 0.01uF 0402 C194 BANK 1 0.1uF 0402 C193 0.1uF 0402 C201 0.01uF 0402 C191 5 CF35 CF34 CF33 CF32 CF31 CF30 CF29 CF28 H7 J7 A5 A6 B6 B7 D8 C8 CF13 CF12 D11 C11 B11 A12 B5 D10 E7 H9 B13 A14 F11 F12 E11 C12 B12 A13 0.01uF 0402 C204 4 R244 ETH_MDIO ETH_MDC VCC_2.5V ETH_CRS ETH_COL PHY_TX_D[0..7] [13] C205 10pF 0402 [9] [9] [9] [9] [9] ETH_TMS ETH_TDO ETH_TDI ETH_TRST ETH_TCK Place xtal close to G-PHY 25MHz HC-49/U Y3 R220 324 0402 LED 0603 Green D2 R219 2K 0402 ETH_TMS ETH_TDO ETH_TDI ETH_TRST ETH_TCK C206 10pF 0402 R113 1M 0402 23 27 28 31 32 24 87 86 3 R221 324 0402 0.01uF 1 0402 C210 22uF 2 1 SizeB DP83865 TM0 TMS TDO TDI TRST TCK CLOCK_OUT CLOCK_IN MDIO MDC GTX_CLK / RGMII_TXC CRS / RGMII_SEL1 COL TX_CLK / RGMII_SEL0 TX_EN / RGMII_TX_CTL TX_ER TXD0 / RGMII_TXD0 TXD1 / RGMII_TXD1 TXD2 / RGMII_TXD2 TXD3 / RGMII_TXD3 TXD4 TXD5 TXD6 TXD7 RX_CLK RX_DV / RGMII_RXC RX_ER / RGMII_RX_CTL RXD0 / RGMII_RXD0 RXD1 / RGMII_RXD1 RXD2 / RGMII_RXD2 RXD3 / RGMII_RXD3 RXD4 RXD5 RXD6 RXD7 U11 D3 LED 0603 Green R222 2K 0402 VCC_2.5V ETH_EGP[0..7] X1 X0 79 PHY_GTX_CLK 80 81 40 39 PHY_CRS PHY_COL R97 R95 2K 60 33 33 62 61 PHY_TX_ER PHY_TX_CLK 76 75 72 71 68 67 66 65 PHY_TX_D0 PHY_TX_D1 PHY_TX_D2 PHY_TX_D3 PHY_TX_D4 PHY_TX_D5 PHY_TX_D6 PHY_TX_D7 PHY_TX_EN 57 PHY_RX_CLK R109 33 Place termination resistors TX_D0-7, TX_ER, TX_EN, GTX_CLK as close to FPGA as possible using 50 ohm impedence traces. 41 PHY_RX_ER PHY_RX_DV R96 33 R99 33 R107 33 ETH_RX_ER ETH_RX_DV ETH_RX_CLK 44 56 55 52 51 50 47 46 45 PHY_RX_D0 PHY_RX_D1 PHY_RX_D2 PHY_RX_D3 PHY_RX_D4 PHY_RX_D5 PHY_RX_D6 PHY_RX_D7 33 33 33 33 33 33 33 33 R108 R105 R103 R104 R101 R102 R100 R98 ETH_RX_D0 ETH_RX_D1 ETH_RX_D2 ETH_RX_D3 ETH_RX_D4 ETH_RX_D5 ETH_RX_D6 ETH_RX_D7 Place termination resistors RX_D0-7, RX_ER, RX_DV, RX_CLK, TX_CLK, CRS, COL as close to the G-PHY as possible using 50 ohm impedence traces. Place R close to CLOCK_IN PHY_TX_EN PHY_TX_D0 PHY_TX_D1 PHY_TX_D2 PHY_TX_D3 PHY_TX_D4 PHY_TX_D5 PHY_TX_D6 PHY_TX_D7 PHY_TX_ER C156 10uF Ceramic X5R 0805 Bypass for BG_VDD 0.1uF 0402 C138 2 [11] [6] 10uF Ceramic X5R 0805 C86 VCCIO_0 CF[0..45] C79 0.01uF 0402 1 [13] C197 10uF Ceramic X5R 0805 VCC_1.8V C107 0.001uF 0402 CF1 CF0 CF3 CF2 CF5 CF4 CF7 CF6 CF9 CF8 CF11 CF10 CF15 CF14 A10 A11 G8 G9 CF17 CF16 CF19 CF18 CF21 CF20 CF23 CF22 CF25 CF24 B9 B10 F10 E10 D9 C9 A8 A9 A7 B8 ETH_TX_D0 ETH_TX_D1 ETH_TX_D2 ETH_TX_D3 ETH_TX_D4 ETH_TX_D5 ETH_TX_D6 ETH_TX_D7 ETH_TX_ER VCC_2.5V CF37 CF36 C6 C7 CF27 CF26 ETH_TX_CLK ETH_GTX_CLK R185 33 CF39 CF38 A3 A4 E9 F9 ETH_TX_EN R189 33 CF41 CF40 33 33 33 33 33 33 33 33 33 CF43 CF42 C5 C4 R184 R190 R187 R191 R194 R195 R186 R188 R196 CF45 CF44 F8 E8 [6] [6] D6 D5 PLL_FB_P PLL_FB_N PLL_FB_P PLL_FB_N [6] [6] [3] PLL_IN_P PLL_IN_N PLL_IN_P PLL_IN_N TP50 XP2_F6 A2 B3 XP2_F6 XP2_E6 F7 G7 F6 E6 C110 0.01uF 0402 VCC_2.5V 0.01uF 0402 C202 C108 0.1uF 0402 VCCIO0 VCCIO0 VCCIO0 VCCIO0 PT28A/PCLKT0_0 PT28B/PCLKC0_0 PT27A PT27B PT26A PT26B PT25A PT25B PT24A/TDQS24 PT24B PT23A PT23B PT22A PT22B PT21A PT21B PT20A PT20B PT19A PT19B PT18A PT18B PT17A PT17B PT16A PT16B PT15A/TDQS15 PT15B PT14A PT14B PT13A PT13B PT12A PT12B PT11A PT11B PT10A PT10B PT9A PT9B PT8A PT8B PT7A PT7B PT6A/TDQS6 PT6B PT5A/ULC_GPLLT_FB_A PT5B/ULC_GPLLC_FB_A PT4A/ULC_GPLLT_IN_A PT4B/ULC_GPLLC_IN_A PT3A/VREF1_0 PT3B/VREF2_0 Bypass for IO_VDD pins. Bypass every other IO_VDD pair, alternating 0.1 and 0.01uF caps. 0.1uF 0402 C203 0.1uF 0402 C190 Place caps close to GPHY 0.001uF 0402 C140 PT44A/URC_GPLLT_IN_A PT44B/URC_GPLLC_IN_A PT45A/URC_GPLLT_FB_A PT45B/URC_GPLLC_FB_A Decoupling Caps 0.1uF 0402 C139 GSRN B14 A15 G10 G11 ETH_MAC_CLK_EN ETH_CLK_TO_MAC ETH_EGP6 ETH_EGP7 B15 A16 ETH_RX_CLK ETH_RESET_N E12 D12 B16 A17 ETH_CRS ETH_COL ETH_EGP5 E13 C14 ETH_RX_ER ETH_RX_DV ETH_RX_D6 F13 ETH_RX_D7 G12 ETH_RX_D4 B17 ETH_RX_D5 A18 ETH_RX_D2 C16 ETH_RX_D3 C17 ETH_RX_D0 F14 ETH_RX_D1 D14 ETH_EGP2 G13 ETH_EGP4 G14 C15 D15 ETH_TX_CLK ETH_GTX_CLK D17 D18 ETH_TX_D6 ETH_TX_D7 A21 A19 A20 D19 ETH_TX_ER ETH_TX_EN C18 C19 ETH_TX_D4 ETH_TX_D5 PT46A/VREF1_1 PT46B/VREF2_1 BANK 0 U8D PHY_GTX_CLK ETH_TX_D2 ETH_TX_D3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 E17 E18 ETH_EGP6 1 2 C28 2 C209 22uF 2 1 SizeB Place these close to G-PHY 1 R106 R112 Giga Phyter 10/100/1000 Giga Phyter V RX_VDD 10 0402 18 0402 2 VCC_1.8V C195 0.01uF 0402 MDIA_BUS7 J43 LED2+ LED2LED1+ LED1- SHLD1 SHLD2 7 8 4 5 3 6 1 2 19 20 16 15 14 13 RJ-45 Belfuse 0826-1A1T-23 MDID+ MDDCT MDID- MDIC+ MDCCT MDIC- MDIB+ MDBCT MDIB- MDIA+ MDACT MDIA- 2 85 33 13 14 17 18 95 94 89 88 1 2 3 6 7 8 9 10 ETH_EGP4 ETH_EGP5 ETH_EGP6 ETH_EGP7 ETH_EGP2 ETH_EGP0 R92 2K 0402 R225 470 1 2 0402 R238 470 1 2 0402 ETH_MAC_CLK_EN C199 0.01uF 0402 0402 R240 2K 0402 C200 0.01uF 0402 2K C192 1uF Ceramic X5R 0402 ETH_RESET_N 0402 R226 2K VCC_2.5V R239 C187 0.01uF 0402 VCC_2.5V (Do not populate) ETH_MAC_CLK_EN PULL_UP R91 2K 0402 R94 2K 0402 R93 324 0402 Date: Size C R235 324 0402 ETH_EGP4 ETH_EGP7 R234 2K 0402 VCC_2.5V MDI IO traces must be 50 ohm impedence. Ethernet Document Number 1 Sheet 8 of 14 B Rev Lattice Semiconductor Corporation ETH_EGP7 MH1 and MH2 are 0.100" diameter plated through holes Title MH1 MH2 MHOLE_1 MHOLE_1 0.100_PTH 0.100_PTH Ethernet RJ45 Connector C186 0.01uF 0402 MDIA_BUS6 MDIA_BUS7 MDIA_BUS4 MDIA_BUS5 MDIA_BUS2 MDIA_BUS3 MDIA_BUS0 MDIA_BUS1 ETH_EGP[0..7] (Do not populate) ETH_EGP0 VCC_2.5V Place caps close to RJ45 jack TX1 R241 33 ETH_RESET_N 1 Place 9.76K resistor as close to G-PHY as possible Giga Phyter address = 01h 102 34 84 R237 9.76K 1% 1 2 0402 MDI_P4 MDI_N4 MDI_P3 MDI_N3 120 121 126 127 MDI_P2 MDI_N2 MDI_P1 MDI_N1 114 115 108 109 ETH_CLK_TO_MAC CLK_TO_MAC RESET_N GP0 (PHYAD0 / DUPLEX_LED) GP1 (PHYAD1) GP2 (PHYAD2) GP3 (PHYAD3) GP4 (PHYAD4) GP5 (MULTI_EN) GP6 (MDIX_EN) GP7 (MAC_CLK_EN) Place 49 ohm termination resistors as close as possible to G-PHY. The associated 0.01uF capacitor should be placed close to the 49 ohm resistors. VCC_2.5V 8 7 9 MDIA_BUS6 MDIA_BUS5 MDIA_BUS3 MDIA_BUS1 3 1 2 R224 49_9 0402 R231 49_9 0402 MDIA_BUS4 R223 49_9 0402 R230 49_9 0402 4 6 5 R229 49_9 0402 R232 49_9 0402 MDIA_BUS2 R228 49_9 0402 R236 49_9 0402 11 12 10 C188 0.01uF 0402 MDIA_BUS[0..7] VDD_SEL REF_SEL BG_REF MDID_P MDID_N MDIC_P MDIC_N MDIB_P MDIB_N MDIA_P MDIA_N VCC_2.5V EGP0 (NC_MODE) EGP1 EGP2 (Interrupt) EGP3 (TX_TCLK) EGP4 (SPEED0 / ACT_LED) EGP5 (SPEED1 / LINK10) EGP6 (DUPLEX_EN / LINK100) EGP7 (AN_EN / LINK1000) (Hard Reset) ETH_EGP[0..7] MDIA_BUS0 2 ETH_TX_D0 ETH_TX_D1 ETH_EGP5 101 BG_VDD 98 PGM_VDD0 11 19 25 35 48 63 73 92 CORE_VDD1 CORE_VDD2 CORE_VDD3 CORE_VDD4 CORE_VDD5 CORE_VDD6 CORE_VDD7 CORE_VDD8 100 103 105 111 117 123 VDD0 RX_DVDD0 VDD1 VDD2 VDD3 VDD4 96 VDD25_0 4 15 21 29 37 42 53 58 69 83 77 90 IO_VDD1 IO_VDD2 IO_VDD3 IO_VDD4 IO_VDD5 IO_VDD6 IO_VDD7 IO_VDD8 IO_VDD9 O_VDD0 IO_VDD10 IO_VDD11 RJ45 3 1 4 1 2 1 2 5 1 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 2 1 1 99 97 5 12 20 16 26 22 36 30 38 49 43 54 64 59 74 70 82 78 93 91 104 106 107 110 112 113 116 118 119 122 124 125 128 1 1 2 1 2 1 2 1 2 1 2 2 1 2 1 VSS0 PGM_VSS0 IO_VSS1 CORE_VSS1 CORE_VSS2 IO_VSS2 CORE_VSS3 IO_VSS3 CORE_VSS4 IO_VSS4 IO_VSS5 CORE_VSS5 IO_VSS6 IO_VSS7 CORE_VSS6 IO_VSS8 CORE_VSS7 IO_VSS9 O_VSS0 IO_VSS10 CORE_VSS8 IO_VSS11 RX_DVSS0 VSS1 CD_VSS1 CD_VSS2 VSS2 CD2_VSS1 CD2_VSS2 VSS3 CD3_VSS1 CD3_VSS2 VSS4 CD4_VSS1 CD4_VSS2 2 1 2 2 1 2 1 2 41 1 A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 26. Ethernet A B C D 2 D- CON10 J32 15 16 C102 C103 0.01uF 0.1uF 0.1uF C126 C105 1 2 3 4 5 6 7 8 9 10 PWR_3.3V_10A XO_TDO XO_TDI 5 R77 4.7K XO_TCK XO_TMS CTL2/FLAGC CTL1/FLAGB CTL0/FLAGA RDY0/SLRD RDY1/SLWR SCL SDA WAKEUP RESET# RESERVED DPLUS DMINUS XTALOUT XTALIN USB+ FX2 PA7/FLAGD/SLCS# PA6/PKTEND PA5/FIFOADR1 PA4/FIFOADR0 PA3/WU2 PA2/SLOE PA1/INT1# PA0/INT0# PD7/FD15 PD6/FD14 PD5/FD13 PD4/FD12 PD3/FD11 PD2/FD10 PD1/FD9 PD0/FD8 PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4 PB3/FD3 PB2/FD2 PB1/FD1 PB0/FD0 IFCLK/T0OUT CLKOUT/T1OUT R192 10K TP40 TP32 TP37 TP33 TP38 A6 A7 B8 C8 B6 B7 C6 C7 A5 A4 E7 E6 B4 B5 D6 D5 C4 C5 D3 D4 A2 A3 B2 B3 XO_GPIO10 XO_GPIO11 XO_GPIO12 SW1 USB_PA7 USB_PA6 USB_PA5 USB_PA4 USB_PA3 USB_PA2 USB_PA1 USB_PA0 USB_PD7 USB_PD6 USB_PD5 USB_PD4 USB_PD3 USB_PD2 USB_PD1 USB_PD0 USB_PB7 USB_PB6 USB_PB5 USB_PB4 USB_PB3 USB_PB2 USB_PB1 USB_PB0 TP17 TP18 TP24 TP23 TP15 TP13 TP16 TP14 E3 E2 USB_PA5 USB_PA4 D2 D1 USB_PA1 USB_PA0 G3 H3 USB_PD3 USB_PD2 I/Os in Bank 0 for XO1200 Pin name sequence PT(640,1200,2280) PT4E/PT6C/PT8C PT4F/PT6D/PT8D PT4C/PT6A/PT7C PT4D/PT6B/PT7D PT4A/PT5E/PT7A PT4B/PT5F/PT7B PT3C/PT5C/PT6A PT3D/PT5D/PT6B PT3E/PT5A/PT6C PT3F/PT5B/PT6D NC/PT4C/PT6E NC/PT4D/PT6F PT3A/PT3E/PT5C PT3B/PT3F/PT5D PT2C/PT3C/PT5A PT2D/PT3D/PT5B PT2E/PT4A/PT4A PT2F/PT4B/PT4B NC/PT2C/PT3C NC/PT2D/PT3D PL11A/PL13C/PL16C PL11B/PL13D/PL16D PL8A/PL13A/PL16A/LV_T PL8B/PL13B/PL16B/LV_C PL9C/PL12C/PL15C PL9D/PL12D/PL15D PL10A/PL12A/PL15A/LV_T PL10B/PL12B/PL15B/LV_C TSALL/PL8C/PL11C/PL14C PL8D/PL11D/PL14D PL10C/PL14C/PL17C PL10D/PL14D/PL17D USB_CLKO I/Os in Bank 1 for XO2280 NC/PT11C/PT16C NC/PT11D/PT16D NC/PT11A/PT16A NC/PT11B/PT16B PT9E/PT10E/PT15C PT9F/PT10F/PT15D NC/PT10C/PT15A NC/PT10D/PT15B PT9C/PT10A/PT14C PT9D/PT10B/PT14D PT7E/PT9E/PT14A PT7F/PT9F/PT14B PT8A/PT9C/PT13C PT8B/PT9D/PT13D PT7A/PT9A/PT12C PT7B/PT9B/PT12D PT7C/PT8E/PT12A PT7D/PT8F/PT12B PT5C/PT8C/PT11A PT5D/PT8D/PT11B PT8C/PT8A/PT10E PT8D/PT8B/PT10F PT6C/PT7E/PT10C PT6D/PT7F/PT10D PT6A/PT7C/PT10A PT6B/PT7D/PT10B/CLK1 TP60 TP72 0 0 0 0 ETH_TDO_p R84 ETH_TCK_p R203 ETH_TMS_p R207 ETH_TDI_p R89 A13 A14 D11 D12 0 0 0 0 XP2_TDO_p R86 XP2_TCK_p R87 XP2_TMS_p R85 XP2_TDI_p R204 B14 C14 A15 B15 B13 C13 E10 E11 0 0 TP45 TP47 XO_GPIO19 XO_GPIO20 B11 B12 PWR_ATDI_p R88 ETH_TRST_p R205 TP46 TP53 XO_GPIO17 XO_GPIO18 A11 A12 C11 C12 TP39 TP42 D9 D10 XO_GPIO15 XO_GPIO16 0 0 PWR_TMS_pR202 PWR_TDI_p R81 B9 B10 0 0 XO_GPIO13 XO_GPIO14 PWR_TDO_p R83 PWR_TCK_p R206 TP44 TP41 R208 R90 TP55 TP49 C9 C10 XP2_DONE_p XP2_INITN_p TP61 TP2 A10 A9 E8 E9 TP59 TP1 Pin name sequence PL(640,1200,2280) 0603 0603 0603 0603 0603 0603 0603 0603 0603 0603 0603 0603 0603 0603 0 0 IDC[20..23] IDC22 IDC23 DNI DNI DNI C165 C17 XP2_TMS XP2_TDI XP2_TDO XP2_TCK C168 DNI DNI C21 ETH_TMS ETH_TDI ETH_TDO ETH_TCK PWR_ATDI ETH_TRST DNI C154 C163 PWR_TMS PWR_TDI DNI DNI DNI 3 DNI C19 C18 DNI C164 C16 DNI C167 C15 DNI DNI PWR_TDO PWR_TCK C169 C22 XP2_DONE XP2_INITN IDC[20..23] USB_PB7 USB_PB6 USB_PB5 USB_PB4 XO_K5 XO_K4 IDC20 IDC21 [12] DNI [2] [2] ETH_TMS[8] ETH_TDI [8] ETH_TDO[8] ETH_TCK[8] XP2_TMS [4] XP2_TDI [4] PWR_3.3V_10A PR8A/PR10C/PR13C PR8B/PR10D/PR13D TP57 TP62 TP63 TP58 TP56 TP11 TP9 TP5 TP10 TP12 TP7 TP8 C171 0.01uF 0402 XO_TDI XO_TDO XO_TMS XO_TCK XO_GPIO34 XO_GPIO35 XO_GPIO32 XO_GPIO33 XO_GPIO30 XO_GPIO31 XO_GPIO28 XO_GPIO29 XO_GPIO26 XO_GPIO27 XO_GPIO24 XO_GPIO25 C170 0.01uF 0402 C130 0.001uF 0402 L11 M11 N13 N12 M12 M13 N15 N14 L12 L13 L14 M14 M16 N16 L15 M15 K16 L16 J13 K13 J14 K14 J15 K15 J12 K12 N7 M6 P4 R3 R7 R8 M7 M8 T8 T7 R6 T6 T5 T4 P5 P6 R4 R5 T2 T3 N5 N6 P2 P3 C172 0.01uF 0402 2 H16 J16 C133 0.001uF 0402 NC/PR16A/PR20A NC/PR16B/PR20B NC/PR15A/PR18A/LV_T NC/PR15B/PR18B/LV_C NC/PR14C/PR17C NC/PR14D/PR17D PR11C/PR14A/PR17A/LV_T PR11D/PR14B/PR17B/LV_C PR11A/PR13C/PR16C PR11B/PR13D/PR16D PR10A/PR13A/PR16A/LV_T PR10B/PR13B/PR16B/LV_C PR10C/PR12C/PR15C PR10D/PR12D/PR15D PR9C/PR12A/PR15A/LV_T PR9D/PR12B/PR15B/LV_C PR9A/PR11C/PR14C PR9B/PR11D/PR14D PR8C/PR11A/PR14A/LV_T PR8D/PR11B/PR14B/LV_C C134 0.1uF 0402 Pin name sequence PR(640,1200,2280) PR6A/PR8C/PR10C PR6B/PR8D/PR10D PR5C/PR8A/PR10A/LV_T PR5D/PR8B/PR10B/LV_C PR6C/PR7C/PR9C PR6D/PR7D/PR9D PR4C/PR7A/PR9A/LV_T PR4D/PR7B/PR9B/LV_C PR5A/PR6C/PR7C PR5B/PR6D/PR7D PR4A/PR6A/PR7A/LV_T PR4B/PR6B/PR7B/LV_C PR3A/PR5C/PR6C PR3B/PR5D/PR6D PR2C/PR5A/PR6A/LV_T PR2D/PR5B/PR6B/LV_C PR2A/PR4C/PR5C PR2B/PR4D/PR5D PR3C/PR4A/PR5A/LV_T PR3D/PR4B/PR5B/LV_C PR7C/PR10A/PR13A/LV_T PR7D/PR10B/PR13B/LV_C NC/PR9C/PR11C NC/PR9D/PR11D NC/PR3A/PR4A/LV_T NC/PR3B/PR4B/LV_C NC/PR3C/PR4C NC/PR3D/PR4D PR7A/PR9A/PR11A/LV_T PR7B/PR9B/PR11B/LV_C VCCIO3 MachXO_2280_fpBGA256 NC/PR2A/PR3A/LV_T NC/PR2B/PR3B/LV_C VCCIO2 U10D PWR_ATDI [12] ETH_TRST [8] [12] [12] [12] [12] XP2_TDO [4] XP2_TCK [4] DNI C166 C20 PWR_TMS PWR_TDI PWR_TDO PWR_TCK XP2_DONE XP2_INITN PWR_3.3V_10A G15 H15 G14 H14 H12 H13 G12 G13 F16 G16 USB_PB1 USB_PB0 USB_PB3 USB_PB2 E15 F15 D16 E16 C15 D15 USB_CTL1 USB_CTL0 USB_WAKEUP USB_CTL2 USB_RDY1 B16 C16 F13 F12 USB_SCL USB_SDA TP51 XO Tristate E13 E12 D14 D13 E14 F14 N4 N3 0603 0603 J35 HEADER 3 1 2 3 USB_RDY0 XO_M5 XO_M4 TP48 3 PWR_3.3V_10A USB_IFCLK USB_PA7 USB_PA6 M5 M4 L5 L4 K5 K4 R1 R2 J4 J5 M2 N2 L3 M3 N1 P1 L1 M1 K2 L2 J1 K1 J3 K3 H2 J2 TP71 [3] PL11C/PL16A/PL19A PL11D/PL16B/PL19B PL5C/PL8C/PL10C NC/PL15A/PL18A/LV_T/PLL0_T_IN PL5D/PL8D/PL10DNC/PL15B/PL18B/LV_C/PLL0_C_IN NC/PL8A/PL9A/LV_T NC/PL8B/PL9B/LV_C PL4C/PL7C/PL8C NC/PL14A/PL17A/LV_T/PLL0_T_FB PL4D/PL7D/PL8D NC/PL14B/PL17B/LV_C/PLL0_C_FB NC/PL7A/PL8A/LV_T NC/PL7B/PL8B/LV_C PL4A/PL6C/PL7C PL4B/PL6D/PL7D PL9A/PL10C/PL12C PL9B/PL10D/PL12D PL7A/PL11A/PL13A/LV_T PL7B/PL11B/PL13B/LV_C PL5A/PL6A/PL7A/LV_T PL5B/PL6B/PL7B/GSR/LV_C PL3C/PL5C/PL6C PL3D/PL5D/PL6D PL2A/PL5A/PL5A/LV_T PL2B/PL5B/PL5B/LV_C NC/PL4C/PL4C NC/PL4D/PL4D PL2C/PL4A/PL4A/LV_T PL2D/PL4B/PL4B/LV_C PT9A/PT7A/PT9C PT9B/PT7B/PT9D 4 PL7C/PL9C/PL11C PL7D/PL9D/PL11D PL3A/PL3C/PL3C/PLL1T_IN PL6C/PL10A/PL12A/LV_T PL3B/PL3D/PL3D/PLL1C_INPL6D/PL10B/PL12B/LV_C NC/PL3A/PL3A/LV_T NC/PL3B/PL3B/LV_C PL6A/PL9A/PL11A/LV_T PL6B/PL9B/PL11B/LV_C VCCIO6 MachXO_2280_fpBGA256 NC/PL2A/PL2A/PLL1T_FB NC/PL2B/PL2B/PLL1C_FB VCCIO7 U10B VCCIO1 MachXO_2280_fpBGA256 PT2A/PT3A/PT3A PT2B/PT3B/PT3B NC/PT2A/PT2C NC/PT2B/PT2D VCCIO0 U10A G1 H1 H4 H5 G4 G5 USB_PD5 USB_PD4 USB_PD1 USB_PD0 E1 F1 USB_PD6 USB_PD7 F2 USB_RESET G2 B1 C1 USB_PA3 USB_PA2 C3 C2 F3 F4 F5 F6 E4 E5 USB_CLKO SW PUSHBUTTON Panasonic EVQP2H02B 47 46 45 44 43 42 41 40 3 2 1 56 55 54 53 52 32 31 30 29 28 27 26 25 XO_GPIO8 XO_GPIO9 XO_GPIO6 XO_GPIO7 XO_GPIO4 XO_GPIO5 TP28 TP31 TP30 TP27 XO_GPIO2 XO_GPIO3 0.1uF C151 USB_RESET TP26 TP25 0.01uF C125 0.1uF C150 USB(Type B) 0.1uF 0.1uF 3 4 38 37 36 8 9 22 23 BEAD / 0805 USB Series-B Receptacle Molex 67068-8000 D+ GND USB_CTL2 USB_CTL1 USB_CTL0 USB_RDY0 USB_RDY1 USB_SCL USB_SDA C127 0.1uF C104 20 5 11 12 USB_WAKEUP 51 USB_RESET 49 21 USB+ USB- 24MHz USB_IFCLK USB_CLKO JTAG header for MachXO AVCC_3.3V J33 4 3 VBUS PWR_3.3V_10A USB- 1 VCC OUT OSC4/SM EN GND Y2 U9 6 18 24 34 39 50 10 14 VCC VCC VCC VCC VCC VCC AVCC AVCC CY7C68013A-56SSOP GND GND GND GND GND GND AGND AGND 4 7 19 33 35 48 13 17 4 2 I/Os in Bank 5 for XO1200 Pin name sequence PB(640,1200,2280) TDI TDO TMS TCK PB4E/PB6C/PB8C PB4F/PB6D/PB8D NC/PB6A/PB7C NC/PB6B/PB7D PB4C/PB5C/PB6A PB4D/PB5D/PB6B PB4A/PB5A/PB5A PB4B/PB5B/PB5B PB3C/PB4C/PB4C PB3D/PB4D/PB4D PB3A/PB4A/PB4A PB3B/PB4B/PB4B PB2C/PB3C/PB3C PB2D/PB3D/PB3D PB2A/PB3A/PB3A PB2B/PB3B/PB3B NC/PB2C/PB2C NC/PB2D/PB2D NC/PB11C/PB16C NC/PB11D/PB16D SLEEPN PB9F/PB10F/PB15D NC/PB11A/PB16A NC/PB11B/PB16B PB9C/PB10C/PB15A PB9D/PB10D/PB15B PB9A/PB10A/PB14C PB9B/PB10B/PB14D PB8C/PB9E/PB14A PB8D/PB9F/PB14B PB8A/PB9C/PB13C PB8B/PB9D/PB13D PB7E/PB9A/PB13A PB7F/PB9B/PB13B NC/PB8E/PB12C NC/PB8F/PB12D PB7C/PB8C/PB12A PB7D/PB8D/PB12B PB6C/PB8A/PB11C PB6D/PB8B/PB11D PB6A/PB7E/PB10A PB6B/PB7F/PB10B/CLK3 PB7A/PB7C/PB10C PB7B/PB7D/PB10D I/Os in Bank 4 for XO2280 VCCJ on VCCIO5 XO_640 common VCCIO VCCIO6_0 VCCIO6_1 VCCAUX_0 VCCAUX_1 VCCIO7_0 VCCIO7_1 XO_640 common VCCIO VCCIO5_0 VCCIO5_1 XO_640 common VCCIO XO_640 common VCCIO VCCIO4_0 VCCIO4_1 VCCIO3_0 VCCIO3_1 VCCIO2_0 VCCIO2_1 VCCIO1_0 VCCIO1_1 VCCIO0_0 VCCIO0_1 PWR_3.3V_10A A8 T9 G6 H6 J6 K6 L7 L8 L9 L10 J11 K11 G11 H11 C135 0.01uF 0402 PB5A/PB7A/PB10E PB5B/PB7B/PB10F/CLK2 VCCIO4 MachXO_2280_fpBGA256 NC/PB2A/PB2A NC/PB2B/PB2B VCCIO5 U10C C131 0.001uF 0402 C132 0.001uF 0402 F7 F8 F9 F10 1 MachXO_2280_fpBGA256 VCC_3 VCC_2 VCC_1 VCC_0 GND_0 GND_1 GND_2 GND_3 GND_4 GND_5 GND_6 GND_7 GND_8 GND_9 GND_10 GND_11 GND_12 GND_13 GND_14 GND_15 GND_16 GND_17 K7 G7 K10 G10 A16 T16 F11 H10 J10 G9 H9 J9 K9 G8 H8 J8 K8 H7 J7 L6 A1 T1 C129 0.01uF 0402 C106 0.01uF 0402 C152 0.01uF 0402 C137 0.1uF 0402 C128 0.1uF 0402 C136 0.1uF 0402 C153 0.1uF 0402 R11 R12 P13 P14 4.7K PWR_3.3V_10A Date: Size C Title 1 USB Download Document Number Sheet 9 Lattice Semiconductor Corporation P15 P16 R193 TP76 TP77 XO_GPIO46 XO_GPIO47 T14 T15 TP54 XO_GPIO44 XO_GPIO45 R15 R16 TP74 TP70 TP73 TP75 XO_GPIO42 XO_GPIO43 T13 T12 TP67 TP69 R13 R14 P11 P12 XO_GPIO40 XO_GPIO41 TP66 TP68 XO_GPIO38 XO_GPIO39 T10 T11 N10 N11 TP64 TP65 XO_GPIO36 XO_GPIO37 R9 R10 M10 M9 P9 P10 N8 N9 of Mach XO needs to be a "D" device PWR_3.3V_10A U10E 1 2 AVCC_3.3V 1 2 L7 1 2 1 2 1 2 1 2 4.7K 4 3 1 2 PWR_3.3V_10A 5 MH1 1 2 R201 6 MH2 1 2 PWR_3.3V_10A 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 5 PT5A/PT6E/PT9A PT5B/PT6F/PT9B/CLK0 D8 D7 PB5C/PB6E/PB9A PB5D/PB6F/PB9B 42 P7 P8 JB 14 B Rev A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 27. USB Download A B C D VREF SODIMM_ODT1 SODIMM_CAS_N SODIMM_S1_N SODIMM_A10 SODIMM_BA0 SODIMM_WE_N SODIMM_A5 SODIMM_A3 SODIMM_A1 SODIMM_A12 SODIMM_A9 SODIMM_A8 SODIMM_BA2 SODIMM_CKE0 SODIMM_DQ26 SODIMM_DQ27 SODIMM_DM3 SODIMM_DQ24 SODIMM_DQ25 SODIMM_DQ18 SODIMM_DQ19 SODIMM_DQS2_N SODIMM_DQS2_P SODIMM_DQ16 SODIMM_DQ17 ??????? SODIMM_DQ10 SODIMM_DQ11 SODIMM_DQS1_N SODIMM_DQS1_P SODIMM_DQ8 SODIMM_DQ9 SODIMM_DQ2 SODIMM_DQ3 SODIMM_DQS0_N SODIMM_DQS0_P SODIMM_DQ0 SODIMM_DQ1 [13] VTT [2] I2C_SDA [2] I2C_SCL [12] VCC_3.3V at modules [13] VTT C179 0.1uF 0402 I2C_SDA I2C_SCL VCC_3.3V SODIMM_DQ58 SODIMM_DQ59 SODIMM_DM7 SODIMM_DQ56 SODIMM_DQ57 SODIMM_DQ50 SODIMM_DQ51 VREF VSS DQ0 DQ1 VSS DQS0# DQS0 VSS DQ2 DQ3 VSS DQ8 DQ9 VSS DQS1# DQS1 VSS DQ10 DQ11 VSS 5 VSS DQ4 DQ5 VSS DM0 VSS DQ6 DQ7 VSS DQ12 DQ13 VSS DM1 VSS CK0 CK0# VSS DQ14 DQ15 VSS 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 VSS DQ16 DQ17 VSS DQS2# DQS2 VSS DQ18 DQ19 VSS DQ24 DQ25 VSS DM3 n.c. VSS DQ26 DQ27 VSS CKE0 VDD n.c. NC/BA2 VDD A12 A9 A8 VDD A5 A3 A1 VDD A10/AP BA0 WE# VDD CAS# S1# VDD ODT1 VSS DQ32 DQ33 VSS DQS4# DQS4 VSS DQ34 DQ35 VSS DQ40 DQ41 VSS DM5 VSS DQ42 DQ43 VSS DQ48 DQ49 VSS n.c. VSS DQS6# DQS6 VSS DQ50 DQ51 VSS DQ56 DQ57 VSS DM7 VSS DQ58 DQ59 VSS SDA SCL VDDSPD VSS DQ20 DQ21 VSS n.c. DM2 VSS DQ22 DQ23 VSS DQ28 DQ29 VSS DQS3# DQS3 VSS DQ30 DQ31 VSS CKE1 VDD n.c. n.c. VDD A11 A7 A6 VDD A4 A2 A0 VDD BA1 RAS# S0# VDD ODT0 NC/A13 VDD n.c. VSS DQ36 DQ37 VSS DM4 VSS DQ38 DQ39 VSS DQ44 DQ45 VSS DQS5# DQS5 VSS DQ46 DQ47 VSS DQ52 DQ53 VSS CK1 CK1# VSS DM6 VSS DQ54 DQ55 VSS DQ60 DQ61 VSS DQS7# DQS7 VSS DQ62 DQ63 VSS SA0 SA1 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 VCC_1.8V C158 0.01uF 0402 C175 0.1uF 0402 C161 0.1uF 0402 C174 0.01uF 0402 C162 0.1uF 0402 1.8V DDR2 200-pin SO-DIMM Standard 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 J36B 1.8V DDR2 200-pin SO-DIMM Standard 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 J36A at modules VCC_1.8V C157 0.01uF 0402 SODIMM_DQS6_N SODIMM_DQS6_P SODIMM_DQ48 SODIMM_DQ49 SODIMM_DQ42 SODIMM_DQ43 SODIMM_DM5 SODIMM_DQ40 SODIMM_DQ41 SODIMM_DQ34 SODIMM_DQ35 SODIMM_DQ32 SODIMM_DQ33 C25 47uF Ceramic X5R SODIMM_DQS4_N 1206 SODIMM_DQS4_P C145 0.1uF 0402 1 2 1 2 1 2 C176 0.01uF 0402 C177 0.1uF 0402 EEPROM SA = 000 SODIMM_DQ62 SODIMM_DQ63 SODIMM_DQS7_N SODIMM_DQS7_P SODIMM_DQ60 SODIMM_DQ61 SODIMM_DQ54 SODIMM_DQ55 SODIMM_DM6 SODIMM_CK1_P SODIMM_CK1_N SODIMM_DQ52 SODIMM_DQ53 SODIMM_DQ46 SODIMM_DQ47 SODIMM_DQS5_N SODIMM_DQS5_P SODIMM_DQ44 SODIMM_DQ45 SODIMM_DQ38 SODIMM_DQ39 SODIMM_DM4 SODIMM_DQ36 SODIMM_DQ37 SODIMM_ODT0 SODIMM_A13 SODIMM_BA1 SODIMM_RAS_N SODIMM_S0_N SODIMM_A4 SODIMM_A2 SODIMM_A0 SODIMM_A11 SODIMM_A7 SODIMM_A6 SODIMM_CKE1 SODIMM_DQ30 SODIMM_DQ31 SODIMM_DQS3_N SODIMM_DQS3_P SODIMM_DQ28 SODIMM_DQ29 SODIMM_DQ22 SODIMM_DQ23 SODIMM_DM2 SODIMM_DQ20 SODIMM_DQ21 SODIMM_DQ14 SODIMM_DQ15 SODIMM_CK0_P SODIMM_CK0_N SODIMM_DM1 SODIMM_DQ12 SODIMM_DQ13 SODIMM_DQ6 SODIMM_DQ7 SODIMM_DM0 SODIMM_DQ4 SODIMM_DQ5 C122 0.1uF 0402 4 P16 P17 DDR2_DM0 C142 0.001uF 0402 K21 L21 DDR2_DQ8 DDR2_DQ9 VCC_1.8V On die terms SODIMM EEPROM External SSTL_18 terms 4 C141 0.001uF 0402 C148 0.01uF 0402 LFXP217-fpBGA484 VCCIO3 VCCIO3 VCCIO3 VCCIO3 TDI PR26A*/PCLKT3_0 PR26B*/PCLKC3_0 PR27A PR27B PR28A* PR28B* PR29A PR29B PR30A*/RDQS30 PR30B* PR31A PR31B PR32A* PR32B* PR33A PR33B PR35A* PR35B* PR36A PR36B PR37A* PR37B* PR38A PR38B PR39A*/RDQS39 PR39B* PR40A PR40B PR41A* PR41B* PR42A PR42B PR43A* PR43B* PR44A PR44B PR45A* PR45B* PR46A PR46B PR47A* PR47B* PR48A/VREF1_3 PR48B/VREF2_3 PR12A PR12B PR11A* PR11B* PR10A PR10B PR9A* PR9B* PR8A PR8B PR7A* PR7B* PR6A PR6B PR5A* PR5B* PR4A PR4B PR3A* PR3B* PR2A/VREF1_2 PR2B/VREF2_2 C124 0.1uF 0402 VCCIO2 VCCIO2 VCCIO2 VCCIO2 PR24A/PCLKT2_0 PR24B/PCLKC2_0 PR23A* PR23B* PR22A PR22B PR21A*/RDQS21 PR21B* PR20A PR20B PR19A* PR19B* PR18A PR18B PR17A* PR17B* PR16A PR16B PR15A* PR15B* PR14A PR14B PR13A*/RDQS13 PR13B* C96 0.01uF 0402 BANK 2 BANK 3 DDR2_CK1_P DDR2_CK1_N DDR2_DQ24 DDR2_DQ25 DDR2_DQ26 DDR2_DQ27 DDR2_DQ28 DDR2_DQ29 DDR2_DQ31 DDR2_DQ30 B21 C21 H20 G20 E19 F19 J20 H19 B22 C22 C149 0.1uF 0402 E21 G18 J15 K19 J22 K22 L19 L18 J16 K16 H21 J21 G22 H22 K18 L17 J17 K17 G21 F22 F20 F21 J19 J18 H16 H17 3 All the 741X083 devices and discrete resistors on this page with 33 ohm value tied to FPGA, should be placed physically near the FPGA. DMx: data mask DQx: data DQSx: data strobe diff pair CKx: clock x diff pair SCL: clock SDA: data SA: address VDDSPD: power ODTx: On die termination enable CAS: Column select RAS: Row select WE: Write enable CKEx: clock enable Sx: SODIMM select BAx: bank address Ax: address TP87 TP85 TP86 C14 10uF Ceramic X5R 0805 VCC_1.8V DDR2_WE_N DDR2_CAS_N DDR2_DM2 DDR2_RAS_N DDR2_DQS2_P DDR2_DQS2_N DDR2_DQ23 DDR2_DQ22 DDR2_DQ20 DDR2_DQ21 DDR2_DQ18 DDR2_DQ19 DDR2_DQ16 DDR2_DQ17 VCC_1.8V DDR2_CKE0 DDR2_S0_N DDR2_S1_N DDR2_DM3 DDR2_DQS3_P DDR2_DQS3_N DDR2_CK0_P DDR2_CK0_N D22 E22 DDR2_A11 DDR2_A12 G15 G16 G17 H18 DDR2_CKE1 B20 C20 VCC_1.8V DDR2_BA2 DDR2_A13 E20 D20 VCC_1.8V F15 F16 3 F18 F17 Smaller value caps should be placed directly under the ECP2 device. Larger value caps can be placed further out. N19 P15 T18 V21 L20 M19 M20 [9] XP2_TDI M17 M16 DDR2_DQ14 DDR2_DQ15 DDR2_DQ12 DDR2_DQ13 M22 N22 M21 N21 DDR2_DQS1_P DDR2_DQS1_N DDR2_DQ10 DDR2_DQ11 P18 N18 P22 R22 DDR2_BA1 DDR2_ODT0 DDR2_ODT1 R21 R20 DDR2_DQ0 DDR2_DQ1 P21 P20 N17 N16 DDR2_DQ2 DDR2_DQ3 DDR2_DM1 DDR2_BA0 P19 R19 DDR2_DQ4 DDR2_DQ5 VCC_1.8V T21 T20 DDR2_DQ6 DDR2_DQ7 T22 U22 R18 R17 DDR2_A0 DDR2_A1 DDR2_DQS0_P DDR2_DQS0_N U21 V22 DDR2_A2 DDR2_A3 U20 V20 R16 T17 DDR2_A6 DDR2_A7 DDR2_A4 DDR2_A5 Y20 Y19 W22 W20 W19 V19 V17 V18 VREF U8C DDR2_A8 DDR2_A9 VCC_1.8V VCC_1.8V C181 0.1uF 0402 1 2 [13] DDR2_A10 VREF 1 2 TP88 5 1 2 VCC_1.8V 1 2 1 2 SODIMM_DQ12 SODIMM_DQ8 SODIMM_DQ9 SODIMM_DQ10 SODIMM_DQ11 SODIMM_DQ14 SODIMM_DQ15 SODIMM_DQ13 SODIMM_DM1 SODIMM_DQS1_N SODIMM_DQS1_P SODIMM_DQ0 SODIMM_DQ1 SODIMM_DQ4 SODIMM_DQ5 SODIMM_DM0 SODIMM_DQS0_N SODIMM_DQS0_P SODIMM_DQ6 SODIMM_DQ7 SODIMM_DQ2 SODIMM_DQ3 SODIMM_DQ18 SODIMM_DQ22 SODIMM_DQ23 SODIMM_DQ19 SODIMM_DQ21 SODIMM_DM2 SODIMM_DQS2_N SODIMM_DQS2_P SODIMM_DQ20 SODIMM_DQ16 SODIMM_DQ17 33 33 RN14 1 2 3 4 RN17 1 2 3 4 33 RN13 1 2 3 4 SODIMM_CK1_N SODIMM_CK1_P SODIMM_CK0_N SODIMM_CK0_P TP78 TP83 TP81 R198 0402 33 R197 0402 33 R200 0402 33 R199 0402 DDR2_CK1_N DDR2_CK1_P DDR2_CK0_N DDR2_CK0_P RN8 1 2 3 4 RN10 1 2 3 4 RN22 RN23 RN21 33 33 33 33 RN12 1 2 3 4 [#] 33 RN15 1 2 3 4 RN27 RN24 RN25 [#] 33 RN16 1 2 3 4 RN28 RN26 RN29 SODIMM_DQ30 SODIMM_DQ31 SODIMM_DQ26 SODIMM_DQ27 33 33 RN20 1 2 3 4 SODIMM_DQ24 SODIMM_DQ28 SODIMM_DQ29 TP82 33 RN18 1 2 3 4 [#] 33 RN19 1 2 3 4 RN31 RN32 RN30 RN11 1 2 3 4 SODIMM_DQS3_N SODIMM_DQS3_P SODIMM_DQ25 SODIMM_DM3 100 100 100 VTT 100 100 100 VTT 100 100 100 VTT 100 100 100 VTT 2 TP84 TP80 Date: Size C Title VTT 22 RN9 1 2 3 4 DDR2_ODT1 DDR2_A13 DDR2_ODT0 741X083 DDR2_WE_N 8 DDR2_RAS_N 7 DDR2_BA0 6 5 RN1 1 2 3 4 22 1 Sheet 10 DDR2 SDRAM SO-DIMM Document Number of 14 All the 741X083 devices on this page with 22 ohm value tied to FPGA, should be placed physically near the FPGA. 741X083 22 8 7 6 5 RN2 1 2 3 4 DDR2_A8 DDR2_A7 DDR2_A9 DDR2_A11 741X083 DDR2_A0 8 DDR2_A2 7 DDR2_A3 6 5 RN7 1 2 3 4 22 33 741X083 RN33 VTT 741X083 22 8 7 6 5 RN4 1 2 3 4 DDR2_S1_N DDR2_CAS_N DDR2_S0_N 741X083 DDR2_BA1 8 DDR2_A10 7 DDR2_A1 6 5 741X083 DDR2_A12 8 DDR2_BA2 7 DDR2_CKE1 6 DDR2_CKE0 5 741X083 DDR2_A4 8 DDR2_A5 7 DDR2_A6 6 5 [13] RN3 1 2 3 4 22 33 741X083 RN39 VTT 741X083 22 8 7 6 5 RN5 1 2 3 4 33 741X083 RN37 VTT 22 RN6 1 2 3 4 33 741X083 RN40 VTT 1 Lattice Semiconductor Corporation SODIMM_ODT1 SODIMM_A13 SODIMM_ODT0 SODIMM_WE_N SODIMM_RAS_N SODIMM_BA0 33 741X083 RN38 SODIMM_A8 SODIMM_A7 SODIMM_A9 SODIMM_A11 SODIMM_A0 SODIMM_A2 SODIMM_A3 33 741X083 RN34 SODIMM_S1_N SODIMM_CAS_N SODIMM_S0_N SODIMM_BA1 SODIMM_A10 SODIMM_A1 33 741X083 RN35 SODIMM_A12 SODIMM_BA2 SODIMM_CKE1 SODIMM_CKE0 SODIMM_A4 SODIMM_A5 SODIMM_A6 33 741X083 RN36 C160 220uF SizeD (Left end of VTT island) All the 741X083 devices on this page with 33 ohm value tied to VTT, should be placed near the DDR2 SODIMM socket. 741X083 DDR2_DQ30 8 DDR2_DQ31 7 DDR2_DQ26 6 DDR2_DQ27 5 741X083 8 DDR2_DQ24 7 DDR2_DQ28 6 DDR2_DQ29 5 741X083 DDR2_DQS3_N 8 DDR2_DQS3_P 7 DDR2_DQ25 6 DDR2_DM3 5 741X083 741X083 741X083 741X083 DDR2_DQ18 8 DDR2_DQ22 7 DDR2_DQ23 6 DDR2_DQ19 5 741X083 DDR2_DQ21 8 DDR2_DM2 7 DDR2_DQS2_N 6 DDR2_DQS2_P 5 741X083 8 DDR2_DQ20 7 DDR2_DQ16 6 DDR2_DQ17 5 741X083 741X083 741X083 741X083 8 DDR2_DQ12 7 DDR2_DQ8 6 DDR2_DQ9 5 741X083 DDR2_DQ10 8 DDR2_DQ11 7 DDR2_DQ14 6 DDR2_DQ15 5 741X083 DDR2_DQ13 8 DDR2_DM1 7 DDR2_DQS1_N 6 DDR2_DQS1_P 5 741X083 741X083 741X083 741X083 DDR2_DQ0 8 DDR2_DQ1 7 DDR2_DQ4 6 DDR2_DQ5 5 741X083 8 DDR2_DM0 7 DDR2_DQS0_N 6 DDR2_DQS0_P 5 TP79 All the 741X083 devices on this page with 100 ohm value tied to VTT should be placed near the FPGA. 741X083 DDR2_DQ6 8 DDR2_DQ7 7 DDR2_DQ2 6 DDR2_DQ3 5 741X083 741X083 741X083 2 1 2 C182 0.01uF 0402 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 4 8 7 6 5 1 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 2 1 2 3 4 8 7 6 5 1 2 3 4 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 1 2 3 4 8 7 6 5 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 8 7 6 5 1 2 3 4 43 8 7 6 5 B Rev A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 28. DDR2 SDRAM SO-DIMM A B C CFG0 5 VCC_1.2V [4,9] XP2_TDO [4,9] XP2_TCK [4,9] XP2_TMS TP29 [4] H15 VCC_3.3V C89 0.001uF 0402 C87 0.001uF 0402 TP20 TP21 TP34 TP19 TP22 TP35 TP36 VCC_3.3V or -40 device or -40 device or -40 device or -40 device or -40 device C116 0.001uF 0402 C91 0.01uF 0402 C93 0.1uF 0402 LFXP217-fpBGA484 -30 NC -30 NC -30 -30 -30 VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCCJ TDO TCK TMS TOE CFG0 U8E C114 0.001uF 0402 AB21 H8 R15 R8 U19 U17 U18 H11 H12 L15 L8 M15 M8 R11 R12 N9 P10 J10 J11 J12 P11 P12 J13 K14 P13 K9 L14 L9 M14 M9 N14 M18 L16 L22 L7 TOE XP2_TDO XP2_TCK XP2_TMS N1 CFG0 R16 10K 1% VCC_3.3V VCC_1.2V 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 C92 0.01uF 0402 C119 0.1uF 0402 1 2 1 2 C115 0.01uF 0402 C120 0.1uF 0402 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND 1 4 C90 0.01uF 0402 C121 0.1uF 0402 A1 A22 AA19 AA4 AB1 AB22 B19 B4 C10 C13 D16 D2 D21 D7 G19 G4 H10 H13 J14 J9 K10 K11 K12 K13 K15 K20 K3 K8 L10 L11 L12 L13 M10 M11 M12 M13 N10 N11 N12 N13 N15 N20 N3 N8 P14 P9 R10 R13 T19 T4 W16 W2 W21 W7 Y10 Y13 C113 0.01uF 0402 C123 0.1uF 0402 C112 0.01uF 0402 C143 0.1uF 0402 [13] [13] [13] [13] VCC_ADJ VCC_2.5V VCC_1.8V VCC_1.2V VCC_3.3V VCC_2.5V VCC_3.3V VCC_2.5V VCC_1.8V J37 HEADER 3X2 VCC_ADJ VCC_1.8V J34 HEADER 3X2 VCC_ADJ VCC_2.5V [8] C198 10uF Ceramic X5R 0805 C83 10uF Ceramic X5R 0805 [2] GND5 GND3 GND8 GND7 GND1 GND4 GND6 GND2 GND9 GND10 CON1 CON1 CON1 CON1 CON1 CON1 CON1 CON1 CON1 CON1 3 VCC_ADJ VCC_1.2V C24 10uF Ceramic X5R 0805 C13 10uF Ceramic X5R 0805 2 Video TX/RX LVDS, High Speed SMA, IDC VCCIO_6 Compact Flash, PLL SMA I/O VCCIO_0 C196 10uF Ceramic X5R 0805 C78 10uF Ceramic X5R 0805 2 C23 10uF Ceramic X5R 0805 C12 10uF Ceramic X5R 0805 C173 10uF Ceramic X5R 0805 1 C178 10uF Ceramic X5R 0805 1 Sheet FPGA Power Pins Document Number 11 of 14 B Rev Lattice Semiconductor Corporation Date: Size C Title VCC_1.8V 1 2 VCC_3.3V GND Pins for Signal Probing VCC_ADJ VCC_2.5V VCC_1.8V VCC_1.2V 1 D 1 2 1 2 VCC_3.3V 1 VCC_3.3V 1 [12] 1 1 2 Bulk Capacitors 1 1 2 1 2 3 1 4 1 1 2 1 2 2 4 6 1 3 5 2 4 6 1 3 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 5 1 44 1 A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 29. FPGA Power Pins A B C D 16 15 14 13 12 11 10 9 1 1 2 3 S BANANA JACK J51 2.5mm Pin, (+) 5.5mm Barrel, (-) 1 VCC_IN Power Input +5 to +28VDC J54 PWR JACK RAPC712 S BANANA JACK J53 VCC_IN 5 VTT VCC_3.3V VCC_2.5V VCC_1.8V VCC_1.2V D30 1N5820 267-05 [13] VCC_5.0V [13] [13] [13] [13] [13] VREF VCC_ADJ SW DIP-8 CTS 194-8MST SW2 SW3 SW PUSHBUTTON Panasonic EVQP2H02B ON R270 4.7K R269 4.7K VMON1+ VMON1GS VMON2+ VMON2GS VMON3+ VMON3GS VMON4+ VMON4GS VMON5+ VMON5GS VMON6+ VMON6GS VMON7+ VMON7GS VMON8+ VMON8GS VMON9+ VMON9GS VMON10+ VMON10GS VMON11+ VMON11GS TP92 1 2 3 Off C56 0.001uF 0402 PCI_GND 3.3V On/Off Switch SW9 EG1257 On R266 10K R267 10K R123 4.7K POWR1220AT8 Lattice ispPAC U17 PLDCLK TRIM8 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 HVOUT4 HVOUT3 HVOUT2 HVOUT1 OUT20 OUT19 OUT18 OUT17 OUT16 OUT15 OUT14 OUT13 OUT12 OUT11 OUT10 OUT9 OUT8 OUT7 OUT6 SMBA/OUT5 TDISEL TP106 TP105 TP104 TP102 TP103 TP95 TP101 TP98 73 74 75 79 80 82 83 84 R268 10K C59 2200pF 0402 R133 10K 0402 [5] 4 [5] Vosence Vprog Ith FCB Run/SS EXTVcc 10 11 12 14 13 15 C2012X5ROJ475M BG INTVcc Boost SW TG TK R263 10K R291 10 0402 3 EN_ADJ [13] R290 10K 0402 4 4 [13] [13] 3 2 1 8 7 6 5 3 2 1 8 7 6 5 Q13 MMBT2222ALT SOT-23 DIS_1.2V DIS_2.5V 3 C55 0.47uF Ceramic X5R R130 0603 10K 0402 10 0402 C221 4.7uF Ceramic X5R 0603 59-10 1N5819 D26 R131 DC-DC converter traces >= 10mil U21 LTC1775CS 7 8 5 4 3 1 TP97 TP94 TP100 TP99 95 [2] [2] ADJ_1.2V ADJ_1.5V ADJ_1.8V ADJ_2.5V ADJ_3.3V PWR_GOOD_VTT PWR_GOOD_VREF PWR_GOOD_1.2V PWR_GOOD_1.8V PWR_GOOD_2.5V PWR_GOOD_3.3V DIS_1.2V DIS_2.5V I2C_SCL I2C_SDA 40 42 85 86 25 24 23 21 20 19 18 17 16 15 14 12 11 10 9 8 [4] [4] [4] [4] [4] [4] I2C_SCL PWR_TDO PWR_TDI PWR_ATDI PWR_TMS PWR_TCK TP90 I2C_SDA VCC_3.3V TP91 R124 4.7K HVOUT1 from ispPAC is disabled during programming so jumper J52 must be added during chained programming of the XP2 and ispPAC R250 4.7K VMON12+ VMON12GS R264 4.7K 100uF AVX Tantalum TPSE107K020R0150 SizeE C58 47 46 50 48 52 51 54 53 56 55 58 57 62 61 64 63 66 65 68 67 70 69 72 71 R265 4.7K GNDD GNDD GNDD GNDD GNDD GNDD 3 22 36 43 88 98 R271 4.7K VCCA 60 R273 4.7K 87 45 1 2 3 4 5 6 7 8 4 91 GNDA GNDA R274 4.7K 89 90 5 97 1 2 4 6 7 VCCPROG VCCINP IN1 IN2 IN3 IN4 IN5 IN6 VCCD VCCD VCCD VPS0 VPS1 39 93 92 SDA SCL RESETb SGND 6 1 2 TP96 96 MCLK 13 38 94 TP93 33 34 31 30 28 37 32 VCCJ TDO TDI ATDI TMS TCK TDISEL 16 Vin PGND 9 Q12 MMBT2222ALT SOT-23 EN_5.0V [13] R249 10K 1 3.3V 2.5V 1.8V 2 R251 R252 R253 R254 R255 R256 R257 R258 R259 R260 R261 Source PWR_3.3V_3A Q7 NTR4501N 20V 3.2A SOT-23 Drain PWR_3.3V_10A Source 2 HEADER 2 F5 J52 2 C220 0.1uF 0402 C50 470uF KEMET T510X477K006AS SizeD PWR_3.3V_10A 1 [4,13] [5] C215 0.1uF 0402 MOSFET PWR_3.3V_10A PCI_3.3V C218 0.1uF 0402 +3.3V 10A C217 10uF Ceramic X5R 0805 ADJ, 1.5A +1.2V, 3A +1.8V, 10A +2.5V, 3A +3.3V, 3A +5.0V, 1A Date: Size C Power_1 Document Number 1 Sheet 12 of 14 Lattice Semiconductor Corporation Title ispPAC C52 10uF Ceramic X5R 0805 VCC_3.3V J50 BANANA JACK +3.3VDC VCC_3.3V [2,3,4,5,6,7,11] C216 0.1uF 0402 Power Input +5~28V 3A FUSE Littelfuse 154003 383milX198mil 1 1 2 330 330 330 330 330 330 330 330 330 330 330 2 C53 470uF KEMET T510X477K006AS SizeD L6 10uH Coilcraft DO5010H-103ML 15.24mmX18.54mm Gate Gate Drain 3.3V Power Good 2.5V Power Good 1.8V Power Good 1.2V Power Good VREF Power Good SOT-23 S3S5_1.8V [13] Q11 MMBT2222ALT SOT-23 VTT Power Good D23 Q8 Si4840DY 403-03 SO-8 MBRS340 Q9 Si4840DY SO-8 R127 100 LED 0603 Green D5 LED 0603 Green D6 LED 0603 Green D7 LED 0603 Green D8 LED 0603 Green D9 D10 LED 0603 Green D11 LED 0603 Green LED 0603 Green D12 LED 0603 Green D13 LED 0603 Green D14 D15 LED 0603 Green1.5V 1.2V ADJ Voltage Indicators R262 10K 1 2 1 2 5 1 2 1 2 S 1 1 45 2 B Rev A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 30. Power 1 A B C D [12] [12] DIS_1.2V PWR_3.3V_10A DIS_2.5V PWR_3.3V_10A 1 2 F3 1 G G U12 TPS64203DVB /EN GND FB 5 C42 10uF Ceramic X5R 0805 R122 10K 1 2 3 TPS64203DVB /EN GND FB U16 SW VIN ISENSE Q5 Si2323DS Vishay Siliconix SOT23 SOT-23 1 2 3 Another P-Channel MOSFET option in SOT23 package DRAIN_1.2 GATE_1.2 PWR_3.3V_10A R114 10K SW VIN ISENSE Q1 Si2323DS Vishay Siliconix SOT23 SOT-23 Another P-Channel MOSFET option in SOT23 package DRAIN_2.5 GATE_2.5 PWR_3.3V_10A 6 5 4 6 5 4 100 R126 R125 10 100 R110 R116 10 GATE_2.5 VBST DRVH LL DRVL PGND CS V5IN PGOOD S5 S3 0402 0.1uF 4 C43 1800p 0402 DRAIN_1.2 P-Channel MOSFET GATE_1.2 C29 1800p 0402 DRAIN_2.5 P-Channel MOSFET On On On On On Off(Hi-Z) Off(Discharge) Off(Discharge) Off(Discharge) HI HI LO HI LO LO TPS51116PWP S0 S3 S4/S5 VTT U14 VLDOIN VTT VTTGND VTTSNS GND MODE VTTREF COMP VDDQSSNS VDDQSET VBST C213 VDDQ VTTREF 1 2 3 4 5 6 7 8 9 10 PWR_1.8V S3 S5 C34 0.033uF Ceramic 0402 VREF C32 10uF Ceramic X5R 0805 VTT C41 10uF Ceramic X5R 0805 10A FUSE Littelfuse 154010 383milX198mil STATE C208 0.1uF 0402 C33 10uF Ceramic X5R 0805 VCC_1.8V C207 10uF Ceramic X5R 0805 [10] VREF [10] VTT VCC_1.8V [8,9,10,11,12] S BANANA JACK 1 2 +1.8VDC 1 2 1 2 J47 1 20 19 18 17 16 15 14 13 12 11 4 3 2 1 G D D D S D D D S 4 D4 R117 10K PGOOD CS_1.8 3 2 1 VCC_2.5V 10uF Ceramic X5R 0805 100K 1 1uF Ceramic X5R 2 0402 C47 10uF Ceramic X5R 0805 C45 0.1uF 0402 C46 1 1uF Ceramic X5R 2 0402 F4 3A FUSE Littelfuse 154003 383milX198mil +1.2VDC 3 C48 100uF Parasonic SP-CAP EEF-HD0J101R SizeD PWR_1.2V VCC_1.2V VCC_1.2V R115 39K 1% YAGEO 0402 J48 BANANA JACK C30 100uF Parasonic SP-CAP EEF-HD0J101R SizeD C27 F1 3A FUSE Littelfuse 154003 383milX198mil C26 10uF Ceramic X5R 0805 +2.5VDC J41 BANANA JACK C35 4.7uF Ceramic X5R 0603 VCC_5.0V C212 150uF Panasonic SP-CAP EEF-HE0J151R 1 2 SizeD VCC_2.5V R111 42.2K 1% YAGEO 0402 C44 0.01uF 0402 3 C211 150uF Panasonic SP-CAP EEF-HE0J151R 2 SizeD 1 5.1K PWR_2.5V R119 R118 Q3 IRF7832 SO-8 N-Channel MOSFET [2,5,6,9,11,12] C31 4.7pF 0402 1 2 6.2uH Sumida CDRH6D38-6R2 B320A Diodes Inc. SMA_PKG D16 L4 Q6 Si5447DC 1206-8 B320A Diodes Inc. SMA_PKG 4 SOURCE N-Channel MOSFET PWR_3.3V_10A Q4 IRF7821 SO-8 C40 L3 1 2 1.0uH Vishay IHLP-5050FD-ER-1R0-M-01 3 2 1 DRAIN 8 7 6 5 SOURCE 4 DRAIN 8 7 6 5 10uF Ceramic X5R 0805 [2,8,10,11,12] L2 1 2 6.2uH Sumida CDRH6D38-6R2 Q2 Si5447DC 1206-8 GATE_1.8L LL_1.8 GATE_1.8H C37 1 2 S 1 2 1 [12] [12] EN_ADJ PWR_3.3V_10A EN_5.0V [12] [12] S3S5_1.8V PWR_3.3V_10A PWR_3.3V_10A 1 2 5 1 2 1 2 1 2 R281 10K 1 2 3 4 5 6 7 8 NC VOUT VOUT VOUT FB GND LBO EN TPS61030PWP SW SW PGND PGND PGND VBAT LBI SYNC U19 16 15 14 13 12 11 10 9 VCC_5.0V VCC_5.0V +5.0VDC [7,12] C39 4.7uF Ceramic X5R 0603 2 R121 10K 1 2 EN VIN U13 FB VOUT 5 4 TPS78601KTT 2 VCC_ADJ PWR_ADJ VCC_ADJ C36 10uF Ceramic X5R 0805 C38 2.2uF Ceramic X5R 0603 F2 1.5A FUSE Littelfuse 15401.5 383milX198mil Power_2 Document Number 1 Sheet 13 of 14 B Rev Lattice Semiconductor Corporation Date: Size C Title R120 30.1K 1% YAGEO 0402 J46 BANANA JACK R280 221K 1% YAGEO 0603 VR3 50K POT Murata PV36Y503C01 PV37W [11,12] C54 2.2uF Ceramic X5R 0603 220uF AVX Tantalum TPSD227K010R0150 2 SizeD 1 R279 2.0M 1% YAGEO 0603 C51 1 (Adjustable between 1.2V to +3.3V) L5 6.8uH Sumida CDRH124-6R8 1 2 VCC_ADJ C49 10uF Ceramic X5R 0805 2 3 D S D 1 2 5 6 7 8 4 3 2 1 G D D D S D D D 5 6 7 8 2 1 2 1 2 1 2 1 2 1 2 S 1 2 1 GND 3 1 2 S 1 2 1 46 1 A B C D Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 31. Power 2 47 4 3 2 Lattice Semiconductor Corporation Date: Size C Document Number 1 Sheet 14 of 14 B Rev A A Placement & Dimension (6.0"x12.0") B B 5 Title 1 C 2 C 3 D 4 D 5 Lattice Semiconductor LatticeXP2 Advanced Evaluation Board User’s Guide Figure 32. Placement and Dimension (6” x 12”)